Photothermal Hyperthermia Study of Ag/Ni and Ag/Fe Plasmonic Particles Synthesized Using Dual-Pulsed Laser
Abstract
:1. Introduction
2. Experimental Setup
Synthesis Mechanism of NPs via Dual-Pulsed Laser
3. Results and Discussion
3.1. Optical Properties of NPs Suspensions
3.2. Magnetic Properties of NPs Synthesized via a Dual-Pulsed Laser System
3.3. TEM of NPs Prepared by Dual-Pulsed Laser Ablation Setup
3.4. XRD Analysis of NPs Generated by Dual-Pulsed Laser Ablation Apparatus
3.5. Photothermal Performance of Ag/Ni and Ag/Fe Nanofluids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali Bhatti, M.; Shah, A.A.; Almani, K.F.; Tahira, A.; Chalangar, S.E.; dad Chandio, A.; Nur, O.; Willander, M.; Ibupoto, Z.H. Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange. Ceram. Int. 2019, 45, 23289–23297. [Google Scholar] [CrossRef]
- Yeshchenko, O.A.; Golovynskyi, S.; Kudrya, V.Y.; Tomchuk, A.V.; Dmitruk, I.M.; Berezovska, N.I.; Teselko, P.O.; Zhou, T.; Xue, B.; Golovynska, I.; et al. Laser-Induced Periodic Ag Surface Structure with Au Nanorods Plasmonic Nanocavity Metasurface for Strong Enhancement of Adenosine Nucleotide Label-Free Photoluminescence Imaging. ACS Omega 2020, 5, 14030–14039. [Google Scholar] [CrossRef]
- Khurana, K.; Jaggi, N. Localized Surface Plasmonic Properties of Au and Ag Nanoparticles for Sensors: A Review. Plasmonics 2021, 16, 981–999. [Google Scholar] [CrossRef]
- Ali, I.; Pan, Y.; Lin, Y.; Jamil, Y.; Hu, J.; Gan, Z.; Chen, J.; Shen, Z. Synthesis of Ag/Co Nanoparticles by Dual Pulsed Laser Ablation for Synergistic Photothermal Study. Appl. Phys. A 2021, 127, 632. [Google Scholar] [CrossRef]
- MacPhee, J.; Kinyenye, T.; MacLean, B.J.; Bertin, E.; Hallett-Tapley, G.L. Investigating the Photothermal Disinfecting Properties of Light-Activated Silver Nanoparticles. Ind. Eng. Chem. Res. 2021, 60, 17390–17398. [Google Scholar] [CrossRef]
- Choudhary, A.; Singh, G.; Biradar, A.M. Advances in Gold Nanoparticle-Liquid Crystal Composites. Nanoscale 2014, 6, 7743–7756. [Google Scholar] [CrossRef] [PubMed]
- Boles, M.A.; Ling, D.; Hyeon, T.; Talapin, D.V. Erratum: The Surface Science of Nanocrystals. Nat. Mater. 2016, 15, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coursault, D.; Sule, N.; Parker, J.; Bao, Y.; Scherer, N.F. Dynamics of the Optically Directed Assembly and Disassembly of Gold Nanoplatelet Arrays. Nano Lett. 2018, 18, 3391–3399. [Google Scholar] [CrossRef]
- Zhu, W.; Esteban, R.; Borisov, A.G.; Baumberg, J.J.; Nordlander, P.; Lezec, H.J.; Aizpurua, J.; Crozier, K.B. Quantum Mechanical Effects in Plasmonic Structures with Subnanometre Gaps. Nat. Commun. 2016, 7, 11495. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, T.; Marques, A.C.; Carvalho, P.; Martins, R.; Fortunato, E. Paper Microfluidics and Tailored Gold Nanoparticles for Nonenzymatic, Colorimetric Multiplex Biomarker Detection. ACS Appl. Mater. Interfaces 2021, 13, 3576–3590. