Electrically Detected Magnetic Resonance on a Chip (EDMRoC) for Analysis of Thin-Film Silicon Photovoltaics
Abstract
:1. Introduction
2. EDMR—Fundamental Principles
3. Materials and Methods
3.1. Sample Preparation
3.2. EDMR-on-a-Chip
3.3. EDMRoC Measurements
4. Results
5. Discussion
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, G.B.; Santos, L.F.; Faria, R.M.; Graeff, C.F.O. EDMR of MEH-PPV LEDs. Phys. B Condens. Matter 2001, 308–310, 1078–1080. [Google Scholar] [CrossRef]
- Behrends, J.; Schnegg, A.; Lips, K.; Thomsen, E.A.; Pandey, A.K.; Samuel, I.D.W.; Keeble, D.J. Bipolaron Formation in Organic Solar Cells Observed by Pulsed Electrically Detected Magnetic Resonance. Phys. Rev. Lett. 2010, 105, 176601. [Google Scholar] [CrossRef] [Green Version]
- Lips, K.; Fuhs, W. Transport and Recombination in Amorphous p-i-n-type Solar Cells Studied by Electrically Detected Magnetic Resonance. J. Appl. Phys. 1993, 74, 3993–3999. [Google Scholar] [CrossRef]
- Boehme, C.; Lips, K. Theory of Time-Domain Measurement of Spin-Dependent Recombination with Pulsed Electrically Detected Magnetic Resonance. Phys. Rev. B 2003, 68, 245105. [Google Scholar] [CrossRef]
- Morishita, H.; Vlasenko, L.S.; Tanaka, H.; Semba, K.; Sawano, K.; Shiraki, Y.; Eto, M.; Itoh, K.M. Electrical Detection and Magnetic-Field Control of Spin States in Phosphorus-Doped Silicon. Phys. Rev. B 2009, 80, 205206. [Google Scholar] [CrossRef] [Green Version]
- McCamey, D.R.; Huebl, H.; Brandt, M.S.; Hutchison, W.D.; McCallum, J.C.; Clark, R.G.; Hamilton, A.R. Electrically Detected Magnetic Resonance in Ion-Implanted Si:P Nanostructures. Appl. Phys. Lett. 2006, 89, 182115. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, W.; Schnegg, A.; Veber, S.; Meier, C.; Fehr, M.; Lips, K. CW and Pulsed Electrically Detected Magnetic Resonance Spectroscopy at 263GHz/12T on Operating Amorphous Silicon Solar Cells. J. Magn. Reson. 2015, 257, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.; Astakhov, O.; Finger, F. Silicon Thin Film Powder Samples for Electron Spin Resonance Investigation: Role of Substrate and Preparation Procedure. Jpn. J. Appl. Phys. 2011, 50, 071301. [Google Scholar] [CrossRef]
- Haas, S.; Gordijn, A.; Stiebig, H. High Speed Laser Processing for Monolithical Series Connection of Silicon Thin-Film Modules. Prog. Photovolt. Res. Appl. 2008, 16, 195–203. [Google Scholar] [CrossRef]
- Lo, C.C.; Bradbury, F.R.; Tyryshkin, A.M.; Weis, C.D.; Bokor, J.; Schenkel, T.; Lyon, S.A. Suppression of Microwave Rectification Effects in Electrically Detected Magnetic Resonance Measurements. Appl. Phys. Lett. 2012, 100, 063510. [Google Scholar] [CrossRef]
- Möser, J. Charge Transport in Amorphous Silicon: A Study by Electrically Detected Magnetic Resonance; Freie Universität: Berlin, Germany, 2019. [Google Scholar]
- Klotz, F.; Huebl, H.; Heiss, D.; Klein, K.; Finley, J.J.; Brandt, M.S. Coplanar Stripline Antenna Design for Optically Detected Magnetic Resonance on Semiconductor Quantum Dots. Rev. Sci. Instrum. 2011, 82, 074707. [Google Scholar] [CrossRef] [Green Version]
