Polymer-Assisted Synthesis, Structure and Magnetic Properties of Bimetallic FeCo- and FeNi/N-Doped Carbon Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthetic Procedures
2.3. Characterization
3. Results and Discussion
3.1. Composition and Structure of Bimetallic Nanocomposites
3.1.1. IR Spectroscopy
3.1.2. Thermal Analysis
3.2. Phase Composition and Microstructure of FeCo/C-N and FeNi/C-N Nanocomposites
3.2.1. X-ray Diffraction
3.2.2. Electron Microscopy Studies
3.3. Magnetic Properties of FeCo/C-N and FeNi/C-N Nanocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, S.; Murray, C.B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 2000, 287, 1989–1992. [Google Scholar] [CrossRef] [PubMed]
- Skumryev, V.; Stoyanov, S.; Zhang, Y.; Hadjipanayis, G.; Givord, D.; Nogués, J. Beating the Superparamagnetic Limit with Exchange Bias. Nature 2003, 423, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Blom, D.A.; Gai, Z.; Thompson, J.R.; Shen, J.; Dai, S. High-Yield Solvothermal Formation of Magnetic CoPt Alloy Nanowires. J. Am. Chem. Soc. 2003, 125, 7528–7529. [Google Scholar] [CrossRef] [PubMed]
- Ghadermazi, M.; Moradi, S.; Mozafari, R. Rice Husk-SiO2 Supported Bimetallic Fe–Ni Nanoparticles: As a New, Powerful Magnetic Nanocomposite for the Aqueous Reduction of Nitro Compounds to Amines. RSC Adv. 2020, 10, 33389–33400. [Google Scholar] [CrossRef] [PubMed]
- Acharya, P.; Nelson, Z.J.; Benamara, M.; Manso, R.H.; Bakovic, S.I.P.; Abolhassani, M.; Lee, S.; Reinhart, B.; Chen, J.; Greenlee, L.F. Chemical Structure of Fe–Ni Nanoparticles for Efficient Oxygen Evolution Reaction Electrocatalysis. ACS Omega 2019, 4, 17209–17222. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Y. Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications. Adv. Mater. 2011, 23, 1044–1060. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-I.; Lee, S.-U.; Kim, W.Y.; Choi, R.; Hong, K.; Nam, K.M.; Han, S.W.; Park, J.T. Composition-Controlled PtCo Alloy Nanocubes with Tuned Electrocatalytic Activity for Oxygen Reduction. ACS Appl. Mater. Interfaces 2012, 4, 6228–6234. [Google Scholar] [CrossRef]
- Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials 2017, 7, 243. [Google Scholar] [CrossRef]
- Liu, S.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Preparation, Surface Functionalization and Application of Fe3O4 Magnetic Nanoparticles. Adv. Colloid Interface Sci. 2020, 281, 102165. [Google Scholar] [CrossRef]
- Samrot, A.V.; Sahithya, C.S.; Selvarani, A.J.; Purayil, S.K.; Ponnaiah, P. A Review on Synthesis, Characterization and Potential Biological Applications of Superparamagnetic Iron Oxide Nanoparticles. Curr. Res. Green Sustain. Chem. 2021, 4, 100042. [Google Scholar] [CrossRef]
