Application of Electron Paramagnetic Resonance in an Electrochemical Energy Storage System
Abstract
:1. Introduction
2. Principles of Electron Paramagnetic Resonance Technology
3. Application of EPR Spectroscopy in a Rechargeable Battery System
3.1. Exploring the Redox Mechanism in Transition Metal Oxide Cathode Materials
3.2. Explore the Reaction Mechanism of Polyanionic Compounds Cathode Materials
3.3. Study of the Anode State in Electrochemical Cycle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Zhao, Z.; Shang, X.; Zhang, J.; Cai, L.; Pan, Y.; Li, Q.; Li, H.; Cao, Q.; Li, Q. Electrical Control of On-Off Magnetism and Exchange Bias Via Reversible Ionic Motion. Appl. Phys. Lett. 2022, 120, 082405. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Li, X.; Gu, F.; Zhang, L.; Liu, H.; Xia, Q.; Li, Q.; Ye, W.; Ge, C.; et al. Reacquainting the Electrochemical Conversion Mechanism of FeS2 Sodium-Ion Batteries by Operando Magnetometry. J. Am. Chem. Soc. 2021, 143, 12800–12808. [Google Scholar] [CrossRef]
- Wu, X.; Leonard, D.P.; Ji, X. Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities. Chem. Mater. 2017, 29, 5031–5042. [Google Scholar] [CrossRef]
- Li, C.; Hu, X.; Hu, B. Cobalt(Ii) Dicarboxylate-Based Metal-Organic Framework for Long-Cycling and High-Rate Potassium-Ion Battery Anode. Electrochim. Acta 2017, 253, 439–444. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, S.; Cui, Z.; Du, A.; Li, G.; Cui, G. Rechargeable Magnesium Batteries Using Conversion-Type Cathodes: A Perspective and Minireview. Small Methods 2018, 2, 1800020. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, C.; Zhang, S.; Song, X.; Tang, Y.; Cheng, H.M. Reversible Calcium Alloying Enables a Practical Room-Temperature Rechargeable Calcium-Ion Battery with a High Discharge Voltage. Nat. Chem. 2018, 10, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D.Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B.J.; et al. An Ultrafast Rechargeable Aluminium-Ion Battery. Nature 2015, 520, 325–328. [Google Scholar] [CrossRef]
- Kim, D.J.; Yoo, D.-J.; Otley, M.T.; Prokofjevs, A.; Pezzato, C.; Owczarek, M.; Lee, S.J.; Choi, J.W.; Stoddart, J.F. Rechargeable Aluminium Organic Batteries. Nat. Energy 2018, 4, 51–59. [Google Scholar] [CrossRef]
- Li, X.; Su, J.; Li, Z.; Zhao, Z.; Zhang, F.; Zhang, L.; Ye, W.; Li, Q.; Wang, K.; Wang, X.; et al. Revealing Interfacial Space Charge Storage of Li+/Na+/K+ by Operando Magnetometry. Sci. Bull. 2022, 67, 1145–1153. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Xia, Q.; Hu, Z.; Zhu, Y.; Yan, S.; Ge, C.; Zhang, Q.; Wang, X.; Shang, X.; et al. Extra Storage Capacity in Transition Metal Oxide Lithium-Ion Batteries Revealed by in Situ Magnetometry. Nat. Mater. 2021, 20, 76–83. [Google Scholar] [CrossRef]
- Li, H.; Hu, Z.; Xia, Q.; Zhang, H.; Li, Z.; Wang, H.; Li, X.; Zuo, F.; Zhang, F.; Wang, X.; et al. Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithium-Ion Batteries. Adv. Mater. 2021, 33, e2006629. [Google Scholar] [CrossRef]
- Wei, X.; Wang, X.; An, Q.; Han, C.; Mai, L. Operando X-Ray Diffraction Characterization for Understanding the Intrinsic Electrochemical Mechanism in Rechargeable Battery Materials. Small Methods 2017, 1, 1700083. [Google Scholar] [CrossRef]
