Magnetic, Optical, and Thermic Properties of SrLnCuSe3 (Ln = Dy, Ho, Er, Tm) Compounds
Abstract
:1. Introduction
2. Experimental Methods
2.1. Synthesis
2.2. Analysis Methods
3. Results and Discussion
3.1. The X-ray Powder Diffraction
3.2. Magnetic Measurements
3.3. The Optical Properties
3.4. Raman Spectrometry
3.5. Thermal Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strobel, S.; Schleid, T. Three Structure Types for Strontium Copper (I) Lanthanide(III) Selenides SrCuMSe3 (M = La, Gd, Lu). J. Alloys Compd. 2006, 418, 80–85. [Google Scholar] [CrossRef]
- Strobel, S.; Schleid, T. Quaternary strontium copper (I) lanthanoid (III) selenides with cerium and praseodymium: SrCuCeSe3 and SrCuPrSe3, unequal brother and sister. Z. Naturforsch. 2004, 59, 985–991. [Google Scholar] [CrossRef]
- Shahid, O.; Yadav, S.; Maity, D.; Deepa, M.; Niranjan, M.K.; Prakash, J. Synthesis, Crystal Structure, DFT, and Photovoltaic Studies of BaCeCuS3. New J. Chem. 2023, 47, 5378–5389. [Google Scholar] [CrossRef]
- Andreev, O.V.; Atuchin, V.V.; Aleksandrovsky, A.S.; Denisenko, Y.G.; Zakharov, B.A.; Tyutyunnik, A.P.; Habibullayev, N.N.; Velikanov, D.A.; Ulybin, D.A.; Shpindyuk, D.D. Synthesis, Structure, and Properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er). Crystals 2022, 12, 17. [Google Scholar] [CrossRef]
- Grigoriev, M.V.; Solovyov, L.A.; Ruseikina, A.V.; Aleksandrovsky, A.S.; Chernyshev, V.A.; Velikanov, D.A.; Garmonov, A.A.; Molokeev, M.S.; Oreshonkov, A.S.; Shestakov, N.P.; et al. Quaternary Selenides EuLnCuSe3: Synthesis, Structures, Properties and In Silico Studies. Int. J. Mol. Sci. 2022, 23, 1503. [Google Scholar] [CrossRef]
- Gulay, L.D.; Kaczorowski, D.; Pietraszko, A. Crystal structure and magnetic properties of YbCuPbSe3. J. Alloys Compd. 2006, 413, 26–28. [Google Scholar] [CrossRef]
- Ishtiyak, M.; Jana, S.; Karthikeyan, R.; Ramesh, M.; Tripathy, B.; Malladi, S.K.; Niranjan, M.K.; Prakash, J. Syntheses of Five New Layered Quaternary Chalcogenides SrScCuSe3, SrScCuTe3, BaScCuSe3, BaScCuTe3, and BaScAgTe3: Crystal Structures, Thermoelectric Properties, and Electronic Structures. Inorg. Chem. Front. 2021, 8, 4086–4101. [Google Scholar] [CrossRef]
- Mitchell, K.; Huang, F.Q.; McFarland, A.D.; Haynes, C.L.; Somers, R.C.; Van Duyne, R.P.; Ibers, J.A. The CsLnMSe3 semiconductors (Ln = rare-earth element, Y; M = Zn, Cd, Hg). Inorg. Chem. 2003, 42, 4109–4116. [Google Scholar] [CrossRef]
- Wakeshima, M.; Furuuchi, F.; Hinatsu, Y. Crystal Structures and Magnetic Properties of Novel Rare-Earth Copper Sulfides, EuRCuS3 (R = Y, Gd–Lu). J. Phys. Condens. Matter 2004, 16, 5503–5518. [Google Scholar] [CrossRef]
- Furuuchi, F.; Wakeshima, M.; Hinatsu, Y. Magnetic Properties and 151Eu Mössbauer Effects of Mixed Valence Europium Copper Sulfide, Eu2CuS3. J. Solid State Chem. 2004, 177, 3853–3858. [Google Scholar] [CrossRef]
- van den Eeckhout, K.; Smet, P.F.; Poelman, D. Persistent luminescence in Eu2+-doped compounds: A review. Materials 2010, 3, 2536–2566. [Google Scholar] [CrossRef] [Green Version]