- Mylkie, K.; Nowak, P.; Rybczynski, P.; Ziegler-Borowska, M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. Materials 2021, 14, 248. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Wang, Y.-C.; Wang, X.; Wang, Z.; Liu, G.; Zhou, W.; Wen, L.; Li, Q.; Wang, X.; Chen, X.; et al. Facile Synthesis of Pentacle Gold–Copper Alloy Nanocrystals and Their Plasmonic and Catalytic Properties. Nat. Commun. 2014, 5, 4327. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, G.S.; Barcena, C.; Poudyal, N.; Rong, C.; Gao, J.; Sun, S.; Liu, J.P. Synthesis and Stabilization of FeCo Nanoparticles. J. Am. Chem. Soc. 2007, 129, 7214–7215. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Nazrul Islam, M.; Parvatheeswara Rao, B.; Ogawa, T.; Takahashi, M.; Kim, C. One-Pot Synthesis of High Magnetization Air-Stable FeCo Nanoparticles by Modified Polyol Method. Mater. Lett. 2013, 91, 326–329. [Google Scholar] [CrossRef]
- Khiriya, P.K.; Moradiya, M.; Khare, P.S. Facile synthesis of high magnetization long term stable bimetallic FeCo nanoparticles. Int. J. Nano Dimens. 2020, 11, 299–302. [Google Scholar]
- Ghunaim, R.; Damm, C.; Wolf, D.; Lubk, A.; Büchner, B.; Mertig, M.; Hampel, S. Fe1-XNix Alloy Nanoparticles Encapsulated Inside Carbon Nanotubes: Controlled Synthesis, Structure and Magnetic Properties. Nanomaterials 2018, 8, 576. [Google Scholar] [CrossRef] [PubMed]
- Li, X.G.; Murai, T.; Saito, T.; Takahashi, S. Thermal Stability, Oxidation Behavior and Magnetic Properties of Fe–Co Ultrafine Particles Prepared by Hydrogen Plasma–Metal Reaction. J. Magn. Magn. Mater. 1998, 190, 277–288. [Google Scholar] [CrossRef]
- Li, L. High Temperature Magnetic Properties of 49%Co–2%V–Fe Alloy. J. Appl. Phys. 1996, 79, 4578. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, X.; Yue, G.-H.; Luo, X.; Peng, D.-L. Synthesis of Iron–Nickel Nanoparticles via a Nonaqueous Organometallic Route. Mater. Chem. Phys. 2009, 113, 412–416. [Google Scholar] [CrossRef]
- Zubris, M.; King, R.B.; Garmestani, H.; Tannenbaum, R. FeCo Nanoalloy Formation by Decomposition of Their Carbonyl Precursors. J. Mater. Chem. 2005, 15, 1277–1285. [Google Scholar] [CrossRef]
- Kuchi, R.; Lee, K.-M.; Lee, Y.; Luong, C.H.; Lee, K.-D.; Park, B.-G.; Jeong, J.-R. Synthesis of Highly Magnetic FeCo Nanoparticles Through a One Pot Polyol Process Using All Metal Chlorides Precursors with Precise Composition Tunability. Nanosci. Nanotechnol. Lett. 2015, 7, 734–737. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Pol, V.G.; Bruckental, I.; Koltypin, Y.; Calderon-Moreno, J.; Nowik, I.; Gedanken, A. Sonochemical Synthesis, Structural and Magnetic Properties of Air-Stable Fe/Co Alloy Nanoparticles. New J. Chem. 2003, 27, 1194–1199. [Google Scholar] [CrossRef]
- Karipoth, P.; Thirumurugan, A.; Justin Joseyphus, R. Synthesis and Magnetic Properties of Flower-like FeCo Particles through a One Pot Polyol Process. J. Colloid Interface Sci. 2013, 404, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.J.; Yao, J.; Min, J.J.; Li, J.H.; Chen, X.Q. Synthesis of High Saturation Magnetization FeCo Nanoparticles by Polyol Reduction Method. Chem. Phys. Lett. 2016, 648, 143–146. [Google Scholar] [CrossRef]
- Pratap, K.; Rao, M.S.; Rao, M.V.B. Facile synthesis of FeCo nanoparticles by one-pot polyol process. Eur. Chem. Bull. 2019, 8, 150. [Google Scholar] [CrossRef]
