Spin Frustrated Pyrazolato Triangular CuII Complex: Structure and Magnetic Properties, an Overview
Abstract
:1. Introduction
2. Results and Discussion
2.1. ESI Mass and FTIR Spectra
2.2. Structure Analysis
2.3. Magnetic Properties. dc Magnetic Analysis
3. Materials and Methods
3.1. The Synthesis of [Cu3(μ3−OH)(pz)3(Hpz)3][BF4]2 (1−Cu3)
3.2. Physical Characterization
3.3. X-ray Diffraction
3.4. Magnetic Susceptibility Measurements
3.5. DFT Calculations of the Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scatena, R.; Massignani, S.; Lanza, A.E.; Zorzi, F.; Monari, M.; Nestola, F.; Pettinari, C.; Pandolfo, L. Synthesis of Coordination Polymers and Discrete Complexes from the Reaction of Copper(II) Carboxylates with Pyrazole: Role of Carboxylates Basicity. Cryst. Growth Des. 2022, 22, 1032–1044. [Google Scholar] [CrossRef]
- Di Nicola, C.; Karabach, Y.Y.; Kirillov, A.M.; Monari, M.; Pandolfo, L.; Pettinari, C.; Pombeiro, A.J.L. Supramolecular assemblies of trinuclear triangular copper(II) secondary building units through hydrogen bonds. Generation of different metal-organic frameworks, valuable catalysts for peroxidative oxidation of alkanes. Inorg. Chem. 2007, 46, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Angaridis, P.A.; Baran, P.; Boča, R.; Cervantes-Lee, F.; Haase, W.; Mezei, G.; Raptis, R.G.; Werner, R. Synthesis and Structural Characterization of Trinuclear CuII−Pyrazolato Complexes Containing μ3-OH, μ3-O, and μ3-Cl Ligands. Magnetic Susceptibility Study of [PPN]2[(μ3-O)Cu3(μ-pz)3Cl3]. Inorg. Chem. 2002, 41, 2219–2228. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.D.; Smith, B.A.; Williams, G.A.; Powell, D.R.; Perez, F.; Rowe, G.T.; Yang, L. Synthesis and Characterization of Cu(II) and Mixed-Valence Cu(I)Cu(II) Clusters Supported by Pyridylamide Ligands. Inorg. Chem. 2020, 59, 5433–5446. [Google Scholar] [CrossRef]
- Gusev, A.; Nemec, I.; Herchel, R.; Shul’gin, V.; Ryush, I.; Kiskin, M.; Efimov, N.; Ugolkova, E.; Minin, V.; Lyssenko, K.; et al. Copper(II) self-assembled clusters of bis((pyridin-2-yl)-1,2,4-triazol-3-yl)alkanes. Unusual rearrangement of ligands under reaction conditions. Dalton Trans. 2019, 48, 3052–3060. [Google Scholar] [CrossRef] [Green Version]
- Bala, S.; Bhattacharya, S.; Goswami, A.; Adhikary, A.; Konar, S.; Mondal, R. Designing functional metal-organic frameworks by imparting a hexanuclear copper-based secondary building unit specific properties: Structural correlation with magnetic and photocatalytic activity. Cryst. Growth Des. 2014, 14, 6391–6398. [Google Scholar] [CrossRef]
- Condello, F.; Garau, F.; Lanza, A.; Monari, M.; Nestola, F.; Pandolfo, L.; Pettinari, C. Synthesis and structural characterizations of new coordination polymers generated by the interaction between the trinuclear triangular SBU [Cu3(μ3-OH)(μ-pz)3]2+ and 4,4′-Bipyridine. Cryst. Growth Des. 2015, 15, 4854–4862. [Google Scholar] [CrossRef]
