Influence of a Constant Magnetic Field on the Mechanism of Adrenaline Oxidation
Abstract
:1. Introduction
1.1. The Base Mechanisms
1.2. Purpose of the Work and Research Methodology
2. Experimental
3. Results and Discussion
3.1. Autooxidation of Adrenaline
3.2. Radical-Chain Oxidation of Adrenaline
4. Conclusions
- The quinoid process proceeds at high rates only in carbonate buffer at high pH values. Radical-chain oxidation proceeds at a measurable rate in both carbonate and phosphate buffers. However, the considered mechanism is valid for physiological values of pH = 7.4. Therefore, each process must be analyzed separately, although their superposition is not excluded;
- The effect of SOD on the rate of autoxidation (measured by the rate of adrenaline consumption) is significantly higher than on the rate of oxygen consumption;
- One should take into account the multiphase nature of the processes, the analysis of which still requires proving the eligibility of using liquid-phase kinetic models.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayashi, H. Introduction to Dynamic Spin Chemistry: Magnetic Field Effects on Chemical and Biochemical Reactions; World Scientific Printers (S) Pte Ltd.: Singapore, 2004; 236p. [Google Scholar]
- Buchachenko, L. Magneto-Biology and Medicine; Nova Science: Hauppauge, NY, USA, 2014; 248p. [Google Scholar]
- Kokhan, V.; Matveeva, M.; Mukhametov, A.; Shtemberg, A. Risk of defeats in the central nervous system during deep space missions. Neurosci. Biobehav. Rev. 2016, 71, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Binhi, V.; Prato, F. Biological effects of the hypomagnetic field: An analytical review of eexperiments a and theories. PLoS ONE 2017, 12, e179340. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, L. Reactive oxygen species: Potential regulatory molecules in response to hypomagnetic field exposure. Bioelectromagnetics 2020, 41, 573–580. [Google Scholar] [CrossRef]
- Ghirri, A.; Candini, A.; Affonte, M. Molecular Spins in the Context of Quantum Technologies. Magnetochemistry 2017, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Funk, R. Endogenous Bioelectric Phenomena and Interfaces for Exogenous Effects. In Bioengineering and Biophysical Aspects of Electromagnetic Fields, 4th ed.; Greenebaum, B., Barnes, F., Eds.; CRC Press, Taylor & Francis Group: Boca Raton FL, USA, 2019. [Google Scholar] [CrossRef]
- Sampson, C.; Keens, R.; Kattnig, D. On the magnetosensitivity of lipid peroxidation: Two- versus three-radical dynamics. Phys. Chem. Chem. Phys. 2019, 21, 13526–13538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukzen, N.; Ivanov, K.; Sadovsky, V.; Sagdeev, R. Magnetic field effect on recombination of radicals diffusing on a two-dimensional plane. J. Chem. Phys. 2020, 152, 34103. [Google Scholar] [CrossRef] [PubMed]
- Kasaikina, O.; Pisarenko, L. Magnetic effects in hydroperoxide decomposition in mixed micelles with cationic surfactants. Rus. Chem. Bull. 2015, 10, 2319–2324. [Google Scholar] [CrossRef]
- Pliss, E.; Grobov, A.; Kuzaev, A.; Buchachenko, A.L. Magnetic field effect on the oxidation of organic substances by molecular oxygen. J. Phys. Org. Chem. 2019, 32, e3915. [Google Scholar] [CrossRef]