- Douvalis, A.P.; Zboril, R.; Bourlinos, A.B.; Tucek, J.; Spyridi, S.; Bakas, T. A Facile Synthetic Route toward Air-Stable Magnetic Nanoalloys with Fe–Ni/Fe–Co Core and Iron Oxide Shell. J. Nanoparticle Res. 2012, 14, 1130. [Google Scholar] [CrossRef]
- Kim, C.W.; Kim, Y.H.; Cha, H.G.; Kwon, H.W.; Kang, Y.S. Synthesis and Characterization of Highly Magnetized Nanocrystalline Co30Fe70 Alloy by Chemical Reduction. J. Phys. Chem. B 2006, 110, 24418–24423. [Google Scholar] [CrossRef]
- Shin, S.J.; Kim, Y.H.; Kim, C.W.; Cha, H.G.; Kim, Y.J.; Kang, Y.S. Preparation of Magnetic FeCo Nanoparticles by Coprecipitation Route. Curr. Appl. Phys. 2007, 7, 404–408. [Google Scholar] [CrossRef]
- Dzhardimalieva, G.I.; Pomogailo, A.D.; Golubeva, N.D.; Pomogailo, S.I.; Roshchupkina, O.S.; Novikov, G.F.; Rozenberg, A.S.; Leonowicz, M. Metal-Containing Nanoparticles with Core-Polymer Shell Structure. Colloid J. 2011, 73, 458–466. [Google Scholar] [CrossRef]
- Hasegawa, T.; Niibori, T.; Takemasa, Y.; Oikawa, M. Stabilisation of Tetragonal FeCo Structure with High Magnetic Anisotropy by the Addition of V and N Elements. Sci. Rep. 2019, 9, 5248. [Google Scholar] [CrossRef]
- Zhou, Z.; Ruan, W.; Huang, H.; Shen, C.; Yuan, B.; Huang, C.-H. Fabrication and Characterization of Fe/Ni Nanoparticles Supported by Polystyrene Resin for Trichloroethylene Degradation. Chem. Eng. J. 2016, 283, 730–739. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, J.; Meng, Y.; Aihemaiti, A.; Xu, Y.; Xiang, H.; Gao, Y.; Chen, X. Preparation, Environmental Application and Prospect of Biochar-Supported Metal Nanoparticles: A Review. J. Hazard. Mater. 2020, 388, 122026. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Bian, H.; Zhang, M.; Zhan, C.; Li, C.; Zhang, W.; Cui, C.; Lu, Q.; Lin, K.; Zhao, J. Characterization of Bimetallic Fe/Ni Nanoparticles Supported by Amphiphilic Block Copolymer and Its Application in Removal of 1,1,1-Trichloroethane in Water. Environ. Sci. Pollut. Res. 2020, 27, 34503–34512. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, I.K.; Grass, R.N.; Stark, W.J. High-Strength Metal Nanomagnets for Diagnostics and Medicine: Carbon Shells Allow Long-Term Stability and Reliable Linker Chemistry. Nanomedicine 2009, 4, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Tsurin, V.A.; Yermakov, A.Y.; Uimin, M.A.; Mysik, A.A.; Shchegoleva, N.N.; Gaviko, V.S.; Maikov, V.V. Synthesis, Structure, and Magnetic Properties of Iron and Nickel Nanoparticles Encapsulated into Carbon. Phys. Solid State 2014, 56, 287–301. [Google Scholar] [CrossRef]
- Xu, Y.; Mahmood, M.; Li, Z.; Dervishi, E.; Trigwell, S.; Zharov, V.P.; Ali, N.; Saini, V.; Biris, A.R.; Lupu, D.; et al. Cobalt Nanoparticles Coated with Graphitic Shells as Localized Radio Frequency Absorbers for Cancer Therapy. Nanotechnology 2008, 19, 435102. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.M.M.; Hampel, S.; Wolter, A.U.; Kath, M.; El-Gendy, A.A.; Klingeler, R.; Taschner, C.; Khavrus, V.O.; Gemming, T.; Leonhardt, A.; et al. Superparamagnetic FeCo and FeNi Nanocomposites Dispersed in Submicrometer-Sized C Spheres. J. Phys. Chem. 2012, 116, 22509–22517. [Google Scholar] [CrossRef]