- Rivera-Carrillo, M.; Chakraborty, I.; Raptis, R.G. Systematic synthesis of a metal organic framework based on triangular Cu3(μ3-OH) secondary building units: From a 0-D complex to a 1-D chain and a 3-D lattice. Cryst. Growth Des. 2010, 10, 2606–2612. [Google Scholar] [CrossRef] [Green Version]
- Stefanczyk, O.; Kumar, K.; Pai, T.Y.; Li, G.; Ohkoshi, S.I. Integration of Trinuclear Triangle Copper(II) Secondary Building Units in Octacyanidometallates(IV)-Based Frameworks. Inorg. Chem. 2022, 61, 8930–8939. [Google Scholar] [CrossRef]
- Trif, M.; Troiani, F.; Stepanenko, D.; Loss, D. Spin-electric coupling in molecular magnets. Phys. Rev. Lett. 2008, 101, 217201. [Google Scholar] [CrossRef] [Green Version]
- Troiani, F.; Stepanenko, D.; Loss, D. Hyperfine-induced decoherence in triangular spin-cluster qubits. Phys. Rev. B—Condens. Matter Mater. Phys. 2012, 86, 161409. [Google Scholar] [CrossRef] [Green Version]
- Belinsky, M.I. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations. Inorg. Chem. 2016, 55, 4078–4090. [Google Scholar] [CrossRef]
- Belinsky, M.I. Spin Chirality of Cu3 and V3 Nanomagnets. 2. Frustration, Temperature, and Distortion Dependence of Spin Chiralities and Magnetization in the Rotating and Tilted Magnetic Fields. Inorg. Chem. 2016, 55, 4091–4109. [Google Scholar] [CrossRef]
- Kintzel, B.; Böhme, M.; Liu, J.; Burkhardt, A.; Mrozek, J.; Buchholz, A.; Ardavan, A.; Plass, W. Molecular electronic spin qubits from a spin-frustrated trinuclear copper complex. Chem. Commun. 2018, 54, 12934–12937. [Google Scholar] [CrossRef] [Green Version]
- Boudalis, A.K. Half-Integer Spin Triangles: Old Dogs, New Tricks. Chem. Eur. J. 2021, 27, 7022–7042. [Google Scholar] [CrossRef]
- Spielberg, E.T.; Gilb, A.; Plaul, D.; Geibig, D.; Hornig, D.; Schuch, D.; Buchholz, A.; Ardavan, A.; Plass, W. A Spin-Frustrated Trinuclear Copper Complex Based on Triaminoguanidine with an Energetically Well-Separated Degenerate Ground State. Inorg. Chem. 2015, 54, 3432–3438. [Google Scholar] [CrossRef]
- Sowrey, F.E.; Tilford, C.; Wocadlo, S.; Anson, C.E.; Powell, A.K.; Bennington, S.M.; Montfrooij, W.; Jayasooriya, U.A.; Cannon, R.D. Spin frustration and concealed asymmetry: Structure and magnetic spectrum of [Fe3O(O2CPh)6(py)3]ClO4·py†. J. Chem. Soc. Dalton Trans. 2001, 6, 862–866. [Google Scholar] [CrossRef]
- Tsukerblat, B.S.; Belinskii, M.I.; Fainzil’berg, V.E. Magnetochemistry and Spectroscopy of Transition Metals Exchange Clusters. Sov. Sci. Rev. B Chem. 1987, 9, 337–481. [Google Scholar]
- Ferrer, S.; Lloret, F.; Pardo, E.; Clemente-Juan, J.M.; Liu-González, M.; García-Granda, S. Antisymmetric Exchange in Triangular Tricopper(II) Complexes: Correlation among Structural, Magnetic, and Electron Paramagnetic Resonance Parameters. Inorg. Chem. 2012, 51, 985–1001. [Google Scholar] [CrossRef]