- McCrory, D.J.; Anders, M.A.; Ryan, J.T.; Shrestha, P.R.; Cheung, K.P.; Lenahan, P.M.; Campbell, J.P. Slow- and Rapid-Scan Frequency-Swept Electrically Detected Magnetic Resonance of MOSFETs with a Non-Resonant Microwave Probe within a Semiconductor Wafer-Probing Station. Rev. Sci. Instrum. 2019, 90, 014708. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.; Schlecker, B.; Kern, M.; Goodsell, J.L.; Angerhofer, A.; Lips, K.; Anders, J. On the Modeling of Amplitude-Sensitive ESR Detection Using VCO-Based ESR-on-a-Chip Detectors; EPR/Instrumentation: Urbana, IL, USA, 2021. [Google Scholar]
- Künstner, S.; Chu, A.; Dinse, K.-P.; Schnegg, A.; McPeak, J.E.; Naydenov, B.; Anders, J.; Lips, K. Rapid-Scan Electron Paramagnetic Resonance Using an EPR-on-a-Chip Sensor. Magn. Reson. 2021, 2, 673–687. [Google Scholar] [CrossRef]
- Matheoud, A.V.; Gualco, G.; Jeong, M.; Zivkovic, I.; Brugger, J.; Rønnow, H.M.; Anders, J.; Boero, G. Single-Chip Electron Spin Resonance Detectors Operating at 50GHz, 92GHz, and 146GHz. J. Magn. Reson. 2017, 278, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.; Kern, M.; Chu, A.; Kalra, G.; Shabratova, E.; Tsarapkin, A.; MacKinnon, N.; Lips, K.; Teutloff, C.; Bittl, R.; et al. Towards Single-Cell Pulsed EPR Using VCO-Based EPR-on-a-Chip Detectors. Frequenz 2022, 76, 699–717. [Google Scholar] [CrossRef]
- Böhme, C. Dynamics of Spin-Dependent Charge Carrier Recombination; Cuvillier Verlag: Göttingen, Germany, 2003. [Google Scholar]
- Chu, A.; Kern, M.; Khan, K.; LiPS, K.; Anders, J. A 263GHz 32-Channel EPR-on-a-Chip Injection-Locked VCO-Array. In Proceedings of the 2023 IEEE International Solid—State Circuits Conference (ISSCC), San Francisco, CA, USA, 19–23 February 2023; pp. 20–22. [Google Scholar]
- Cochrane, C.J.; Lenahan, P.M.; Lelis, A.J. An Electrically Detected Magnetic Resonance Study of Performance Limiting Defects in SiC Metal Oxide Semiconductor Field Effect Transistors. J. Appl. Phys. 2011, 109, 014506. [Google Scholar] [CrossRef]
- Graeff, C.F.O.; Brandt, M.S.; Stutzmann, M.; Powell, M.J. Defect Creation in Amorphous-Silicon Thin-Film Transistors. Phys. Rev. B 1995, 52, 4680–4683. [Google Scholar] [CrossRef]
- George, B.M.; Behrends, J.; Schnegg, A.; Schulze, T.F.; Fehr, M.; Korte, L.; Rech, B.; Lips, K.; Rohrmüller, M.; Rauls, E.; et al. Atomic Structure of Interface States in Silicon Heterojunction Solar Cells. Phys. Rev. Lett. 2013, 110, 136803. [Google Scholar] [CrossRef]
- Boehme, C.; Behrends, J.; Maydell, K.v.; Schmidt, M.; Lips, K. Investigation of Hopping Transport in N-a-Si:H/c-Si Solar Cells with Pulsed Electrically Detected Magnetic Resonance. J. Non-Cryst. Solids 2006, 352, 1113–1116. [Google Scholar] [CrossRef] [Green Version]
- Thoan, N.H.; Jivanescu, M.; O’Sullivan, B.J.; Pantisano, L.; Gordon, I.; Afanas’ev, V.V.; Stesmans, A. Correlation between Interface Traps and Paramagnetic Defects in C-Si/a-Si:H Heterojunctions. Appl. Phys. Lett. 2012, 100, 142101. [Google Scholar] [CrossRef]
- Stutzmann, M.; Brandt, M.S.; Bayerl, M.W. Spin-Dependent Processes in Amorphous and Microcrystalline Silicon: A Survey. J. Non-Cryst. Solids 2000, 266–269, 1–22. [Google Scholar] [CrossRef]
- Meyer, A.R.; Taylor, P.C.; Venuti, M.B.; Eley, S.; LaSalvia, V.; Nemeth, W.; Page, M.R.; Young, D.L.; Stradins, P.; Agarwal, S. Atomic Structure of Light-Induced Efficiency-Degrading Defects in Boron-Doped Czochralski Silicon Solar Cells. Energy Environ. Sci. 2021, 14, 5416–5422. [Google Scholar] [CrossRef]