- Izydorzak, M.; Skumiel, A.; Leonowicz, M.; Kaczmarek-Klinowska, M.; Pomogailo, A.D.; Dzhardimalieva, G.I. Thermophysical and Magnetic Properties of Carbon Beads Containing Cobalt Nanocrystallites. Int. J. Thermophys. 2012, 33, 627–639. [Google Scholar] [CrossRef]
- Churilov, G.N.; Vnukova, N.G.; Nikolaev, N.S.; Glushenko, G.A.; Osipova, I.V.; Lopatin, V.A.; Komogortsev, S.V.; Velikanov, D.A.; Volochaev, M.N.; Nemtsev, I.V. Nanodispersed powders of Fe-Ni particles with carbon shell. J. Sib. Fed. Univ. Math. Phys. 2017, 10, 509–513. [Google Scholar] [CrossRef]
- Lokteva, E.S.; Kachevskii, S.A.; Turakulova, A.O.; Golubina, E.V.; Lunin, V.V.; Ermakov, A.E.; Uimin, M.A.; Mysik, A.A. The Hydrodechlorination of Chlorobenzene in the Vapor Phase in the Presence of Metal-Carbon Nanocomposites Based on Nickel, Palladium, and Iron. Russ. J. Phys. Chem. A 2009, 83, 1300–1306. [Google Scholar] [CrossRef]
- Yermakov, A.Y.; Boukhvalov, D.W.; Uimin, M.A.; Lokteva, E.S.; Erokhin, A.V.; Schegoleva, N.N. Hydrogen Dissociation Catalyzed by Carbon Coated Nickel Nanoparticles: Experiment and Theory. ChemPhysChem 2013, 13, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Galakhov, V.R.; Shamin, S.N.; Mironova, E.M.; Uimin, M.A.; Yermakov, A.Y.; Boukhvalov, D.W. Electronic Structure and Resonant X-Ray Emission Spectra of Carbon Shells of Iron Nanoparticles. JETP Lett. 2013, 96, 710–713. [Google Scholar] [CrossRef]
- Zeng, M.; Liu, Y.; Zhao, F.; Nie, K.; Han, N.; Wang, X.; Huang, W.; Song, X.; Zhong, J.; Li, Y. Metallic Cobalt Nanoparticles Encapsulated in Nitrogen-Enriched Graphene Shells: Its Bifunctional Electrocatalysis and Application in Zinc-Air Batteries. Adv. Funct. Mater. 2016, 26, 4397–4404. [Google Scholar] [CrossRef]
- Zhou, R.; Qiao, S.Z. An Fe/N Co-Doped Graphitic Carbon Bulb for High-Performance Oxygen Reduction Reaction. Chem. Commun. 2015, 51, 7516–7519. [Google Scholar] [CrossRef] [PubMed]
- Dzhardimalieva, G.; Aydemir, T.; Prokofiev, M.; Golubeva, N.; Yumashev, O.; Bubnova, M.; Zarrelli, M.; Uflyand, I.; Kydralieva, K. FeCo@N—Doped Nanoparticles Encapsulated in Polyacrylamide—Derived Carbon Nanocages as a Functional Filler for Polyethylene System. ChemistrySelect 2021, 6, 8546–8559. [Google Scholar] [CrossRef]
- Zheng, X.; Deng, J.; Wang, N.; Deng, D.; Zhang, W.-H.; Bao, X.; Li, C. Podlike N-Doped Carbon Nanotubes Encapsulating FeNi Alloy Nanoparticles: High-Performance Counter Electrode Materials for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2014, 53, 7023–7027. [Google Scholar] [CrossRef] [PubMed]
- Pisiewicz, S.; Formenti, D.; Surkus, A.-E.; Pohl, M.-M.; Radnik, J.; Junge, K.; Topf, C.; Bachmann, S.; Scalone, M.; Beller, M. Synthesis of Nickel Nanoparticles with N-Doped Graphene Shells for Catalytic Reduction Reactions. ChemCatChem 2016, 8, 129–134. [Google Scholar] [CrossRef]