- Kazin, V.; Makaryin, V.; Guzov, E.; Moshareva, V.; Kovchiy, K. Spectrophotometric study of the effect of a magnetic field on human blood components. J. Appl. Spectr. 2016, 83, 406–411. [Google Scholar] [CrossRef]
- Kazin, V.; Guzov, E.; Pliss, E.; Moshareva, V.; Makaryin, V.; Levshin, N.; Baranov, A. The Effect of a Constant Magnetic Field on Components of Protein Structures in Human Blood. Biophysics 2017, 62, 821–828. [Google Scholar] [CrossRef]
- Bindoli, A.; Deeble, D.J.; Rigobello, M.P.; Galzigna, L. Direct and respiratory chain-mediated redox cycling of adrenochrome. Biochim. Biophys. Acta 1990, 1016, 349–356. [Google Scholar] [CrossRef]
- Sirota, T. Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation. Biomed. Chem. 2015, 61, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Sirota, T. Standardization and regulation of the rate of the superoxide-generating adrenaline autoxidation reaction used for evaluation of pro/antioxidant properties of various materials. Biomed. Chem. 2016, 62, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Sirota, T. Effect of the sulfur-containing compounds on the quinoid process of adrenaline autoxidation; potential neuroprotectors. Biomed. Chem. 2019, 65, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Sirota, T. A chain reaction of adrenaline autoxidation is a model of quinoid oxidation of catecholamines. Biophysics 2020, 65, 548–556. [Google Scholar] [CrossRef]
- Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, P.; Huenchuguala, S.; Paris, I.; Segura-Aguilar, J. Dopamine Oxidation and Autophagy. Parkinsons Dis. 2012, 2012, 920953. [Google Scholar] [CrossRef] [PubMed]
- Bielski, H.; Cabelli, D.; Arudi, R.; Ross, A. Reactivity of HO2/O−2 radicals in aqueous solution. Phys. Chem. Ref. Data 1985, 14, 1041–1100. [Google Scholar] [CrossRef]
- Denisov, E.; Afanas’ev, I. Oxidation and Antioxidantsin Organic Chemistry and Biology; CRC Press: Boca Raton, FL, USA, 2005; 992p. [Google Scholar] [CrossRef]
- Pliss, E.; Safiulin, R.; Zlotsky, S. Inhibited Oxidation of Unsaturated Compounds—Kinetics, Mechanism, Correlation of Structure with Reactionary Ability; LAP LAMBERT Academic Publishing: Saarbruchen, Germany, 2012; 130p. [Google Scholar]
- Roginsky, V. Chain-breaking antioxidant activity of natural polyphenols as determined during the chain oxidation of methyl linoleate in Triton X-100 micelles. Arch. Biochem. Biophys. 2003, 414, 261–270. [Google Scholar] [CrossRef]
- Pliss, E.; Grobov, A.; Kuzaev, A.; Buchachenko, A. Magnetic field effect on the oxidation of hydrocarbons by molecular oxygen. Mendeleev Commun. 2017, 27, 246–247. [Google Scholar] [CrossRef]
- Pliss, E.; Grobov, A.; Kuzaev, A.; Buchachenko, A. Magnetic field as a means to identify initiating reaction in oxidation of organic substances by molecular oxygen. Mendeleev Commun. 2020, 30, 433–435. [Google Scholar] [CrossRef]
- Pliss, E.; Grobov, A.; Kuzaev, A.; Buchachenko, A. Magnetic field effects on the initiation of chain oxidation. Mendeleev Commun. 2021, 3, 341–343. [Google Scholar] [CrossRef]
- Pliss, E.; Soloviev, M. Magnetic Field Effect on the Oxidation of Unsaturated Compounds by Molecular Oxygen. Magnetochemistry 2022, 8, 44. [Google Scholar] [CrossRef]