- Gao, F.; Tian, X.-D.; Lin, J.-S.; Dong, J.-C.; Lin, X.-M.; Li, J.-F. In Situ Raman, Ftir, and Xrd Spectroscopic Studies in Fuel Cells and Rechargeable Batteries. Nano Res. 2022. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.-L.; Joubert, L.-M.; Chin, R.; Koh, A.L.; Yu, Y.; et al. Atomic Structure of Sensitive Battery Materials and Interfaces Revealed by Cryo-Electron Microscopy. Science 2017, 358, 506–510. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Pawar, G.; Li, Y.; Ren, X.; Zhang, M.; Lu, B.; Banerjee, A.; Liu, P.; Dufek, E.J.; Zhang, J.-G.; et al. Glassy Li Metal Anode for High-Performance Rechargeable Li Batteries. Nat. Mater. 2020, 19, 1339–1345. [Google Scholar] [CrossRef]
- McDowell, M.T.; Ryu, I.; Lee, S.W.; Wang, C.; Nix, W.D.; Cui, Y. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with in Situ Transmission Electron Microscopy. Adv. Mater. 2012, 24, 6034–6041. [Google Scholar] [CrossRef]
- Lu, J.; Wu, T.; Amine, K. State-of-the-Art Characterization Techniques for Advanced Lithium-Ion Batteries. Nat. Energy 2017, 2, 17011. [Google Scholar] [CrossRef]
- Philippe, B.; Dedryvere, R.; Allouche, J.; Lindgren, F.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edstrom, K. Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-Ray Photoelectron Spectroscopy. Chem. Mater. 2012, 24, 1107–1115. [Google Scholar] [CrossRef]
- Li, Q.; Liang, Q.; Zhang, H.; Jiao, S.; Zhuo, Z.; Wang, J.; Li, Q.; Zhang, J.-N.; Yu, X. Unveiling the High-Valence Oxygen Degradation across the Delithiated Cathode Surface. Angew. Chem. Int. Ed. 2022, 62, e202215131. [Google Scholar]
- Li, X.; Li, Z.; Liu, Y.; Liu, H.; Zhao, Z.; Zheng, Y.; Chen, L.; Ye, W.; Li, H.; Li, Q. Transition Metal Catalysis in Lithium-Ion Batteries Studied by Operando Magnetometry. Chin. J. Catal. 2022, 43, 158–166. [Google Scholar] [CrossRef]
- Kuhn, A.; Sreeraj, P.; Pottgen, R.; Wiemhofer, H.D.; Wilkening, M.; Heitjans, P. Li Ion Diffusion in the Anode Material Li12Si7: Ultrafast Quasi-1d Diffusion and Two Distinct Fast 3D Jump Processes Separately Revealed by 7Li NMR Relaxometry. J. Am. Chem. Soc. 2011, 133, 11018–11021. [Google Scholar] [CrossRef] [PubMed]
- Wilkening, M.; Heitjans, P. From Micro to Macro: Access to Long-Range Li+ Diffusion Parameters in Solids Via Microscopic (6, 7) Li Spin-Alignment Echo Nmr Spectroscopy. Chemphyschem 2012, 13, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Pigliapochi, R.; Seymour, I.D.; Merlet, C.; Pell, A.J.; Murphy, D.T.; Schmid, S.; Grey, C.P. Structural Characterization of the Li-Ion Battery Cathode Materials LiTixMn2-xO4 (0.2 ≤ x ≤ 1.5): A Combined Experimental 7Li NMR and First-Principles Study. Chem. Mater. 2018, 30, 817–829. [Google Scholar] [CrossRef]
- Scepaniak, J.J.; Vogel, C.S.; Khusniyarov, M.M.; Heinemann, F.W.; Meyer, K.; Smith, J.M. Synthesis, Structure, and Reactivity of an Iron(V) Nitride. Science 2011, 331, 1049–1052. [Google Scholar] [CrossRef] [Green Version]