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Xu, S.; Li, X.; Zhang, J.; Sun, J.; Zheng, H.; Tong, L.; Sui, G.; Zhong, H.; et al. Dually Functioned Core-Shell NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ Nanoparticles as Nano-Calorifiers and Nano-Thermometers for Advanced Photothermal Therapy. Sci. Rep. 2017, 7, 11849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Xing, D.; Zhou, F.; Wu, B.; Chen, W.R. Indocyanine Green-Containing Nanostructure as near Infrared Dual-Functional Targeting Probes for Optical Imaging and Photothermal Therapy. Mol. Pharm. 2011, 8, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Cherukula, K.; Lekshmi, K.M.; Uthaman, S.; Cho, K.; Cho, C.S.; Park, I.K. Multifunctional Inorganic Nanoparticles: Recent Progress in Thermal Therapy and Imaging. Nanomaterials 2016, 6, 76. [Google Scholar] [CrossRef]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots versus Organic Dyes as Fluorescent Labels. Nat. Methods 2008, 5, 763–775. [Google Scholar] [CrossRef]
- Brezovich, I.A.; Young, J.H. Hyperthermia with Implanted Electrodes. Med. Phys. 1981, 8, 79–84. [Google Scholar] [CrossRef]
- Robins, H.I.; Rushing, D.; Kutz, M.; Tutsch, K.D.; Tiggelaar, C.L.; Paul, D.; Spriggs, D.; Kraemer, C.; Gillis, W.; Feierabend, C.; et al. Phase I Clinical Trial of Melphalan and 41.8 °C Whole-Body Hyperthermia in Cancer Patients. J. Clin. Oncol. 1997, 15, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Douple, E.B.; Strohbehn, J.W.; Bowers, E.D.; Walsh, J.E. Cancer Therapy with Localized Hyperthermia Using an Invasive Microwave System. J. Microw. Power 1979, 14, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Bhana, S.; Lin, G.; Wang, L.; Starring, H.; Mishra, S.R.; Liu, G.; Huang, X. Near-Infrared-Absorbing Gold Nanopopcorns with Iron Oxide Cluster Core for Magnetically Amplified Photothermal and Photodynamic Cancer Therapy. ACS Appl. Mater. Interfaces 2015, 7, 11637–11647. [Google Scholar] [CrossRef]
- Ovejero, J.G.; Morales, I.; De La Presa, P.; Mille, N.; Carrey, J.; Garcia, M.A.; Hernando, A.; Herrasti, P. Hybrid Nanoparticles for Magnetic and Plasmonic Hyperthermia. Phys. Chem. Chem. Phys. 2018, 20, 24065–24073. [Google Scholar] [CrossRef]
- Jaque, D.; Vetrone, F. Luminescence Nanothermometry. Nanoscale 2012, 4, 4301–4326. [Google Scholar] [CrossRef]
- Quek, C.H.; Leong, K.W. Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging. Nanomaterials 2012, 2, 92–112. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Sun, Y.; Shen, J.; Wei, J.; Yu, C.; Kong, B.; Liu, W.; Yang, H.; Yang, S.; Wang, W. Iron/Iron Oxide Core/Shell Nanoparticles for Magnetic Targeting MRI and near-Infrared Photothermal Therapy. Biomaterials 2014, 35, 7470–7478. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Wang, S.; Zheng, R.; Zhu, X.; Jiang, X.; Fu, D.; Yang, W. Magnetic Nanoparticle Clusters for Photothermal Therapy with Near-Infrared Irradiation. Biomaterials 2015, 39, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Shao, Y.; Peng, J.; Dai, X.; Li, H.; Wu, Q.; Shi, D. Near-Infrared Laser Light Mediated Cancer Therapy by Photothermal Effect of Fe3O4 Magnetic Nanoparticles. Biomaterials 2013, 34, 4078–4088. [Google Scholar] [CrossRef]
- Pązik, R.; Zachanowicz, E.; Pożniak, B.; Małecka, M.; Zięcina, A.; Marciniak, Ł. Non-Contact Mn1-XNixFe2O4 Ferrite Nano-Heaters for Biological Applications-Heat Energy Generated by NIR Irradiation. RSC Adv. 2017, 7, 18162–18171. [Google Scholar] [CrossRef] [Green Version]