- Ruseikina, A.V.; Grigoriev, M.V.; Solovyov, L.A.; Chernyshev, V.A.; Aleksandrovsky, A.S.; Krylov, A.S.; Krylova, S.N.; Shestakov, N.P.; Velikanov, D.A.; Garmonov, A.A.; et al. A Challenge toward Novel Quaternary Sulfides SrLnCuS3 (Ln = La, Nd, Tm): Unraveling Synthetic Pathways, Structures and Properties. Int. J. Mol. Sci. 2022, 23, 12438. [Google Scholar] [CrossRef]
- Acosta-Silva, Y.D.J.; Godínez, L.A.; Toledano-Ayala, M.; Lozada-Morales, R.; Zelaya-Angel, O.; Méndez-López, A. Study of the Effects of Er Doping on the Physical Properties of CdSe Thin Films. Magnetochemistry 2023, 9, 107. [Google Scholar] [CrossRef]
- Belkhiri, L.; Le Guennic, B.; Boucekkine, A. DFT Investigations of the Magnetic Properties of Actinide Complexes. Magnetochemistry 2019, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Kroumova, E.; Aroyo, M.I.; Perez-Mato, J.M.; Kirov, A.; Capillas, C.; Ivantchev, S.; Wondraschek, H. Bilbao Crystallographic Server: Useful databases and tools for phase-transition studies. Phase Transit. 2003, 76, 155–170. [Google Scholar] [CrossRef]
- Azarapin, N.O.; Aleksandrovsky, A.S.; Atuchin, V.V.; Gavrilova, T.A.; Krylov, A.S.; Molokeev, M.S.; Mukherjee, S.; Oreshonkov, A.S.; Andreev, O.V. Synthesis, structural and spectroscopic properties of orthorhombic compounds BaLnCuS3 (Ln = Pr, Sm). J. Alloys Compd. 2019, 832, 153134. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Andreev, O.V.; Galenko, E.O.; Koltsov, S.I. Trends in Thermodynamic Parameters of Phase Transitions of Lanthanide Sulfides SrLnCuS3 (Ln = La–Lu). J. Therm. Anal. Calorim. 2016, 128, 993–999. [Google Scholar] [CrossRef]
- Shtykova, M.A.; Molokeev, M.S.; Zakharov, B.A.; Selezneva, N.V.; Aleksandrovsky, A.S.; Bubnova, R.S.; Kamaev, D.N.; Gubin, A.A.; Habibullayev, N.N.; Matigorov, A.V.; et al. Structure and Properties of Phases in the Cu2-XSe-Sb2Se3 System. The Cu2-XSe-Sb2Se3 Phase Diagram. J. Alloys Compd. 2022, 906, 164384. [Google Scholar] [CrossRef]
- Strobel, S.; Schleid, T. Quaternäre Caesium-Kupfer(I)-Lanthanoid(III)-Selenide vom Typ CsCu3M2Se5 (M = Sm, Gd–Lu). Z. Für Anorg. Und Allg. Chem. 2004, 630, 706–711. [Google Scholar] [CrossRef]
- Lee, H.N.; Zakharov, D.N.; Senz, S.; Pignolet, A.; Hesse, D. Epitaxial Growth of Ferroelectric SrBi2Ta2O9 Thin Films of Mixed (100) and (116) Orientation on SrLaGaO4(110). Appl. Phys. Lett. 2001, 79, 2961–2963. [Google Scholar] [CrossRef]
- Bruker AXS TOPAS V4: General Profile And Structure Analysis Software for Powder Diffraction Data—User’s Manual; Bruker AXS: Karlsruhe, Germany, 2008.
- Pomelova, T.A.; Delacotte, C.; Kuratieva, N.V.; Lemoine, P.; Cordier, S.; Park, S.; Guizouarn, T.; Pelletier, V.; Gautier, R.; Naumov, N.G. Cs2Ln3CuS8 (Ln = La–Nd, Sm–Tb): Synthesis, Crystal Structure, and Magnetic and Optical Properties. Inorg. Chem. 2023, 62, 6586–6597. [Google Scholar] [CrossRef]
- Park, S.C.; Kuratieva, N.V.; Pomelova, T.A.; Naumov, N.G. Synthesis and Crystal Structure of CsLnZnS3 (Ln = Gd, Dy). J. Struct. Chem. 2022, 63, 868–873. [Google Scholar] [CrossRef]