- Tiago de Oliveira, F.; Chanda, A.; Banerjee, D.; Shan, X.; Mondal, S.; Que, L., Jr.; Bominaar, E.L.; Munck, E.; Collins, T.J. Chemical and Spectroscopic Evidence for an FeV-oxo Complex. Science 2007, 315, 835–838. [Google Scholar] [CrossRef]
- Wang, T.; Ren, G.X.; Shadike, Z.; Yue, J.L.; Cao, M.H.; Zhang, J.N.; Chen, M.W.; Yang, X.Q.; Bak, S.M.; Northrup, P.; et al. Anionic Redox Reaction in Layered NaCr2/3Ti1/3S2 through Electron Holes Formation and Dimerization of S-S. Nat. Commun. 2019, 10, 4458. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Mariyappan, S.; Rousse, G.; Morozov, A.V.; Porcheron, B.; Dedryvere, R.; Wu, J.; Yang, W.; Zhang, L.; Chakir, M.; et al. Unlocking Anionic Redox Activity in O3-Type Sodium 3d Layered Oxides Via Li Substitution. Nat. Mater. 2021, 20, 353–361. [Google Scholar] [CrossRef]
- Saha, S.; Assat, G.; Sougrati, M.T.; Foix, D.; Li, H.; Vergnet, J.; Turi, S.; Ha, Y.; Yang, W.; Cabana, J.; et al. Exploring the Bottlenecks of Anionic Redox in Li-Rich Layered Sulfides. Nat. Energy 2019, 4, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhu, Y.; Nie, A.; Fu, H.; Hu, Z.; Sun, X.; Haw, S.C.; Chen, J.M.; Chan, T.S.; Yu, S.; et al. Enabling Anionic Redox Stability of P2-Na5/6Li1/4Mn3/4O2 by Mg Substitution. Adv. Mater. 2022, 34, e2105404. [Google Scholar] [CrossRef]
- House, R.A.; Marie, J.-J.; Pérez-Osorio, M.A.; Rees, G.J.; Boivin, E.; Bruce, P.G. The Role of O2 in O-Redox Cathodes for Li-Ion Batteries. Nat. Energy 2021, 6, 781–789. [Google Scholar] [CrossRef]
- Cao, X.; Li, H.; Qiao, Y.; He, P.; Qian, Y.; Yue, X.; Jia, M.; Cabana, J.; Zhou, H. Reversible Anionic Redox Chemistry in Layered Li4/7[□1/7Mn6/7]O2 Enabled by Stable Li–O-Vacancy Configuration. Joule 2022, 6, 1290–1303. [Google Scholar] [CrossRef]
- Sathiya, M.; Leriche, J.B.; Salager, E.; Gourier, D.; Tarascon, J.M.; Vezin, H. Electron Paramagnetic Resonance Imaging for Real-Time Monitoring of Li-Ion Batteries. Nat. Commun. 2015, 6, 6276. [Google Scholar] [CrossRef] [Green Version]
- Perez, A.J.; Jacquet, Q.; Batuk, D.; Iadecola, A.; Saubanère, M.; Rousse, G.; Larcher, D.; Vezin, H.; Doublet, M.-L.; Tarascon, J.-M. Approaching the Limits of Cationic and Anionic Electrochemical Activity with the Li-Rich Layered Rocksalt Li3iro4. Nat. Energy 2017, 2, 954–962. [Google Scholar] [CrossRef]
- Zhao, C.; Li, C.; Yang, Q.; Qiu, Q.; Tong, W.; Zheng, S.; Ma, J.; Shen, M.; Hu, B. Anionic Redox Reaction in Na-Deficient Layered Oxide Cathodes: Role of Sn/Zr Substituents and in-Depth Local Structural Transformation Revealed by Solid-State Nmr. Energy Storage Mater. 2021, 39, 60–69. [Google Scholar] [CrossRef]
- Li, C.; Zhao, C.; Hu, B.; Tong, W.; Shen, M.; Hu, B.W. Unraveling the Critical Role of Ti Substitution in P-2-NaxLiyMn1-yO2 Cathodes for Highly Reversible Oxygen Redox Chemistry. Chem. Mater. 2020, 32, 1054–1063. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Zhao, C.; Tong, W.; Hu, B.W. Coincident Formation of Trapped Molecular O2 in Oxygen-Redox-Active Archetypical Li 3d Oxide Cathodes Unveiled by Epr Spectroscopy. Energy Storage Mater. 2022, 50, 55–62. [Google Scholar] [CrossRef]