- Manikandan, R.; Manikandan, B.; Raman, T.; Arunagirinathan, K.; Prabhu, N.M.; Jothi Basu, M.; Perumal, M.; Palanisamy, S.; Munusamy, A. Biosynthesis of Silver Nanoparticles Using Ethanolic Petals Extract of Rosa Indica and Characterization of Its Antibacterial, Anticancer and Anti-Inflammatory Activities. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2015, 138, 120–129. [Google Scholar] [CrossRef]
- Suganya, K.S.U.; Govindaraju, K.; Kumar, V.G.; Dhas, T.S.; Karthick, V.; Singaravelu, G.; Elanchezhiyan, M. Size Controlled Biogenic Silver Nanoparticles as Antibacterial Agent against Isolates from HIV Infected Patients. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 144, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Lee, C.C.; Chen, D.H. Large-Scale Synthesis of Ni-Ag Core-Shell Nanoparticles with Magnetic, Optical and Anti-Oxidation Properties. Nanotechnology 2006, 17, 3094–3099. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Y.; Chen, X.; Wen, R.; Yue, G.-H.; Peng, D.-L. Facile Synthesis of Near-Monodisperse Ag@ Ni Core–Shell Nanoparticles and Their Application for Catalytic Generation of Hydrogen. Nanotechnology 2011, 22, 195604. [Google Scholar] [CrossRef]
- Ding, Q.; Liu, D.; Guo, D.; Yang, F.; Pang, X.; Che, R.; Zhou, N.; Xie, J.; Sun, J.; Huang, Z. Shape-Controlled Fabrication of Magnetite Silver Hybrid Nanoparticles with High Performance Magnetic Hyperthermia. Biomaterials 2017, 124, 35–46. [Google Scholar] [CrossRef]
- Santhi, K.; Kumarsan, D.; Vengidusamy, N.; Arumainathan, S. Electrochemical Alloying of Immiscible Ag and Co for Their Structural and Magnetic Analyses. J. Magn. Magn. Mater. 2017, 433, 202–208. [Google Scholar] [CrossRef]
- Tancredi, P.; Moscoso Londoño, O.; Rivas Rojas, P.C.; Wolff, U.; Socolovsky, L.M.; Knobel, M.; Muraca, D. Strategies to Tailor the Architecture of Dual Ag/Fe-Oxide Nano-Heterocrystals-Interfacial and Morphology Effects on the Magnetic Behavior. J. Phys. D Appl. Phys. 2018, 51, 295303. [Google Scholar] [CrossRef] [Green Version]
- Jing, J.J.; Xie, J.; Chen, G.Y.; Li, W.H.; Zhang, M.M. Preparation of Nickel–Silver Core–Shell Nanoparticles by Liquid-Phase Reduction for Use in Conductive Paste. J. Exp. Nanosci. 2015, 10, 1347–1356. [Google Scholar] [CrossRef]
- Auten, B.J.; Hahn, B.P.; Vijayaraghavan, G.; Stevenson, K.J.; Chandler, B.D. Preparation and Characterization of 3 nm Magnetic NiAu Nanoparticles. J. Phys. Chem. C 2008, 112, 5365–5372. [Google Scholar] [CrossRef] [Green Version]
- Barmina, E.V.; Shafeev, G.A. Formation of Core–Shell Fe@Al Nanoparticles by Laser Irradiation of a Mixture of Colloids in Ethanol. Quantum Electron. 2018, 48, 637–640. [Google Scholar] [CrossRef]
- Boyer, P.; Ménard, D.; Meunier, M. Nanoclustered Co−Au Particles Fabricated by Femtosecond Laser Fragmentation in Liquids. J. Phys. Chem. C 2010, 114, 13497–13500. [Google Scholar] [CrossRef]
- Messina, G.C.; Sinatra, M.G.; Bonanni, V.; Brescia, R.; Alabastri, A.; Pineider, F.; Campo, G.; Sangregorio, C.; Li-Destri, G.; Sfuncia, G.; et al. Tuning the Composition of Alloy Nanoparticles Through Laser Mixing: The Role of Surface Plasmon Resonance. J. Phys. Chem. C 2016, 120, 12810–12818. [Google Scholar] [CrossRef]