- Dzhardimalieva, G.I.; Uflyand, I.E. Conjugated Thermolysis of Metal-Containing Monomers: Toward Core–Shell Nanostructured Advanced Materials. J. Inorg. Organomet. Polym. Mater. 2020, 30, 88–110. [Google Scholar] [CrossRef]
- Aydemir, T.; Burlakova, V.E.; Drogan, E.G.; Dzhardimalieva, G.I.; Uflyand, I.E.; Shershneva, I.N.; Kydralieva, K.A. Mechanical and tribological properties of polymer materials based on heterometallic Fe(III)Co(II) polyacrylamide complexes. Compos. Mech. Comput. Appl. Int. J. 2021, 12, 81–92. [Google Scholar] [CrossRef]
- Gupta, L.K.; Kumar, K.; Sikarwar, S.; Yadav, B.C.; Golubeva, N.D.; Shershnev, V.A.; Dzhardimalieva, G.I. Shripal Frontal Polymerization Synthesis of Scandium Polyacrylamide Nanomaterial and Its Application in Humidity Testing. Colloid Polym. Sci. 2022, 300, 191–202. [Google Scholar] [CrossRef]
- Chaudhary, P.; Maurya, D.K.; Sikarwar, S.; Yadav, B.C.; Dzhardimalieva, G.I.; Prakash, R. Development of Nanostructured Nickel Reinforced Polyacrylamide via Frontal Polymerization for a Reliable Room Temperature Humidity Sensor. Eur. Polym. J. 2019, 112, 161–169. [Google Scholar] [CrossRef]
- Sówka, E.; Leonowicz, M.; Pomogailo, A.D.; Dzhardimalieva, G.I.; Kaźmierczak, J.; Ślawska-Waniewska, A.; Kopcewicz, M. Formation of Stable Magnetic Nanoparticles by Pyrolysis of Metal Containing Polymers. J. Magn. Magn. Mater. 2007, 316, e749–e752. [Google Scholar] [CrossRef]
- Gary, D.P.; Bynum, S.; Thompson, B.D.; Groce, B.R.; Sagona, A.; Hoffman, I.M.; Morejon-Garcia, C.; Weber, C.; Pojman, J.A. Thermal Transport and Chemical Effects of Fillers on Free-Radical Frontal Polymerization. J. Polym. Sci. 2020, 58, 2267–2277. [Google Scholar] [CrossRef]
- Chekanov, Y.A.; Pojman, J.A. Preparation of Functionally Gradient Materials via Frontal Polymerization. J. Appl. Polym. Sci. 2000, 78, 2398–2404. [Google Scholar] [CrossRef]
- Kumar, A.; Gao, Y.; Geubelle, P.H. Analytical Estimates of Front Velocity in the Frontal Polymerization of Thermoset Polymers and Composites. J. Polym. Sci. 2021, 59, 1109–1118. [Google Scholar] [CrossRef]
- Gao, Y.; Dearborn, M.A.; Vyas, S.; Kumar, A.; Hemmer, J.; Wang, Z.; Wu, Q.; Alshangiti, O.; Moore, J.S.; Esser-Kahn, A.P.; et al. Manipulating Frontal Polymerization and Instabilities with Phase-Changing Microparticles. J. Phys. Chem. B 2021, 125, 7537–7545. [Google Scholar] [CrossRef] [PubMed]
- Pomogailo, A.D.; Dzhardimalieva, G.I.; Rozenberg, A.S.; Shershnev, V.A.; Leonowicz, M. Reactivity of Metal-Containing Monomers 70. Preparation and Magnetic Properties of Metal-Containing Nanocomposites. Russ. Chem. Bull. 2011, 60, 1476–1487. [Google Scholar] [CrossRef]
- Skumiel, A.; Izydorzak, M.; Leonowicz, M.; Pomogailo, A.D.; Dzhardimalieva, G.I. Thermophysical and Magnetic Properties of Carbon Beads Containing Nickel Nanocrystallites. Int. J. Thermophys. 2011, 32, 1973–1985. [Google Scholar] [CrossRef]
- Pomogailo, A.D.; Dzhardimalieva, G.I.; Rozenberg, A.S.; Muraviev, D.N. Kinetics and Mechanism of in Situ Simultaneous Formation of Metal Nanoparticles in Stabilizing Polymer Matrix. J. Nanoparticle Res. 2003, 5, 497–519. [Google Scholar] [CrossRef]