- House, R.A.; Rees, G.J.; Pérez-Osorio, M.A.; Marie, J.-J.; Boivin, E.; Robertson, A.W.; Nag, A.; Garcia-Fernandez, M.; Zhou, K.-J.; Bruce, P.G. First-Cycle Voltage Hysteresis in Li-Rich 3d Cathodes Associated with Molecular O2 Trapped in the Bulk. Nat. Energy 2020, 5, 777–785. [Google Scholar] [CrossRef]
- Sharpe, R.; House, R.A.; Clarke, M.J.; Forstermann, D.; Marie, J.J.; Cibin, G.; Zhou, K.J.; Playford, H.Y.; Bruce, P.G.; Islam, M.S. Redox Chemistry and the Role of Trapped Molecular O2 in Li-Rich Disordered Rocksalt Oxyfluoride Cathodes. J. Am. Chem. Soc. 2020, 142, 21799–21809. [Google Scholar] [CrossRef]
- House, R.A.; Playford, H.Y.; Smith, R.I.; Holter, J.; Griffiths, I.; Zhou, K.-J.; Bruce, P.G. Detection of Trapped Molecular O2 in a Charged Li-Rich Cathode by Neutron Pdf. Energy Environ. Sci. 2022, 15, 376–383. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, Q.; Geng, F.S.; Li, C.; Zhang, N.; Ma, J.Y.; Tong, W.; Hu, B.W. Restraining Oxygen Loss and Boosting Reversible Oxygen Redox in a P2-Type Oxide Cathode by Trace Anion Substitution. ACS Appl. Mater. Interfaces 2021, 13, 360–369. [Google Scholar] [CrossRef]
- Zhao, C.; Li, C.; Liu, H.; Qiu, Q.; Geng, F.S.; Shen, M.; Tong, W.; Li, J.X.; Hu, B.W. Coexistence of and Trapped Molecular O2 as the Oxidized Species in P2-Type Sodium 3d Layered Oxide and Stable Interface Enabled by Highly Fluorinated Electrolyte. J. Am. Chem. Soc. 2021, 143, 18652–18664. [Google Scholar] [CrossRef] [PubMed]
- Linnell, S.F.; Kim, E.J.; Choi, Y.S.; Hirsbrunner, M.; Imada, S.; Pramanik, A.; Cuesta, A.F.; Miller, D.N.; Fusco, E.; Bode, B.E.; et al. Enhanced Oxygen Redox Reversibility and Capacity Retention of Titanium-Substituted Na4/7[□1/7Ti1/7Mn5/7]O2 in Sodium-Ion Batteries. J. Mater. Chem. A 2022, 10, 9941–9953. [Google Scholar] [CrossRef]
- Hu, B.; Qiu, Q.; Li, C.; Shen, M.; Hu, B.; Tong, W.; Wang, K.; Zhou, Q.; Zhang, Y.; He, Z.; et al. Tailoring Anionic Redox Activity in a P2-Type Sodium Layered Oxide Cathode Via Cu Substitution. ACS Appl. Mater. Interfaces 2022, 14, 28738–28747. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Geng, F.S.; Shen, M.; Zhao, C.; Qiu, Q.; Lin, Y.; Chen, C.X.; Wen, W.; Zheng, S.; Hu, X.S.; et al. A Multifunctional Manipulation to Stabilize Oxygen Redox and Phase Transition in 4.6 V High-Voltage LiCoO2 with SXAS and EPR Studies. J. Power Sources 2021, 516, 230661. [Google Scholar] [CrossRef]
- Wang, J.; Yang, M.; Zhao, C.; Hu, B.; Lou, X.; Geng, F.; Tong, W.; Hu, B.; Li, C. Unveiling the Benefits of Potassium Doping on the Structural Integrity of Li-Mn-Rich Layered Oxides During Prolonged Cycling by Dual-Mode Epr Spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 24017–24025. [Google Scholar] [CrossRef]
- Labrini, M.; El Haskouri, J.; Almaggoussi, A.; Saadoune, I. A Review on LiNixCo1-2xMnxO2 (0.1 ≤ x ≤ 0.33) Cathode Materials for Rechargeable Li-Ion Batteries. Mater. Today Proc. 2019, 37, 3921–3927. [Google Scholar] [CrossRef]
- Tang, M.X.; Dalzini, A.; Li, X.; Feng, X.Y.; Chien, P.H.; Song, L.K.; Hu, Y.Y. Operando EPR for Simultaneous Monitoring of Anionic and Cationic Redox Processes in Li-Rich Metal Oxide Cathodes. J. Phys. Chem. Lett. 2017, 8, 4009–4016. [Google Scholar] [CrossRef]