- Winpenny, R.E.P. Molecular Cluster Magnets; World Scientific Publishing Co.: Singapore, 2012. [Google Scholar]
- Toader, A.M.; Buta, M.C.; Cimpoesu, F.; Toma, A.I.; Zalaru, C.M.; Cinteza, L.O.; Ferbinteanu, M. New Syntheses, Analytic Spin Hamiltonians, Structural and Computational Characterization for a Series of Tri-, Hexa- and Hepta-Nuclear Copper (II) Complexes with Prototypic Patterns. Chemistry 2021, 3, 411–439. [Google Scholar] [CrossRef]
- Mathivathanan, L.; Boudalis, A.K.; Turek, P.; Pissas, M.; Sanakis, Y.; Raptis, R.G. Interactions between H-bonded [CuII3(μ3-OH)] triangles; A combined magnetic susceptibility and EPR study. Phys. Chem. Chem. Phys. 2018, 20, 17234–17244. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Mathivathanan, L.; Herchel, R.; Boudalis, A.K.; Raptis, R.G. Supramolecular Assemblies of Trinuclear Copper(II)-Pyrazolato Units: A Structural, Magnetic and EPR Study. Chemistry 2020, 2, 626–644. [Google Scholar] [CrossRef]
- Mezei, G.; Raptis, R.G.; Telser, J. Trinuclear, antiferromagnetically coupled CuII complex with an EPR spectrum of mononuclear CuII: Effect of alcoholic solvents. Inorg. Chem. 2006, 45, 8841–8843. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Drew, M.G.B.; Estrader, M.; Diaz, C.; Ghosh, A. Influence of counter anions on the structures and magnetic properties of trinuclear Cu(II) complexes containing a μ3-OH core and Schiff base ligands. Inorg. Chim. Acta 2008, 361, 161–172. [Google Scholar] [CrossRef]
- Cañon-Mancisidor, W.; Spodine, E.; Paredes-Garcia, V.; Venegas-Yazigi, D. Theoretical description of the magnetic properties of μ3-hydroxo bridged trinuclear copper(II) complexes. J. Mol. Model. 2013, 19, 2835–2844. [Google Scholar] [CrossRef]
- Zhou, J.-H.; Liu, Z.; Li, Y.-Z.; Song, Y.; Chen, X.-T.; You, X.-Z. Synthesis, structures and magnetic properties of two copper(II) complexes with pyrazole and pivalate ligands. J. Coord. Chem. 2006, 59, 147–156. [Google Scholar] [CrossRef]
- Davydenko, Y.M.; Demeshko, S.; Pavlenko, V.A.; Dechert, S.; Meyer, F.; Fritsky, I.O. Synthesis, Crystal Structure, Spectroscopic and Magnetically Study of Two Copper(II) Complexes with Pyrazole Ligand. Z. Anorg. Allg. Chemie 2013, 639, 1472–1476. [Google Scholar] [CrossRef]
- Zhou, Q.-J.; Liu, Y.-Z.; Wang, R.-L.; Fu, J.-W.; Xu, J.-Y.; Lou, J.-S. Synthesis, crystal structure and magnetic properties of a trinuclear Cu(II)-pyrazolate complex containing μ3-OH. J. Coord. Chem. 2009, 62, 311–318. [Google Scholar] [CrossRef]
- Shi, K.; Mathivathanan, L.; Boudalis, A.K.; Turek, P.; Chakraborty, I.; Raptis, R.G. Nitrite Reduction by Trinuclear Copper Pyrazolate Complexes: An Example of a Catalytic, Synthetic Polynuclear NO Releasing System. Inorg. Chem. 2019, 58, 7537–7544. [Google Scholar] [CrossRef]