- Shelekhov, E.V.; Sviridova, T.A. Programs for X-ray analysis of polycrystals. Met. Sci. Heat Treat. 2000, 42, 309–313. (In Russian) [Google Scholar] [CrossRef]
- Uflyand, I.E.; Dzhardimalieva, G.I. Nanomaterials Preparation by Thermolysis of Metal Chelates; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-93405-1. [Google Scholar]
- Uflyand, I.E.; Burlakova, V.E.; Drogan, E.G.; Zabiyaka, I.Y.; Kydralieva, K.A.; Kugabaeva, G.D.; Dzhardimalieva, G.I. Preparation of FeCo/C-N and FeNi/C-N Nanocomposites from Acrylamide Co-Crystallizates and Their Use as Lubricant Additives. Micromachines 2022, 13, 1984. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-471-74339-2. [Google Scholar]
- Scherrer, P. Bestimmung Der Grosse Und Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gottingen 1918, 2, 8–100. [Google Scholar]
- Volochaev, M.N.; Komogortsev, S.V.; Myagkov, V.G.; Bykova, L.E.; Zhigalov, V.S.; Shestakov, N.P.; Velikanov, D.A.; Smolyakov, D.A.; Luk’yanenko, A.V.; Rachek, V.B.; et al. Structural and Magnetic Characteristics of Nanogranular Co-Al2O3 Single- and Multilayer Films Formed by the Solid-State Synthesis. Phys. Solid State 2018, 60, 1425–1431. [Google Scholar] [CrossRef]
- Kurichenko, V.L.; Karpenkov, D.Y.; Degtyarenko, A.Y. Experimental and micromagnetic investigation of texture influence on magnetic properties of anisotropic Co/Co3O4 exchange-bias composites. J. Magn. Magn. Mater. 2023, 565, 170232. [Google Scholar] [CrossRef]
- Potpattanapol, P.; Tang, I.M.; Somyanonthanakun, W.; Thongmee, S. Exchange bias effect in FeCo nanoparticles. J. Supercond. Nov. Magn. 2018, 31, 791–796. [Google Scholar] [CrossRef]
- Sun, X.; Frey Huls, N.; Sigdel, A.; Sun, S. Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett. 2012, 12, 246–251. [Google Scholar] [CrossRef]
- Knobel, M.; Nunes, W.C.; Socolovsky, L.M.; De Biasi, E.; Vargas, J.M.; Denardin, J.C. Superparamagnetism and other magnetic features in granular materials: A review on ideal and real systems. J. Nanosci. Nanotechnol. 2008, 8, 2836–2857. [Google Scholar] [CrossRef]
- Peddis, D.; Jonsson, P.E.; Varvaro, G.; Laureti, S.; Jönsson, P.E.P.E.; Laureti, S.; Varvaro, G. Magnetic interactions: A tool to modify the magnetic properties of materials based on nanoparticles. In Frontiers of Nanoscience; Binns, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 6, pp. 129–188. [Google Scholar] [CrossRef]
- Dormann, J.L.; Fiorani, D.; Tronc, E.; De Chimie, L.; Matiere, D.; Pierre, U.; Jussieu, P. Magnetic Relaxation in Fine-Particle Systems. Adv. Chem. Phys. 2007, 98, 283–494. [Google Scholar] [CrossRef]
- Gittleman, J.I.; Abeles, B.; Bozowski, S. Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films. Phys. Rev. B 1974, 9, 3891–3897. [Google Scholar] [CrossRef]
- Mørup, S.; Hansen, M.F.; Frandsen, C. 1.04 Magnetic Nanoparticles. In Comprehensive Nanoscience and Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 89–140. ISBN 978-0-12-812296-9. [Google Scholar]