- Labrini, M.; Scheiba, F.; Almaggoussi, A.; Larzek, M.; Braga, M.H.; Ehrenberg, H.; Saadoune, I. Delithiated LiyCo0.8Ni0.1Mn0.1O2 Cathode Materials for Lithium-Ion Batteries: Structural, Magnetic and Electrochemical Studies. Solid State Ion. 2016, 289, 207–213. [Google Scholar] [CrossRef]
- Szczuka, C.; Eichel, R.A.; Granwehr, J. Exploring the Solvation Sphere and Spatial Accumulation of Dissolved Transition-Metal Ions in Batteries: A Case Study of Vanadyl Ions Released from V2O5 Cathodes. ACS Appl. Energy Mater. 2022, 5, 449–460. [Google Scholar] [CrossRef]
- Huang, D.; Engtrakul, C.; Nanayakkara, S.; Mulder, D.W.; Han, S.D.; Zhou, M.; Luo, H.M.; Tenent, R.C. Understanding Degradation at the Lithium-Ion Battery Cathode/Electrolyte Interface: Connecting Transition-Metal Dissolution Mechanisms to Electrolyte Composition. ACS Appl. Mater. Interfaces 2021, 13, 11930–11939. [Google Scholar] [CrossRef]
- Ivanishchev, A.V.; Gridina, N.A.; Rybakov, K.S.; Ivanishcheva, I.A.; Dixit, A. Structural and Electrochemical Investigation of Lithium Ions Insertion Processes in Polyanionic Compounds of Lithium and Transition Metals. J. Electroanal. Chem. 2020, 860, 1113894. [Google Scholar] [CrossRef]
- Li, H.X.; Xu, M.; Long, H.W.; Zheng, J.Q.; Zhang, L.Y.; Li, S.H.; Guan, C.H.; Lai, Y.Q.; Zhang, Z. Stabilization of Multicationic Redox Chemistry in Polyanionic Cathode by Increasing Entropy. Adv. Sci. 2022, 9, 2202082. [Google Scholar] [CrossRef]
- Song, T.Y.; Yao, W.J.; Kiadkhunthod, P.; Zheng, Y.P.; Wu, N.Z.; Zhou, X.L.; Tunmee, S.; Sattayaporn, S.; Tang, Y.B. A Low-Cost and Environmentally Friendly Mixed Polyanionic Cathode for Sodium-Ion Storage. Angew. Chem. Int. Ed. 2020, 59, 740–745. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Gu, Z.Y.; Ang, E.H.; Guo, J.Z.; Wang, X.T.; Wang, Y.L.; Wu, X.L. Advanced Polyanionic Electrode Materials for Potassium-Ion Batteries: Progresses, Challenges and Application Prospects. Mater. Today 2022, 54, 189–201. [Google Scholar] [CrossRef]
- Li, C.; Shen, M.; Hu, B.; Lou, X.B.; Zhang, X.; Tong, W.; Hu, B.W. High-Energy Nanostructured Na3V2(PO4)2O1.6F1.4 Cathodes for Sodium-Ion Batteries and a New Insight into Their Redox Chemistry. J. Mater. Chem. A 2018, 6, 8340–8348. [Google Scholar] [CrossRef]
- Park, Y.U.; Seo, D.H.; Kwon, H.S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H.I.; Kang, K. A New High-Energy Cathode for a Na-Ion Battery with Ultrahigh Stability. J. Am. Chem. Soc. 2013, 135, 13870–13878. [Google Scholar] [CrossRef]
- Serras, P.; Palomares, V.; Alonso, J.; Sharma, N.; López del Amo, J.M.; Kubiak, P.; Fdez-Gubieda, M.L.; Rojo, T. Electrochemical Na Extraction/Insertion of Na3V2O2x(PO4)2F3–2x. Chem. Mater. 2013, 25, 4917–4925. [Google Scholar] [CrossRef]
- Rubio, S.; Liang, Z.T.; Liu, X.S.; Lavela, P.; Tirado, J.L.; Stoyanova, R.; Zhecheva, E.; Liu, R.; Zuo, W.H.; Yang, Y.; et al. Reversible Multi-Electron Storage Enabled by Na5V(PO4)2F2 for Rechargeable Magnesium Batteries. Energy Storage Mater. 2021, 38, 462–472. [Google Scholar] [CrossRef]
- Wang, B.; Le Fevre, L.W.; Brookfield, A.; McInnes, E.J.L.; Dryfe, R.A.W. Resolution of Lithium Deposition Versus Intercalation of Graphite Anodes in Lithium Ion Batteries: An in Situ Electron Paramagnetic Resonance Study. Angew. Chem. Int. Ed. 2021, 60, 21860–21867. [Google Scholar] [CrossRef]