- Wagener, P.; Jakobi, J.; Rehbock, C.; Chakravadhanula, V.S.K.; Thede, C.; Wiedwald, U.; Bartsch, M.; Kienle, L.; Barcikowski, S. Solvent-Surface Interactions Control the Phase Structure in Laser-Generated Iron-Gold Core-Shell Nanoparticles. Sci. Rep. 2016, 6, 23352. [Google Scholar] [CrossRef] [Green Version]
- Amendola, V.; Scaramuzza, S.; Agnoli, S.; Granozzi, G.; Meneghetti, M.; Campo, G.; Bonanni, V.; Pineider, F.; Sangregorio, C.; Ghigna, P.; et al. Laser Generation of Iron-Doped Silver Nanotruffles with Magnetic and Plasmonic Properties. Nano Res. 2015, 8, 4007–4023. [Google Scholar] [CrossRef]
- Muniz-Miranda, M.; Gellini, C.; Giorgetti, E.; Margheri, G. Bifunctional Fe3O4/Ag Nanoparticles Obtained by Two-Step Laser Ablation in Pure Water. J. Colloid Interface Sci. 2017, 489, 100–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Chen, J.; Qu, H.; Dong, Y.; Gao, Y.; Liu, J.; Liu, X.; Zou, Y.; Zeng, H. Bubble Dimer Dynamics Induced by Dual Laser Beam Ablation in Liquid. Appl. Phys. Lett. 2018, 113, 021902. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, J.; Liang, C. Perspective on How Laser-Ablated Particles Grow in Liquids. Sci. China Phys. Mech. Astron. 2017, 60, 074201. [Google Scholar] [CrossRef]
- Shukri, W.N.W.; Bidin, N.; Islam, S.; Krishnan, G. Synthesis of Au–Ag Alloy Nanoparticles in Deionized Water by Pulsed Laser Ablation Technique. J. Nanosci. Nanotechnol. 2018, 18, 4841–4851. [Google Scholar] [CrossRef]
- Santagata, A.; National, I.; Guarnaccio, A.; National, I.; Valyon, J. Production of Silver-Silica Core-Shell Nanocomposites Using Ultra-Short Pulsed Laser Ablation in Nanoporous Aqueous Silica Colloidal Solutions. J. Phys. D Appl. Phys. 2015, 48, 205304. [Google Scholar] [CrossRef]
- Sakthisabarimoorthi, A.; Dhas, S.M.B.; Jose, M. Nonlinear optical properties of Ag@ SiO2 core-shell nanoparticles investigated by continuous wave He-Ne laser. Mater. Chem. Phys. 2018, 212, 224–229. [Google Scholar] [CrossRef]
- Serkov, A.A.; Kuzmin, P.G.; Shafeev, G.A. Laser-Induced Agglomeration of Gold and Silver Nanoparticles Dispersed in Liquid. Chem. Phys. Lett. 2016, 647, 68–72. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Y.; Huang, J.; Fang, C.; Dan, S.; Kuang, Y. Ag-Ni Alloy Nanoparticles for Electrocatalytic Reduction of Benzyl Chloride. Trans. Nonferrous Met. Soc. China 2015, 25, 4001–4007. [Google Scholar] [CrossRef]
- Alruqi, S.S.; Al-Thabaiti, S.A.; Malik, M.A.; Khan, Z. Role of Surfactants: One Step Facile Synthesis of Hetero Structured Ag-Ni Alloy by Seed Less Approach. Coll. Surf. A Physicochem. Eng. Asp. 2018, 540, 36–47. [Google Scholar] [CrossRef]
- Chiou, J.R.; Lai, B.H.; Hsu, K.C.; Chen, D.H. One-Pot Green Synthesis of Silver/Iron Oxide Composite Nanoparticles for 4-Nitrophenol Reduction. J. Hazard. Mater. 2013, 248–249, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Chaverra, M.J.; Restrepo-Parra, E.; Acosta-Medina, C.D.; Mello, A.; Ospina, R. Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications. Nanomaterials 2020, 10, 2099. [Google Scholar] [CrossRef]