- Massignani, S.; Scatena, R.; Lanza, A.; Monari, M.; Condello, F.; Nestola, F.; Pettinari, C.; Zorzi, F.; Pandolfo, L. Coordination polymers from mild condition reactions of copper(II) carboxylates with pyrazole (Hpz). Influence of carboxylate basicity on the self-assembly of the [Cu3(μ3-OH)(μ-pz)3]2+ secondary building unit. Inorg. Chim. Acta 2017, 455, 618–626. [Google Scholar] [CrossRef]
- Ahmed, B.M.; Mezei, G. From ordinary to extraordinary: Insights into the formation mechanism and pH-dependent assembly/disassembly of nanojars. Inorg. Chem. 2016, 55, 7717–7728. [Google Scholar] [CrossRef]
- Alsalme, A.; Ghazzali, M.; Khan, R.A.; Al-Farhan, K.; Reedijk, J. A novel trinuclear μ3-hydroxido-bridged Cu(II) compound; A molecular cluster, stabilized by hydrogen bonding, bridging pyrazolates, terminal pyrazoles, water and nitrate anions. Polyhedron 2014, 75, 64–67. [Google Scholar] [CrossRef]
- Di Nicola, C.; Garau, F.; Gazzano, M.; Monari, M.; Pandolfo, L.; Pettinari, C.; Pettinari, R. Reactions of a coordination polymer based on the triangular cluster [Cu3(μ3-OH)(μ-pz)3]2+ with strong acids. Crystal structure and supramolecular assemblies of new mono-, tri-, and hexanuclear complexes and coordination polymers. Cryst. Growth Des. 2010, 10, 3120–3131. [Google Scholar] [CrossRef]
- Casarin, M.; Cingolani, A.; Di Nicola, C.; Falcomer, D.; Monari, M.; Pandolfo, L.; Pettinari, C. The Different Supramolecular Arrangements of the Triangular [Cu3(μ3-OH)(μ-pz)3]2+ (pz = Pyrazolate) Secondary Building Units. Synthesis of a Coordination Polymer with Permanent Hexagonal Channels. Cryst. Growth Des. 2007, 7, 676–685. [Google Scholar] [CrossRef]
- Vynohradov, O.S.; Pavlenko, V.A.; Fritsky, I.O.; Gural’skiy, I.A.; Shova, S. Synthesis and Crystal Structure of Copper(II) 9-Azametallacrowns-3 with 4-Iodopyrazole. Russ. J. Inorg. Chem. 2020, 65, 1481–1488. [Google Scholar] [CrossRef]
- Angaroni, M.; Ardizzoia, G.A.; Beringhelli, T.; La Monica, G.; Gatteschi, D.; Masciocchi, N.; Moret, M. Oxidation reaction of [{Cu(Hpz)2Cl}2 ](Hpz = pyrazole): Synthesis of the trinuclear copper(II) hydroxo complexes [Cu3(OH)(pz)3(Hpz)2Cl2]·solv (solv = H2O or tetrahydrofuran). Formation, magnetic properties, and X-ray crystal structure of [Cu3(OH)(pz)3(Hpz)2Cl2]·py (py = pyridine). J. Chem. Soc. Dalton Trans. 1990, 11, 3305–3309. [Google Scholar] [CrossRef]
- Liu, X.; Nie, Y.; Tang, Q.; Tian, A.; Hu, Z.; Yan, J.; Zhang, S. Pyrazole-based trinuclear and mononuclear complexes: Synthesis, characterization, DNA interactions and cytotoxicity studies. Transit. Met. Chem. 2021, 46, 481–494. [Google Scholar] [CrossRef]
- Boudalis, A.K.; Rogez, G.; Heinrich, B.; Raptis, R.G.; Turek, P. Towards ionic liquids with tailored magnetic properties: Bmim+ salts of ferro- and antiferromagnetic CuII3 triangles. Dalton Trans. 2017, 46, 12263–12273. [Google Scholar] [CrossRef] [Green Version]