- Guzov, E.; Kazin, V.; Moshareva, V.; Zhukova, A. Application of electronic spectroscopy and quantum-chemical modeling for analysis of products of autoxidation of adrenaline. J. Appl. Spectr. 2019, 85, 1107–1113. [Google Scholar] [CrossRef]
- Sokolov, A.; Popov, S.; Pliss, E.; Loshadkin, V. Computer Program “Kinetics of 2012—A Program to Calculate the Kinetic Parameters of Chemical and Biochemical Processes. In Official Bulletin of the Federal Service for Intellectual Property; Computer Programs, Database, Topographies of Integrated Circuits 3; Federal Service for Intellectual Property: Moscow, Russia, 2013. [Google Scholar]
- Vladimirov, G.; Vikulina, A.; Volodkin, D.; Vladimirov, Y. Structure of the complex of cytochrome c with cardiolipin in non-polar environment. Chem. Phys. Lipids 2018, 214, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pliss, E.; Soloviev, M.; Loshadkin, D.; Molodochkina, S.; Kasaikina, O. Kinetic model of polyunsaturated fatty acids oxidation in micelles. Chem. Phys. Lipids 2021, 237, 105089. [Google Scholar] [CrossRef]
- Lukzen, N.; Ivanov, K.; Sadovsky, V.; Kaptein, R.; Sagdeev, R. Magnetic field and spin effects on the recombination of radicals on two-dimensional surfaces. Dokl. Phys. Chem. 2013, 449, 44–47. [Google Scholar] [CrossRef]
- Ivanov, K.; Lukzen, N.; Doktorov, A. The integral encounter theory of multistage reactions containing association-dissociation reaction stages. III. Taking account of quantum states of reactants. J. Chem. Phys. 2004, 15, 5115–5124. [Google Scholar] [CrossRef]
pH | 10.40 | 10.60 | 10.70 |
---|---|---|---|
W·103, M·s−1 | 3.8 | 6.5 | 10.2 |
[SOD]0, U/mL | 0 | 30 | 60 | 90 |
---|---|---|---|---|
W·103, M·s−1 | 6.5 | 5.0 | 2.8 | 1.5 |
B, μT | 0 | 75 | 90 | 125 |
---|---|---|---|---|
W·103, M·s−1 | 6.5 | 4.9 | 4.7 | 3.2 |
MFE ± 0.02 | 1 | 0.77 | 0.72 | 0.53 |
[SOD], U/mL | 0 | 30 | 60 | 90 |
---|---|---|---|---|
W·103, M·s−1 | ||||
B = 0 B = 90 μT | 6.5 4.7 | 4.9 3.9 | 2.8 2.3 | 1.5 1.2 |
MFE ± 0.1 | 0.72 | 0.61 | 0.33 | 0.18 |
Wi∙109, M s−1 | W0(20)∙108, M s−1 | W0(70)∙108, M s−1 | W0(100)∙108, M s−1 | W0(150)∙108, M s−1 |
---|---|---|---|---|
1.0 | 0.82 | 0.81 | 0.80 | 0.78 |
4.0 | 1.74 | 1.66 | 1.62 | 1.55 |
ni ± 0.02 | 0.54 | 0.52 | 0.51 | 0.50 |
B, T | 0.3 | 0.4 | 0.5 | 0.6 |
---|---|---|---|---|
[SOD], U/mL | MFE ± 0.02 | |||
0 | 1.11 | 1.31 | 1.52 | 1.72 |
100 | 1.14 | 1.35 | 1.56 | 1.74 |
200 | 1.17 | 1.38 | 1.58 | 1.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazin, V.N.; Guzov, E.A.; Moshareva, V.A.; Pliss, E.M. Influence of a Constant Magnetic Field on the Mechanism of Adrenaline Oxidation. Magnetochemistry 2022, 8, 70. https://doi.org/10.3390/magnetochemistry8070070
Kazin VN, Guzov EA, Moshareva VA, Pliss EM. Influence of a Constant Magnetic Field on the Mechanism of Adrenaline Oxidation. Magnetochemistry. 2022; 8(7):70. https://doi.org/10.3390/magnetochemistry8070070
Chicago/Turabian StyleKazin, Vyacheslav N., Evgenii A. Guzov, Valentina A. Moshareva, and Evgenii M. Pliss. 2022. "Influence of a Constant Magnetic Field on the Mechanism of Adrenaline Oxidation" Magnetochemistry 8, no. 7: 70. https://doi.org/10.3390/magnetochemistry8070070
APA StyleKazin, V. N., Guzov, E. A., Moshareva, V. A., & Pliss, E. M. (2022). Influence of a Constant Magnetic Field on the Mechanism of Adrenaline Oxidation. Magnetochemistry, 8(7), 70. https://doi.org/10.3390/magnetochemistry8070070