- Ger, T.-R.; Huang, H.-T.; Huang, C.-Y.; Liu, W.-C.; Lai, J.-Y.; Liu, B.-T.; Chen, J.-Y.; Hong, C.-W.; Chen, P.-J.; Lai, M.-F. Comparing the Magnetic Property of Shell Thickness Controlled of Ag-Ni Core-Shell Nanoparticles. J. Appl. Phys. 2014, 115, 17B528. [Google Scholar] [CrossRef]
- Kumar, M.; Deka, S. Multiply Twinned AgNi Alloy Nanoparticles as Highly Active Catalyst for Multiple Reduction and Degradation Reactions. ACS Appl. Mater. Interfaces 2014, 6, 16071–16081. [Google Scholar] [CrossRef] [PubMed]
- Saranya, A.; Thamer, A.; Ramar, K.; Priyadharsan, A.; Raj, V.; Murugan, K.; Murad, A.; Maheshwaran, P. Facile One Pot Microwave-Assisted Green Synthesis of Fe2O3/Ag Nanocomposites by Phytoreduction: Potential Application as Sunlight-Driven Photocatalyst, Antibacterial and Anticancer Agent. J. Photochem. Photobiol. B Biol. 2020, 207, 111885. [Google Scholar] [CrossRef]
- Abbas, M.; Rao, B.P.; Abdel-Hamed, M.O.; Kim, C. Modified Polyol Route for Synthesis of Fe3O4/Ag and α-Fe/Ag Nanocomposite. J. Alloys Compd. 2014, 615, S308–S312. [Google Scholar] [CrossRef]
- Xing, Y.; Bai, X.-H.; Gong, Y.; Peng, M.-L.; Zhang, Y.-Y.; Ma, X.-R.; Zhang, Y. Enhanced Catalytic Properties of Fe3O4/Ag Magnetic Microspheres Synthesized by a Novel Thermal Co-Reduction Method. J. Magn. Magn. Mater. 2020, 510, 166951. [Google Scholar] [CrossRef]
- Xing, Y.; Ma, F.F.; Peng, M.L.; Ma, X.R.; Zhang, Y.; Cui, Y.L. Bifunctional Sodium Tartrate as Stabilizer and Reductant for the Facile Synthesis of Fe3O4/Ag Nanocomposites with Catalytic Activity. J. Magn. Magn. Mater. 2019, 471, 133–141. [Google Scholar] [CrossRef]
- Bao, Z.Y.; Dai, J.; Lei, D.Y.; Wu, Y. Maximizing Surface-Enhanced Raman Scattering Sensitivity of Surfactant-Free Ag-Fe3O4 Nanocomposites through Optimization of Silver Nanoparticle Density and Magnetic Self-Assembly. J. Appl. Phys. 2013, 114, 124305. [Google Scholar] [CrossRef] [Green Version]
- Park, S.B.; White, S.B.; Steadman, C.S.; Pechan, T.; Pechanova, O.; Clemente, H.J.; Thirumalai, R.V.K.G.; Willard, S.T.; Ryan, P.L.; Feugang, J.M. Silver-Coated Magnetic Nanocomposites Induce Growth Inhibition and Protein Changes in Foodborne Bacteria. Sci. Rep. 2019, 9, 17499. [Google Scholar] [CrossRef] [Green Version]
- Chandel, M.; Makkar, P.; Ghosh, N.N. Ag-Ni Nanoparticle Anchored Reduced Graphene Oxide Nanocomposite as Advanced Electrode Material for Supercapacitor Application. ACS Appl. Electron. Mater. 2019, 1, 1215–1224. [Google Scholar] [CrossRef]
- Yan, S.; Sun, D.; Tan, Y.; Xing, X.; Yu, H.; Wu, Z. Synthesis and Formation Mechanism of Ag–Ni Alloy Nanoparticles at Room Temperature. J. Phys. Chem. Solids 2016, 98, 107–114. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, S.; Mao, Z.; Liang, X.; Chen, B. Ag-Ni Core-Shell Nanowires with Superior Electrocatalytic Activity for Alkaline Hydrogen Evolution Reaction. J. Mater. Chem. A 2017, 5, 16646–16652. [Google Scholar] [CrossRef]