- Fehr, M.; Simon, P.; Sontheimer, T.; Leendertz, C.; Gorka, B.; Schnegg, A.; Rech, B.; Lips, K. Influence of Deep Defects on Device Performance of Thin-Film Polycrystalline Silicon Solar Cells. Appl. Phys. Lett. 2012, 101, 123904. [Google Scholar] [CrossRef] [Green Version]
- Würz, R.; Meeder, A.; Fuertes Marrón, D.; Schedel-Niedrig, T.; Knop-Gericke, A.; Lips, K. Native Oxidation of CuGaSe2 Crystals and Thin Films Studied by Electron Paramagnetic Resonance and Photoelectron Spectroscopy. Phys. Rev. B 2004, 70, 205321. [Google Scholar] [CrossRef]
- Würz, R.; Meeder, A.; Marrón, D.F.; Schedel-Niedrig, T.; Lips, K. An Electron Paramagnetic Resonance and Photoelectron Spectroscopy Study on the Native Oxidation of CuGaSe2. MRS Online Proc. Libr. (OPL) 2005, 865, 536. [Google Scholar] [CrossRef]
- Lukina, E.A.; Uvarov, M.N.; Kulik, L.V. Charge Recombination in P3HT/PC70BM Composite Studied by Light-Induced EPR. J. Phys. Chem. C 2014, 118, 18307–18314. [Google Scholar] [CrossRef]
- Dyakonov, V.; Zoriniants, G.; Scharber, M.; Brabec, C.J.; Janssen, R.a.J.; Hummelen, J.C.; Sariciftci, N.S. Studies of Photoinduced Charge Transfer in Conjugated Polymer-Fullerene Composites by Light-Induced ESR. AIP Conf. Proc. 1998, 442, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Weil, J.A.; Bolton, J.R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007; ISBN 978-0-471-75496-1. [Google Scholar]
- van der Est, A. Continuous-Wave EPR. In eMagRes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 1411–1422. ISBN 978-0-470-03459-0. [Google Scholar]
- Baranovski, S. Charge Transport in Disordered Solids with Applications in Electronics; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 978-0-470-09505-8. [Google Scholar]
- Agarwal, M.; Pawar, A.; Wadibhasme, N.; Dusane, R. Controlling the C-Si/a-Si:H Interface in Silicon Heterojunction Solar Cells Fabricated by HWCVD. Sol. Energy 2017, 144, 417–423. [Google Scholar] [CrossRef]
- Blank, A.; Twig, Y.; Ishay, Y. Recent Trends in High Spin Sensitivity Magnetic Resonance. J. Magn. Reson. 2017, 280, 20–29. [Google Scholar] [CrossRef]
- Schnegg, A.; Behrends, J.; Fehr, M.; Lips, K. Pulsed Electrically Detected Magnetic Resonance for Thin Film Silicon and Organic Solar Cells. Phys. Chem. Chem. Phys. 2012, 14, 14418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, D.; Solomon, I.; Mott, N.F. Explanation of the Large Spin-Dependent Recombination Effect in Semiconductors. J. Phyique Lett. 1978, 39, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Boehme, C.; Lips, K. The Investigation of Charge Carrier Recombination and Hopping Transport with Pulsed Electrically Detected Magnetic Resonance Techniques. In Charge Transport in Disordered Solids with Applications in Electronics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 179–219. [Google Scholar]
- Eickelkamp, T.; Roth, S.; Mehring, M. Electrically Detected Magnetic Resonance in Photoexcited Fullerenes. Mol. Phys. 1998, 95, 967–972. [Google Scholar] [CrossRef]
- Lips, K.; Block, M.; Fuhs, W.; Lerner, C. Degradation of A-Si:H p-i-n Solar Cells Studied by Electrically Detected Magnetic Resonance. J. Non-Cryst. Solids 1993, 164–166, 697–700. [Google Scholar] [CrossRef]
- Fuhs, W.; Lips, K. Recombination in A-Si:H Films and Pin-Structures Studied by Electrically Detected Magnetic Resonance (EDMR). J. Non-Cryst. Solids 1993, 164–166, 541–546. [Google Scholar] [CrossRef]