- Barrera, G.; Tiberto, P.; Allia, P.; Bonelli, B.; Esposito, S.; Marocco, A.; Leterrier, Y. Magnetic properties of nanocomposites. Appl. Sci. 2019, 9, 212. [Google Scholar] [CrossRef]
Composition | Found/Calculated, % | ||||
---|---|---|---|---|---|
C | H | N | Fe | Co (Ni) | |
[Fe3Co2(CH2CHCONH2)12(NO3)6 (OH)7(H2O)4] (FeCoAAm) | 26.13/25.41 | 5.36/4.44 | 15.09/14.82 | 10.51/9.84 | 6.78/6.93 |
[Fe3Ni2(CH2CHCONH2)12(NO3)6 (OH)7(H2O)4] (FeNiAAm) | 25.48/25.42 | 5.26/4.44 | 15.47/14.82 | 10.23/9.84 | 7.22/6.92 |
Samples | Elemental Composition, wt. % | ||||
---|---|---|---|---|---|
C | H | N | Fe | Co (Ni) | |
FeCo/C-N-400*-2 | 35.53 ± 0.23 | 3.24 ± 0.02 | 8.97 ± 0.14 | 13.2 ± 0.66 | 6.24 ± 0.13 |
FeNi/C-N-400-4 | 37.37 ± 0.27 | 2.51 ± 0.01 | 10.14 ± 0.04 | 14.50 ± 0.72 | 7.53 ± 0.37 |
FeNi/C-N-600-4 | 46.54 ± 0.17 | 1.52 ± 0.03 | 7.53 ± 0.08 | 18.4 ± 0.92 | 9.6 ± 0.48 |
Sample | Ms, emu/g (A m2 kg−1) | Mr, emu/g (A m2 kg−1) | Mr/Ms | Hc, Oe (kA m−1) | ||||
---|---|---|---|---|---|---|---|---|
10 K | 300 K | 10 K | 300 K | 10 K | 300K | 10 K | 300 K | |
FeCo/C-N-400 | 8.70 | 5.01 | 3.84 | 1.74 | 0.44 | 0.34 | 1900 (152) 839 (67.1) | 364 (29.1) |
FeNi/C-N-600 | 30.08 | 24.01 | 13.02 | 1.93 | 0.43 | 0.15 | 489 (39.12) | 100 (8) |
Sample | Tirr, K | Tmax, K | TB, K | b |
---|---|---|---|---|
FeCo/C-N-400-2 | 300 | 300 | 73 | 4.1 |
FeNi/C-N-600-4 | 124 | 86 | 20 | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kugabaeva, G.D.; Kydralieva, K.A.; Bondarenko, L.S.; Baimuratova, R.K.; Karpenkov, D.Y.; Golovkova, E.A.; Degtyarenko, P.N.; Golubeva, N.D.; Uflyand, I.E.; Dzhardimalieva, G.I. Polymer-Assisted Synthesis, Structure and Magnetic Properties of Bimetallic FeCo- and FeNi/N-Doped Carbon Nanocomposites. Magnetochemistry 2023, 9, 213. https://doi.org/10.3390/magnetochemistry9100213
Kugabaeva GD, Kydralieva KA, Bondarenko LS, Baimuratova RK, Karpenkov DY, Golovkova EA, Degtyarenko PN, Golubeva ND, Uflyand IE, Dzhardimalieva GI. Polymer-Assisted Synthesis, Structure and Magnetic Properties of Bimetallic FeCo- and FeNi/N-Doped Carbon Nanocomposites. Magnetochemistry. 2023; 9(10):213. https://doi.org/10.3390/magnetochemistry9100213
Chicago/Turabian StyleKugabaeva, Gulsara D., Kamila A. Kydralieva, Lyubov S. Bondarenko, Rose K. Baimuratova, Dmitry Yu. Karpenkov, Ekaterina A. Golovkova, Pavel N. Degtyarenko, Nina D. Golubeva, Igor E. Uflyand, and Gulzhian I. Dzhardimalieva. 2023. "Polymer-Assisted Synthesis, Structure and Magnetic Properties of Bimetallic FeCo- and FeNi/N-Doped Carbon Nanocomposites" Magnetochemistry 9, no. 10: 213. https://doi.org/10.3390/magnetochemistry9100213
APA StyleKugabaeva, G. D., Kydralieva, K. A., Bondarenko, L. S., Baimuratova, R. K., Karpenkov, D. Y., Golovkova, E. A., Degtyarenko, P. N., Golubeva, N. D., Uflyand, I. E., & Dzhardimalieva, G. I. (2023). Polymer-Assisted Synthesis, Structure and Magnetic Properties of Bimetallic FeCo- and FeNi/N-Doped Carbon Nanocomposites. Magnetochemistry, 9(10), 213. https://doi.org/10.3390/magnetochemistry9100213