- Manoj, K.; Gayathri, S.; Jayabal, P.; Ramakrishnan, V. Synthesis and Characterization of Ni/Ag Nanocomposite for Surface Enhanced Raman Scattering Measurement. Mater. Res. Express 2015, 2, 65003. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Chen, C. Near-Infrared Light-Mediated Nanoplatforms for Cancer Thermo-Chemotherapy and Optical Imaging. Adv. Mater. 2013, 25, 3869–3880. [Google Scholar] [CrossRef]
- Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The Golden Age: Gold Nanoparticles for Biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779. [Google Scholar] [CrossRef] [Green Version]
- Zachanowicz, E.; Kulpa-Greszta, M.; Tomaszewska, A.; Gazińska, M.; Marędziak, M.; Marycz, K.; Pązik, R. Multifunctional properties of binary polyrhodanine manganese ferrite nanohybrids—from the energy converters to biological activity. Polymers 2020, 12, 2934. [Google Scholar] [CrossRef]
- Shipunova, V.O.; Belova, M.M.; Kotelnikova, P.A.; Shilova, O.N.; Mirkasymov, A.B.; Danilova, N.V.; Komedchikova, E.N.; Popovtzer, R.; Deyev, S.M.; Nikitin, M.P. Photothermal Therapy with HER2-Targeted Silver Nanoparticles Leading to Cancer Remission. Pharmaceutics 2022, 14, 1013. [Google Scholar] [CrossRef] [PubMed]
- Furube, A.; Hashimoto, S. Insight into Plasmonic Hot-Electron Transfer and Plasmon Molecular Drive: New Dimensions in Energy Conversion and Nanofabrication. NPG Asia Mater. 2017, 9, e454. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Rahme, K.; He, Y.; Li, L.-L.; Holmes, J.D.; O’Driscoll, C.M. Gold Nanoparticles Enlighten the Future of Cancer Theranostics. Int. J. Nanomed. 2017, 12, 6131. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Zeng, W.; Zhang, C.; Meng, Z.; Wu, J.; Zhu, Q.; Wu, D.; Zhu, H. Broadband Absorption and Enhanced Photothermal Conversion Property of Octopod-like Ag@Ag2S Core@shell Structures with Gradually Varying Shell Thickness. Sci. Rep. 2017, 7, 17782. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Etheridge, M.; Bischof, J.C. Nanoparticle Heating: Nanoscale to Bulk Effects of Electromagnetically Heated Iron Oxide and Gold for Biomedical Applications. In Proceedings of the Energy-based Treatment of Tissue and Assessment VI; Ryan, T.P., Ed.; SPIE: Bellingham, WA, USA, 2011; Volume 7901, p. 79010C. [Google Scholar]
- Boldoo, T.; Ham, J.; Kim, E.; Cho, H. Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances. Energies 2020, 13, 5748. [Google Scholar] [CrossRef]
- Hu, R.; Zheng, M.; Wu, J.; Li, C.; Shen, D.; Yang, D.; Li, L.; Ge, M.; Chang, Z.; Dong, W. Core-Shell Magnetic Gold Nanoparticles for Magnetic Field-Enhanced Radio-Photothermal Therapy in Cervical Cancer. Nanomaterials 2017, 7, 111. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Zhu, S.; Li, Z.; Yuan, X.; Zheng, Y.; Yeung, K.W.K.; et al. Controlled-Temperature Photothermal and Oxidative Bacteria Killing and Acceleration of Wound Healing by Polydopamine-Assisted Au-Hydroxyapatite Nanorods. Acta Biomater. 2018, 77, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Hernández, Y.; Galarreta, B.C. Noble Metal-Based Plasmonic Nanoparticles for SERS Imaging and Photothermal Therapy. In Nanomaterials for Magnetic and Optical Hyperthermia Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 83–109. ISBN 9780128139295. [Google Scholar]