- Razali, M.R.; Urbatsch, A.; Deacon, G.B.; Batten, S.R. Transition metal complexes of the small cyano anion dicyanonitromethanide [C(CN)2(NO2)]− Dedicated to George Christou on the occasion of his 60th birthday. Polyhedron 2013, 64, 352–364. [Google Scholar] [CrossRef]
- Rivera-Carrillo, M.; Chakraborty, I.; Mezei, G.; Webster, R.D.; Raptis, R.G. Tuning of the [Cu3(μ-O)]4+/5+ redox couple: Spectroscopic evidence of charge delocalization in the mixed-valent [Cu3(μ-O)]5+ species. Inorg. Chem. 2008, 47, 7644–7650. [Google Scholar] [CrossRef]
- Lang, J.; Hewer, J.M.; Meyer, J.; Schuchmann, J.; van Wüllen, C.; Niedner-Schatteburg, G. Magnetostructural correlation in isolated trinuclear iron(III) oxo acetate complexes. Phys. Chem. Chem. Phys. 2018, 20, 16673–16685. [Google Scholar] [CrossRef] [PubMed]
- Antkowiak, M.; Kamieniarz, G.; Florek, W. Comment on “magnetostructural correlations in isolated trinuclear iron(III) oxo acetate complexes” by J. Lang, J.M. Hewer, J. Meyer, J. Schuchmann, C. van Wüllen and G. Niedner-Schatteburg, Phys. Chem. Chem. Phys., 2018, 20, 16673. Phys. Chem. Chem. Phys. 2019, 21, 504. [Google Scholar] [CrossRef] [PubMed]
- van Wüllen, C.; Lang, J.; Niedner-Schatteburg, G. Reply to the ‘Comment on “Magnetostructural correlations in isolated trinuclear iron (iii) oxo acetate complexes“ by M. Antkowiak, G. Kamieniarz and W. Florek, Phys. Chem. Chem. Phys., 2018, 20. Phys. Chem. Chem. Phys. 2019, 21, 505–506. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Bouammali, M.A.; Suaud, N.; Guihéry, N.; Maurice, R. Antisymmetric Exchange in a Real Copper Triangular Complex. Inorg. Chem. 2022, 61, 12138–12148. [Google Scholar] [CrossRef]
- Tsukerblat, B. Group-theoretical approaches in molecular magnetism: Metal clusters. Inorg. Chim. Acta 2008, 361, 3746–3760. [Google Scholar] [CrossRef]
- Tsukerblat, B.; Palii, A.; Clemente-Juan, J.M.; Coronado, E. Modelling the properties of magnetic clusters with complex structures: How symmetry can help us. Int. Rev. Phys. Chem. 2020, 39, 217–265. [Google Scholar] [CrossRef]
- Afrati, T.; Dendrinou-Samara, C.; Raptopoulou, C.; Terzis, A.; Tangoulis, V.; Tsipis, A.; Kessissoglou, D.P. Experimental and theoretical study of the antisymmetric magnetic behavior of copper inverse-9-metallacrown-3 compounds. Inorg. Chem. 2008, 47, 7545–7555. [Google Scholar] [CrossRef]
- Wang, L.-L.; Sun, Y.-M.; Yu, Z.-Y.; Qi, Z.-N.; Liu, C.-B. Theoretical Investigation on Triagonal Symmetry Copper Trimers: Magneto-Structural Correlation and Spin Frustration. J. Phys. Chem. A 2009, 113, 10534–10539. [Google Scholar] [CrossRef]
- Yoon, J.; Solomon, E.I. Ground-state electronic and magnetic properties of a μ3-Oxo-bridged trinuclear Cu(II) complex: Correlation to the native intermediate of the multicopper oxidases. Inorg. Chem. 2005, 44, 8076–8086. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Bain, G.A.; Berry, J.F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 2008, 85, 532–536. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Schafer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted quality for atoms Li to Kr Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829–5835. [Google Scholar] [CrossRef]