- Louli, A.J.; Eldesoky, A.; Weber, R.; Genovese, M.; Coon, M.; deGooyer, J.; Deng, Z.; White, R.T.; Lee, J.; Rodgers, T.; et al. Diagnosing and Correcting Anode-Free Cell Failure Via Electrolyte and Morphological Analysis. Nat. Energy 2020, 5, 693–702. [Google Scholar] [CrossRef]
- Su, L.; Charalambous, H.; Cui, Z.; Manthiram, A. High-Efficiency, Anode-Free Lithium–Metal Batteries with a Close-Packed Homogeneous Lithium Morphology. Energy Environ. Sci. 2022, 15, 843–854. [Google Scholar] [CrossRef]
- Huang, C.J.; Thirumalraj, B.; Tao, H.C.; Shitaw, K.N.; Sutiono, H.; Hagos, T.T.; Beyene, T.T.; Kuo, L.M.; Wang, C.C.; Wu, S.H.; et al. Decoupling the Origins of Irreversible Coulombic Efficiency in Anode-Free Lithium Metal Batteries. Nat. Commun. 2021, 12, 1452. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Manthiram, A. A Facile Potential Hold Method for Fostering an Inorganic Solid-Electrolyte Interphase for Anode-Free Lithium-Metal Batteries. Angew. Chem. Int. Ed. Engl. 2022, 61, e202115909. [Google Scholar] [CrossRef]
- Huang, W.Z.; Zhao, C.Z.; Wu, P.; Yuan, H.; Feng, W.E.; Liu, Z.Y.; Lu, Y.; Sun, S.; Fu, Z.H.; Hu, J.K.; et al. Anode-Free Solid-State Lithium Batteries: A Review. Adv. Energy Mater. 2022, 12, 2201044. [Google Scholar] [CrossRef]
- Niemoller, A.; Jakes, P.; Eichel, R.A.; Granwehr, J. Epr Imaging of Metallic Lithium and Its Application to Dendrite Localisation in Battery Separators. Sci. Rep. 2018, 8, 14331. [Google Scholar] [CrossRef] [Green Version]
- Dutoit, C.E.; Tang, M.X.; Gourier, D.; Tarascon, J.M.; Vezin, H.; Salager, E. Monitoring Metallic Sub-Micrometric Lithium Structures in Li-Ion Batteries by in Situ Electron Paramagnetic Resonance Correlated Spectroscopy and Imaging. Nat. Commun. 2021, 12, 1410. [Google Scholar] [CrossRef]
- Geng, F.S.; Yang, Q.; Li, C.; Shen, M.; Chen, Q.; Hu, B.W. Mapping the Distribution and the Microstructural Dimensions of Metallic Lithium Deposits in an Anode-Free Battery by in Situ Epr Imaging. Chem. Mater. 2021, 33, 8223–8234. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, X.; Xu, X.; Bu, Z.; Zhai, S.; Sun, Y.; Ruan, M.; Li, Q. Application of Electron Paramagnetic Resonance in an Electrochemical Energy Storage System. Magnetochemistry 2023, 9, 63. https://doi.org/10.3390/magnetochemistry9030063
Sang X, Xu X, Bu Z, Zhai S, Sun Y, Ruan M, Li Q. Application of Electron Paramagnetic Resonance in an Electrochemical Energy Storage System. Magnetochemistry. 2023; 9(3):63. https://doi.org/10.3390/magnetochemistry9030063
Chicago/Turabian StyleSang, Xiancheng, Xixiang Xu, Zeyuan Bu, Shuhao Zhai, Yiming Sun, Mingyue Ruan, and Qiang Li. 2023. "Application of Electron Paramagnetic Resonance in an Electrochemical Energy Storage System" Magnetochemistry 9, no. 3: 63. https://doi.org/10.3390/magnetochemistry9030063
APA StyleSang, X., Xu, X., Bu, Z., Zhai, S., Sun, Y., Ruan, M., & Li, Q. (2023). Application of Electron Paramagnetic Resonance in an Electrochemical Energy Storage System. Magnetochemistry, 9(3), 63. https://doi.org/10.3390/magnetochemistry9030063