- Kaur, P.; Aliru, M.L.; Chadha, A.S.; Asea, A.; Krishnan, S. Hyperthermia Using Nanoparticles-Promises and Pitfalls. Int. J. Hyperth. 2016, 32, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Petryayeva, E.; Krull, U.J. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing-A Review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Oldenburg, S.J.; Averitt, R.D.; Westcott, S.L.; Halas, N.J. Nanoengineering of Optical Resonances. Chem. Phys. Lett. 1998, 288, 243–247. [Google Scholar] [CrossRef]
- Justin, C.; Philip, S.A.; Samrot, A.V. Synthesis and Characterization of Superparamagnetic Iron-Oxide Nanoparticles (SPIONs) and Utilization of SPIONs in X-ray Imaging. Appl. Nanosci. 2017, 7, 463–475. [Google Scholar] [CrossRef]
- Wu, M.; Huang, S. Magnetic Nanoparticles in Cancer Diagnosis, Drug Delivery and Treatment. Mol. Clin. Oncol. 2017, 7, 738–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zhou, C.; Li, M.; Li, J.; Li, G.; Ma, D.; Li, Z.; Zou, D. Bottom-up Synthesis of Ultra-Small Molybdenum Disulfidepolyvinylpyrrolidone Nanosheets for Imaging-Guided Tumor Regression. Oncotarget 2017, 8, 106707–106720. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, S.; Zhang, M.; Ma, Y.; Liu, Y.; Gao, W.; Zhang, J.; Gu, Y. Laser-Triggered Small Interfering RNA Releasing Gold Nanoshells against Heat Shock Protein for Sensitized Photothermal Therapy. Adv. Sci. 2017, 4, 1600327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wo, F.; Xu, R.; Shao, Y.; Zhang, Z.; Chu, M.; Shi, D.; Liu, S. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres. Theranostics 2016, 6, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Mehrali, M.; Ghatkesar, M.K.; Pecnik, R. Full-Spectrum Volumetric Solar Thermal Conversion via Graphene/Silver Hybrid Plasmonic Nanofluids. Appl. Energy 2018, 224, 103–115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Chen, J.; Ahmed Khan, S.; Jamil, Y.; Shah, A.A.; Shah, A.K.; Gilani, S.J.; Bin Jumah, M.N.; Fazal, Y.; Pan, Y.; et al. Photothermal Hyperthermia Study of Ag/Ni and Ag/Fe Plasmonic Particles Synthesized Using Dual-Pulsed Laser. Magnetochemistry 2023, 9, 59. https://doi.org/10.3390/magnetochemistry9030059
Ali I, Chen J, Ahmed Khan S, Jamil Y, Shah AA, Shah AK, Gilani SJ, Bin Jumah MN, Fazal Y, Pan Y, et al. Photothermal Hyperthermia Study of Ag/Ni and Ag/Fe Plasmonic Particles Synthesized Using Dual-Pulsed Laser. Magnetochemistry. 2023; 9(3):59. https://doi.org/10.3390/magnetochemistry9030059
Chicago/Turabian StyleAli, Imran, Jun Chen, Saeed Ahmed Khan, Yasir Jamil, Aqeel Ahmed Shah, Abdul Karim Shah, Sadaf Jamal Gilani, May Nasser Bin Jumah, Yusra Fazal, Yunxiang Pan, and et al. 2023. "Photothermal Hyperthermia Study of Ag/Ni and Ag/Fe Plasmonic Particles Synthesized Using Dual-Pulsed Laser" Magnetochemistry 9, no. 3: 59. https://doi.org/10.3390/magnetochemistry9030059
APA StyleAli, I., Chen, J., Ahmed Khan, S., Jamil, Y., Shah, A. A., Shah, A. K., Gilani, S. J., Bin Jumah, M. N., Fazal, Y., Pan, Y., & Shen, Z. (2023). Photothermal Hyperthermia Study of Ag/Ni and Ag/Fe Plasmonic Particles Synthesized Using Dual-Pulsed Laser. Magnetochemistry, 9(3), 59. https://doi.org/10.3390/magnetochemistry9030059