- Lips, K.; Boehme, C.; Fuhs, W. Recombination in Silicon Thin-Film Solar Cells: A Study of Electrically Detected Magnetic Resonance. IEE Proc. Circuits Devices Syst. 2003, 150, 309. [Google Scholar] [CrossRef]
- Lips, K. Spin-Dependent Recombination Effects in a-SI:H Pin Solar Cell Devices: A New Characterization Technique. MRS Online Proc. Libr. 1995, 377, 455–466. [Google Scholar] [CrossRef]
- Simon, M.S.; Kwok, K.N. Physics of Semiconductor Devices, 3rd ed.; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Behrends, J.; Schnegg, A.; Fehr, M.; Lambertz, A.; Haas, S.; Finger, F.; Rech, B.; Lips, K. Electrical Detection of Electron Spin Resonance in Microcrystalline Silicon Pin Solar Cells. Philos. Mag. 2009, 89, 2655–2676. [Google Scholar] [CrossRef]
- Melskens, J.; Schnegg, A.; Baldansuren, A.; Lips, K.; Plokker, M.P.; Eijt, S.W.H.; Schut, H.; Fischer, M.; Zeman, M.; Smets, A.H.M. Structural and Electrical Properties of Metastable Defects in Hydrogenated Amorphous Silicon. Phys. Rev. B 2015, 91, 245207. [Google Scholar] [CrossRef] [Green Version]
- Shah, A. Amorphous Silicon Solar Cells. In Solar Cells and Modules; Shah, A., Ed.; Springer Series in Materials Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 139–161. ISBN 978-3-030-46487-5. [Google Scholar]
- Qarony, W.; Hossain, M.I.; Hossain, M.K.; Uddin, M.J.; Haque, A.; Saad, A.R.; Tsang, Y.H. Efficient Amorphous Silicon Solar Cells: Characterization, Optimization, and Optical Loss Analysis. Results Phys. 2017, 7, 4287–4293. [Google Scholar] [CrossRef]
- Behrends, J. Spin-Dependent Transport and Recombination in Solar Cells Studied by Pulsed Electrically Detected Magnetic Resonance; Institut für Experimentalphysik der Freien Universität: Berlin, Germany, 2010; volume VIII, p. 181 S. [Google Scholar] [CrossRef]
- Chu, A.; Schlecker, B.; Lips, K.; Ortmanns, M.; Anders, J. An 8-Channel 13GHz ESR-on-a-Chip Injection-Locked Vco-Array Achieving 200μM-Concentration Sensitivity. In Proceedings of the 2018 IEEE International Solid—State Circuits Conference—(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 354–356. [Google Scholar]
- Djekic, D.; Häberle, M.; Mohamed, A.; Baumgärtner, L.; Anders, J. A 440-KOhm to 150-GOhm Tunable Transimpedance Amplifier Based on Multi-Element Pseudo-Resistors. In Proceedings of the ESSCIRC 2021—IEEE 47th European Solid State Circuits Conference (ESSCIRC), Grenoble, France, 13–22 September 2021; pp. 403–406. [Google Scholar]
- Kawachi, G.; Graeff, C.F.O.; Brandt, M.S.; Stutzmann, M. Saturation Measurements of Electrically Detected Magnetic Resonance in Hydrogenated Amorphous Silicon Based Thin-Film Transistors. Jpn. J. Appl. Phys. 1997, 36, 121. [Google Scholar] [CrossRef]
- Hoehne, F. Electrical Detection of Hyperfine Interactions in Silicon; Technische Universität: München, Germany, 2012. [Google Scholar]
- Anders, J. Fully-Integrated CMOS Probes for Magnetic Resonance Applications; EPFL: Lausanne, Switzerland, 2011. [Google Scholar]
- Gromov, I. Novel MM-Wave EPR Spectrometer ELEXSYS 7th Series: Design and Performance; 2015. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Paik, S.; McCamey, D.R.; Boehme, C. Modulation Frequency Dependence of Continuous-Wave Optically/Electrically Detected Magnetic Resonance. Phys. Rev. B 2012, 86, 115204. [Google Scholar] [CrossRef] [Green Version]