- Bruker. APEX2 (Version 2012.2-0), SAINT (Version 8.18c), and SADABS (Version 2008/1); Bruker AXS Inc.: Madison, WI, USA, 2012. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A Short History of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Fomenko, I.S.; Afewerki, M.; Gongola, M.I.; Vasilyev, E.S.; Shul’pina, L.S.; Ikonnikov, N.S.; Shul’pin, G.B.; Samsonenko, D.G.; Yanshole, V.V.; Nadolinny, V.A.; et al. Novel Copper(II) Complexes with Dipinodiazafluorene Ligands: Synthesis, Structure, Magnetic and Catalytic Properties. Molecules 2022, 27, 4072. [Google Scholar] [CrossRef]
- Flakina, A.M.; Zhilyaeva, E.I.; Shilov, G.V.; Faraonov, M.A.; Torunova, S.A.; Konarev, D.V. Layered Organic Conductors Based on BEDT-TTF and Ho, Dy, Tb Chlorides. Magnetochemistry 2022, 8, 142. [Google Scholar] [CrossRef]
- NETZSCH Proteus 6. Thermic Analyses—User’s and Software Manuals; NETZSCH: Selb, Germany, 2012. [Google Scholar]
- Shtykova, M.A.; Vorob’eva, V.P.; Fedorov, P.P.; Molokeev, M.S.; Aleksandrovsky, A.S.; Elyshev, A.V.; Palamarchuk, I.V.; Yurev, I.O.; Ivanov, A.V.; Habibullayev, N.N.; et al. Features of phase equilibria and properties of phases in the Sb-Sm-Se system. J. Solid State Chem. 2022, 316, 123573. [Google Scholar] [CrossRef]
- Shepilov, M.P.; Dymshits, O.S.; Zhilin, A.A.; Zapalova, S.S. On the Measurements of Scattering Coefficient of Nanostructured Glass-Ceramics by a Serial Spectrophotometer. Measurement 2017, 95, 306–316. [Google Scholar] [CrossRef]
- Lavrent’ev, Y.G.; Karmanov, N.S.; Usova, L.V. Electron Probe Microanalysis of Minerals: Microanalyzer or Scanning Electron Microscope. Russ. Geol. Geophys. 2015, 56, 1154–1161. [Google Scholar] [CrossRef]
- Zvezdin, A.K.; Matveev, V.M.; Mukhin, A.A.; Popov, A.I. Rare Earth Ions in Magnetically Ordered Crystals; Nauka: Moscow, Russia, 1985. [Google Scholar]
- Abulkhaev, M.U.; Molokeev, M.S.; Oreshonkov, A.S.; Aleksandrovsky, A.S.; Kertman, A.V.; Kamaev, D.N.; Trofimova, O.V.; Elyshev, A.V.; Andreev, O.V. Properties of GdSF and phase diagram of the GdF3-Gd2S3 system. J. Solid State Chem. 2023, 322, 123991. [Google Scholar] [CrossRef]
- Andreev, P.O.; Polkovnikov, A.A.; Denisenko, Y.G.; Andreev, O.V.; Burkhanova, T.M.; Bobylevb, A.N.; Pimneva, L.A. Temperatures and Enthalpies of Melting of Ln2S3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) Compounds. J. Therm. Anal. Calorim. 2018, 131, 1545–1551. [Google Scholar] [CrossRef]
- Thompson, J.O.; Anderson, M.D.; Ngai, T.; Allen, T.; Johnson, D.C. Nucleation and growth kinetics of co-deposited copper and selenium precursors to form metastable copper selenides. J. Alloys Compd. 2011, 509, 9631–9637. [Google Scholar] [CrossRef]
Compound | ST | SG | a (Å) | b (Å) | c (Å) | Ref. |
---|---|---|---|---|---|---|
SrLaCuSe3 | PbCuLaS3 | Pnma | 8.4882 (5) | 4.2304 (3) | 16.7123 (9) | [1] |
SrCeCuSe3 | 8.4613 (5) | 4.2169 (2) | 16.6342 (9) | [2] | ||
SrPrCuSe3 | Eu2CuS3 | 10,9732 (6) | 4.1651 (2) | 13.4964 (8) | [2] | |
SrGdCuSe3 | 10.6810 (7) | 4.1079 (3) | 13.4921 (8) | [1] | ||
SrLuCuSe3 | KCuZrS3 | Cmcm | 10.4019 (7) | 4.0498 (3) | 13.4567 (8) | [1] |
Compound | Tc (K) | Type | Ref. |
---|---|---|---|
EuTbCuSe3 | 6.0 | ferri | [5] |
EuDyCuSe3 | 5.5 | ferri | [5] |
EuHoCuSe3 | 6.2 | ferri | [5] |
EuErCuSe3 | 4.7 | ferri | [4] |