- Jaguar. Jaguar 5.5; Version 5.5; Schrödinger, LLC.: Portland, OR, USA, 2003. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. G09. Gaussian 09; (Revision D.2); Gaussian, Inc.: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Ruiz, E.; Alvarez, S.; Cano, J.; Polo, V. About the calculation of exchange coupling constants using density-functional theory: The role of the self-interaction error. J. Chem. Phys. 2005, 123, 164110. [Google Scholar] [CrossRef]
- Ruiz, E. Theoretical Study of the Exchange Coupling in Large Polynuclear Transition Metal Complexes Using DFT Methods. Struct. Bond. 2004, 113, 71–102. [Google Scholar] [CrossRef]
CCDC Code | CuII–CuII (Å) | Cu3 (plane)–OH (Å) | Cun–OH (Å) | Cun–N (pz) (Å) | Cun-1–Cun–Cun+1 (°) | Cun–OH–Cun+1 (°) | Ref. |
---|---|---|---|---|---|---|---|
1−Cu3 | 3.3740(8) 3.3574(8) 3.3702(9) | 0.439 | 2.005(3) 1.978(3) 1.995(3) | 1.942(4) to 1.965(3) | 59.71(2) 60.09(2) 60.20(2) | 115.8(2) 115.3(2) 114.8(2) | This work |
AMACIC | 3.3020(6) 3.2561(5) 3.3927(6) | 0.553 | 1.977(2) 2.001(2) 2.005(2) | 1.932(3) to 1.947(2) | 58.19(1) 62.30(1) 59.51(1) | 112.20(9) 116.9(1) 108.73(9) | [31] |
ASUNIN | 3.3456(1) 3.3266(6) 3.3456(1) | 0.510 | 2.011(1) 1.932(5) 2.042(5) | 1.918(3) to 1.952(1) | 59.62(1) 60.19(1) 60.19(1) | 116.1(1) 113.6(2) 111.3(1) | [32] |
BOFLEP | 3.349(2) 3.239(2) 3.355(2) | 0.580 | 2.005(4) 2.001(4) 1.995(3) | 1.924(5) to 1.958(4) | 57.78(2) 61.20(2) 61.02(2) | 113.5(2) 108.3(2) 114.1(2) | [33] |
DEFSEN | 3.384(1) 3.2503(9) 3.2950(9) | 0.567 | 1.975(3) 2.008(3) 2.000(2) | 1.928(4) to 1.948(4) | 58.22(2) 59.52(2) 62.26(2) | 116.3(1) 108.4(1) 112.0(1) | [27] |
DIBXOC | 3.2972(5) 3.2972(5) 3.3843(4) | 0.609 | 2.008(2) 2.030(2) 2.008(2) | 1.946(2) to 1.1.957 | 59.12(1) 61.76(1) 59.12(1) | 109.5(1) 109.5(1) 114.9(1) | [35] |
EGIXOK | 3.3540(5) 3.3874(6) 3.4036(6) | 0.363 | 1.979(2) 1.993(2) 1.985(3) | 1.921(3) to 1.941(2) | 60.16(1) 60.64(1) 59.19(1) | 115.2(2) 116.7(2) 118.3(2) | [30] |
EGIXUQ | 3.268(1) 3.379(1) 3.350(1) | 0.148 | 1.936(5) 1.943(4) 1.913(5) | 1.914(5) to 1.942(5) | 61.39(2) 60.50(2) 58.11(2) | 114.8(2) 121.0(2) 122.4(2) | [30] |
EHOLIZ | 3.389(5) 3.389(5) 3.389(5) | 0.274 | 2.046(10) 1.941(10) 1.941(10) | 1.92(1) to 1.97(2) | 60.0(1) 60.0(1) 60.0(1) | 116(1) 122(1) 116(1) | [36] |
JEWWEO | 3.3416(8) 3.3825(8) 3.3502(7) | 0.461 | 1.988(3) 2.010(3) 1.982(3) | 1.923(4) to 1.943(4) | 60.73(2) 59.76(2) 59.51(2) | 113.4(1) 115.9(2) 115.1(2) | [2] |
JEWWIS | 3.387(1) 3.309(1) 3.350(1) | 0.486 | 1.976(6) 2.021(5) 1.985(6) | 1.919(7) to 1.952(8) | 58.84(3) 60.03(3) 61.13(3) | 115.9(3) 111.4(3) 115.5(3) | [2] |