- Stoll, S.; Schweiger, A. EasySpin, a Comprehensive Software Package for Spectral Simulation and Analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef]
- Kaminski, A.; Marchand, J.J.; Laugier, A. I–V Methods to Extract Junction Parameters with Special Emphasis on Low Series Resistance. Solid-State Electron. 1999, 43, 741–745. [Google Scholar] [CrossRef]
- Fehr, M.; Schnegg, A.; Rech, B.; Lips, K.; Astakhov, O.; Finger, F.; Freysoldt, C.; Bittl, R.; Teutloff, C. Dangling Bonds in Amorphous Silicon Investigated by Multifrequency EPR. J. Non-Cryst. Solids 2012, 358, 2067–2070. [Google Scholar] [CrossRef] [Green Version]
- Dersch, H.; Schweitzer, L.; Stuke, J. Recombination Processes in a -Si:H: Spin-Dependent Photoconductivity. Phys. Rev. B 1983, 28, 4678–4684. [Google Scholar] [CrossRef]
- Lips, K.; Lerner, C.; Fuhs, W. Semiclassical Model of Electrically Detected Magnetic Resonance in Undoped A-Si:H. J. Non-Cryst. Solids 1996, 198–200, 267–270. [Google Scholar] [CrossRef]
- Davenport, K.; Trinh, C.T.; Hayward, M.; Lips, K.; Rogachev, A. Relaxation Processes in Silicon Heterojunction Solar Cells Probed via Noise Spectroscopy. Sci. Rep. 2021, 11, 13238. [Google Scholar] [CrossRef]
- Artzi, Y.; Twig, Y.; Blank, A. Induction-Detection Electron Spin Resonance with Spin Sensitivity of a Few Tens of Spins. Appl. Phys. Lett. 2015, 106, 084104. [Google Scholar] [CrossRef] [Green Version]
- Sherman, A.; Zgadzai, O.; Koren, B.; Peretz, I.; Laster, E.; Blank, A. Diamond-Based Microwave Quantum Amplifier. Sci. Adv. 2022, 8, eade6527. [Google Scholar] [CrossRef]
- Anders, J.; Lips, K. MR to Go. J. Magn. Reson. 2019, 306, 118–123. [Google Scholar] [CrossRef]
- Boehme, C.; Lips, K. A Pulsed EDMR Study of Hydrogenated Microcrystalline Silicon at Low Temperatures: A Pulsed EDMR Study of Hydrogenated Microcrystalline Silicon. Phys. Status Solidi (C) 2004, 1, 1255–1274. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segantini, M.; Marcozzi, G.; Djekic, D.; Chu, A.; Amkreutz, D.; Trinh, C.T.; Neubert, S.; Stannowski, B.; Jacob, K.; Rudolph, I.; et al. Electrically Detected Magnetic Resonance on a Chip (EDMRoC) for Analysis of Thin-Film Silicon Photovoltaics. Magnetochemistry 2023, 9, 183. https://doi.org/10.3390/magnetochemistry9070183
Segantini M, Marcozzi G, Djekic D, Chu A, Amkreutz D, Trinh CT, Neubert S, Stannowski B, Jacob K, Rudolph I, et al. Electrically Detected Magnetic Resonance on a Chip (EDMRoC) for Analysis of Thin-Film Silicon Photovoltaics. Magnetochemistry. 2023; 9(7):183. https://doi.org/10.3390/magnetochemistry9070183
Chicago/Turabian StyleSegantini, Michele, Gianluca Marcozzi, Denis Djekic, Anh Chu, Daniel Amkreutz, Cham Thi Trinh, Sebastian Neubert, Bernd Stannowski, Kerstin Jacob, Ivo Rudolph, and et al. 2023. "Electrically Detected Magnetic Resonance on a Chip (EDMRoC) for Analysis of Thin-Film Silicon Photovoltaics" Magnetochemistry 9, no. 7: 183. https://doi.org/10.3390/magnetochemistry9070183
APA StyleSegantini, M., Marcozzi, G., Djekic, D., Chu, A., Amkreutz, D., Trinh, C. T., Neubert, S., Stannowski, B., Jacob, K., Rudolph, I., McPeak, J. E., Anders, J., Naydenov, B., & Lips, K. (2023). Electrically Detected Magnetic Resonance on a Chip (EDMRoC) for Analysis of Thin-Film Silicon Photovoltaics. Magnetochemistry, 9(7), 183. https://doi.org/10.3390/magnetochemistry9070183