MUZQUU | 3.3696(5) 3.3461(5) 3.3788(5) | 0.455 | 1.982(2) 2.003(2) 2.001(2) | 1.947(3) to 1.960(2) | 59.45(1) 60.41(1) 60.14(1) | 115.45(9) 113.39(9) 116.05(9) | [8] |
* QIMSIQ-a | 3.2977(4) 3.1704(4) 3.3126(4) | 0.688 | 2.016(2) 2.012(2) 1.987(2) | 1.938(2) to 1.959(2) | 57.32(1) 61.58(1) 61.10(1) | 109.91(7) 104.90(7) 111.68(8) | [28] |
* QIMSIQ-b | 3.3911(4) 3.3023(4) 3.3214(4) | 0.512 | 2.000(1) 1.994(2) 1.989(2) | 1.944(2) to 1.959(2) | 58.93(1) 59.48(1) 61.59(1) | 116.20(8) 111.99(7) 112.72(7) | [28] |
* QIMSOW-a | 3.2559(7) 3.342(1) 3.2345(9) | 0.713 | 1.992(3) 2.032(3) 2.044(3) | 1.941(4) to 1.958(4) | 61.98(2) 58.69(2) 59.32(2) | 108.0(1) 110.2(1) 106.6)1) | [28] |
* QIMSOW-b | 3.2045(6) 3.1837(8) 3.2007(9) | 0.759 | 1.985(3) 2.011(2) 1.990(3) | 1.948(3) to 1.960(4) | 59.61(2) 60.13(2) 60.25(2) | 106.6(1) 105.4(1) 107.3(1) | [28] |
QOPJIP | 3.355(1) 3.386(1) 3.368(1) | 0.466 | 1.994(5) 2.000(4) 2.007(5) | 1.929(6) to 1.958(6) | 59.94(3) 60.49(3) 59.57(3) | 114.3(2) 114.4(2) 115.6(2) | [29] |
QUSMEX | 3.344(2) 3.286(2) 3.392(2) | 0.475 | 1.955(8) 2.017(6) 1.992(9) | 1.933(9) to 1.978(9) | 58.39(4) 61.53(4) 60.07(4) | 114.7(4) 110.1(4) 118.5(4) | [34] |
QUSMIB | 3.289(2) 3.289(2) 3.289(2) | 0.489 | 1.961(1) 1.962(1) 1.960(1) | 1.89(1) to 1.930(8) | 60.00(4) 60.00(4) 60.00(4) | 114.0(1) 114.0(1) 114.0(1) | [34] |
QUSMUN | 3.3550(5) 3.3615(5) 3.3439(6) | 0.471 | 1.985(2) 2.005(2) 1.987(2) | 1.937(2) to 1.951(2) | 60.24(1) 59.72(1) 60.04(1) | 114.42(9) 114.68(9) 114.65(9) | [34] |
RETQUD | 3.3833(6) 3.3629(6) 3.3769(5) | 0.542 | 2.026(2) 2.028(3) 2.013(2) | 1.942(3) to 1.961(2) | 59.66(1) 60.07(1) 60.26(1) | 113.1(1) 112.7(1) 113.5(1) | [24] |
RETRAK | 3.365(1) 3.3650(9) 3.3886(8) | 0.565 | 2.023(3) 2.041(3) 2.019(2) | 1.933(3) to 1.962(5) | 59.77(2) 60.46(2) 59.77(2) | 111.8(1) 111.9(1) 113.9(1) | [24] |
RETREO | 3.3442(6) 3.3975(6) 3.3022(7) | 0.625 | 2.024(2) 2.033(2) 2.038(2) | 1.936(3) to 1.957(3) | 61.48(1) 58.65(1) 59.87(1) | 111.0(1) 113.1(1) 108.7(1) | [24] |
RUYGEX | 3.4471(9) 3.206(1) 3.4227(9) | 0.524 | 1.987(3) 2.024(3) 2.035(3) | 1.940(4) to 1.953(4) | 55.55(2) 62.01(2) 62.44(2) | 118.5(1) 104.4(1) 117.3(1) | [3] |
RUYGIB | 3.2473(8) 3.4007(6) 3.4305(8) | 0.507 | 2.014(3) 2.017(2) 1.989(2) | 1.933(4) to 1.952(4) | 61.16(1) 62.08(1) 56.76(1) | 107.3(1) 116.2(1) 118.0(1) | [3] |
RUYHEY | 3.414(1) 3.253(1) 3.277(1) | 0.613 | 2.012(5) 2.006(4) 2.016(3) | 1.929(7) to 1.950(5) | 58.15(3) 58.82(3) 63.03(3) | 116.4(2) 108.0(2) 108.9(2) | [3] |
SIJKOL | 3.112(1) 3.321(1) 3.321(1) | 0.658 | 2.000(1) 2.000(1) 1.977(1) | 1.942(1) to 1.967(4) | 62.06(1) 62.06(1) 55.88(1) | 102.2(1) 113.3(1) 113.3(1) | [37] |
UZIWEI | 3.3695(6) 3.2840(5) 3.2953(5) | 0.595 | 1.998(2) 2.004(2) 2.104(2) | 1.937(2) to 1.952(2) | 59.03(1) 59.36(1) 61.61(1) | 114.68(8) 109.64(8) 110.42(8) | [38] |
VAZCOR | 3.1913(9) 3.391(1) 3.353(1) | 0.599 | 2.032(4) 2.030(4) 1.959(3) | 1.933(6) to 1.960(5) | 62.36(2) 61.16(2) 56.49(2) | 103.6(2) 116.4(2) 114.3(2) | [39] |
VIMYEX | 3.2639(7) 3.1851(8) 3.299(1) | 0.712 | 2.027(2) 1.991(2) 2.003(2) | 1.935(2) to 1.950(2) | 58.06(1) 61.52(1) 60.41(1) | 108.67(7) 105.79(7) 109.9387) | [40] |
XOKXAX | 3.347(1) 3.403(1) 3.320(1) | 0.491 | 1.998(4) 2.000(4) 2.000(4) | 1.939(5) to 1.963(6) | 61.38(2) 58.92(2) 59.70(2) | 113.6(2) 116.6(2) 112.3(2) | [41] |
YIFGIG | 3.3500(8) 3.2440(7) 3.3519(6) | 0.521 | 1.978(2) 1.968(2) 2.008(2) | 1.928(2) to 1.953(2) | 57.90(1) 61.08(1) 61.02(1) | 116.20(9) 109.37(9) 114.48(9) | [22] |
CCDC Code | d(CuII–CuII) (Å) | Cu3 (plane)–OH (Å) | J(CuII–CuII) (cm−1) | g | zJ´ (cm−1) | |GZ| (cm−1) | Ref. |
---|---|---|---|---|---|---|---|
1−Cu3 | 3.3740(8) 3.3574(8) 3.3702(9) | 0.439 | −193.5(6) −205.5(6) | 2.09 | - | 28 | This work |
BOFLEP # | 3.349(2) 3.239(2) 3.355(2) | 0.580 | - | - | - | - | [33] |
DEFSEN | 3.384(1) 3.2503(9) 3.2950(9) | 0.567 | −117.7 −90.3 | 2.047 | −3.0 | - | [27] |
QISOW-a * | 3.2559(7) 3.342(1) 3.2345(9) | 0.713 | −140 | 2.07 | - | - | [28] |
QISOW-b * | 3.2045(6) 3.1837(8) 3.2007(9) | 0.759 | −109 | 2.07 | - | - | [28] |
QOPJIP | 3.355(1) 3.386(1) 3.368(1) | 0.466 | −241.9 | 2.07 | −23.0 | - | [29] |
SIJKOL | 3.112(1) 3.321(1) 3.321(1) | 0.658 | −148 −23 | 2.17 | - | - | [37] |
VAZCOR | 3.1913(9) 3.391(1) 3.353(1) | 0.599 | −298 −257 | 2.12 | −0.37 | 18.2 | [39] |
YIFGIG | 3.3500(8) 3.2440(7) 3.3519(6) | 0.521 | −392 −278 | 2.09 | - | 31.2 | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cañón-Mancisidor, W.; Hermosilla-Ibáñez, P.; Spodine, E.; Paredes-García, V.; Gómez-García, C.J.; Venegas-Yazigi, D. Spin Frustrated Pyrazolato Triangular CuII Complex: Structure and Magnetic Properties, an Overview. Magnetochemistry 2023, 9, 155. https://doi.org/10.3390/magnetochemistry9060155
Cañón-Mancisidor W, Hermosilla-Ibáñez P, Spodine E, Paredes-García V, Gómez-García CJ, Venegas-Yazigi D. Spin Frustrated Pyrazolato Triangular CuII Complex: Structure and Magnetic Properties, an Overview. Magnetochemistry. 2023; 9(6):155. https://doi.org/10.3390/magnetochemistry9060155
Chicago/Turabian StyleCañón-Mancisidor, Walter, Patricio Hermosilla-Ibáñez, Evgenia Spodine, Verónica Paredes-García, Carlos J. Gómez-García, and Diego Venegas-Yazigi. 2023. "Spin Frustrated Pyrazolato Triangular CuII Complex: Structure and Magnetic Properties, an Overview" Magnetochemistry 9, no. 6: 155. https://doi.org/10.3390/magnetochemistry9060155
APA StyleCañón-Mancisidor, W., Hermosilla-Ibáñez, P., Spodine, E., Paredes-García, V., Gómez-García, C. J., & Venegas-Yazigi, D. (2023). Spin Frustrated Pyrazolato Triangular CuII Complex: Structure and Magnetic Properties, an Overview. Magnetochemistry, 9(6), 155. https://doi.org/10.3390/magnetochemistry9060155