EuTmCuSe3 | 4.5 | ferri | [5] |
EuEuCuS3 | 3.4 | ferro | [10] |
EuGdCuS3 | 5.4 | ferri | [9] |
EuTbCuS3 | 4.9 | ferri | [9] |
EuDyCuS3 | 4.6 | ferri | [9] |
EuTmCuS3 | 4.8 | ferri | [9] |
SrLnCuSe3 | ST | SG | a, (Å) | b, (Å) | c, (Å) | V (Å3) | RB, % |
---|---|---|---|---|---|---|---|
SrDyCuSe3 | Eu2CuS3 | Pnma | 10.5644 (5) | 4.0871 (3) | 13.4758(6) | 581.86 (5) | 5.10 |
SrHoCuSe3 | 10.5335 (4) | 4.08358 (17) | 13.4749 (5) | 579.61 (4) | 5.90 | ||
SrErCuSe3 | KZrCuS3 | Cmcm | 4.06942 (6) | 13.4761 (2) | 10.46463 (15) | 573.881 (15) | 2.80 |
SrTmCuSe3 | 4.06935 (6) | 13.4758 (2) | 10.46441 (15) | 573.844 (15) | 2.56 | ||
SrTmCuSe3 (X-ray) | 4.0631 (4) | 13.4544 (14) | 10.4430 (10) | 570.88 (10) |
Empirical formula | SrTmCuSe3 |
Formula weight | 556.97 |
Temperature | 293(2) K |
Wavelength | 0.71073 Å |
Crystal system | Orthorhombic |
Space group | Cmcm |
Unit cell parameters | a = 4.0631 (4) Å |
b = 13.4544 (14) Å | |
c = 10.4430 (10) Å | |
Volume | 570.88 (10) Å3 |
Z | 4 |
Density (calculated) | 6.480 г/CM3 |
Absorption coefficient | 47.372 MM−1 |
F(000) | 952 |
Crystal size | 0.170 × 0.100 × 0.070 MM3 |
Theta range for data collection | 3.028–30.437° |
Index ranges | −5 ≤ h ≤ 3, −18 ≤ k ≤ 18, −12 ≤ l ≤ 14 |
Reflections collected | 2583 |
Independent reflections | 508 [R(int) = 0.0366] |
Completeness to theta = 25.25° | 99.7% |
Absorption correction | Semi-empirical from equivalents |
Refinement method | Full-matrix MLS on F2 |
Data/restraints/parameters | 508/0/24 |
Goodness-of-fit on F2 | 1.138 |
Final R indices [I > 2sigma(I)] | R1 = 0.0188, wR2 = 0.0432 |
R indices (all data) | R1 = 0.0211, wR2 = 0.0438 |
Largest diff. peak and hole | 1.716 and −1.641 e/Å3 |
Atom | Wyckoff | x | y | z | Occup. | Ueq (Ų) |
---|---|---|---|---|---|---|
Sr (1) | 4c | 0 | 0.7508 (1) | 0.25 | 1 | 0.012 (1) |
Cu (1) | 4c | 0 | 0.4710 (1) | 0.25 | 1 | 0.012 (1) |
Tm (1) | 4a | 0 | 0 | 0 | 1 | 0.006 (1) |
Se (1) | 4c | 0 | 0.0780 (1) | 0.25 | 1 | 0.006 (1) |
Se (2) | 8f | 0 | 0.3613 (1) | 0.0626 (1) | 1 | 0.007 (1) |
Bond | Bond Length, Å |
---|---|
Cu-Se | 2.4513(9) × 2 2.4899(8) × 2 |
Mean | 24706 |
Tm-Se | 2.8139(4) 2.8140(4) 2.8351(4) × 2 2.8350(4) × 2 |
Mean | 2828 |
Sr-Se | 3.0870(9) × 2 3.1885(6) × 4 |
Mean | 3265 |
Tm…Tm | In layer: 4.063 × 2 5.221 × 2 6.616 × 4 Between layers: 7.027 × 4 |
SrDyCuSe3 | SrHoCuSe3 | SrErCuSe3 | SrTmCuSe3 | ||
---|---|---|---|---|---|
C (emuK/mol) | 13.36 | 14.13 | 11.21 | 7.02 | |
θ (K) | −4.3 | −4.7 | −5.0 | −4.3 | |
μeff ≈ (8C)1/2 (μB) | Exper. | 10.34 | 10.63 | 9.47 | 7.49 |
Theoretical (Ln3+) | 10.63 | 10.60 | 9.59 | 7.57 | |
Empirical (Ln3+) | 10.50 | 10.50 | 9.50 | 7.30 |
SrLnCuSe3 | ST | SG | Direct Bandgap, (eV) | Larger Indirect Bandgap, (eV) | Lower Indirect Bandgap, (eV) | Impurity Content (mol. %) |
---|---|---|---|---|---|---|
SrDyCuSe3 | Eu2CuS3 | Pnma | 2.14 | 1.41 | 0.634 | 2.3-SrDySe2 2.7-Dy2Si2O7 |
SrHoCuSe3 | 2.22 | 1.45 | 0.81 | 4.1-Ho2SeO2 1.4-SrHoSe2 | ||
SrErCuSe3 | KZrCuS3 | Cmcm | 2.3 | 1.94 | 1.17 | 1.1-SrErSe2 2.6-Er2Si2O7 |
SrTmCuSe3 | 2.33 | 2.0 | 1.19 | 1.4-Tm2SeO2 |
Compound | Phase Equilibria | |||||
---|---|---|---|---|---|---|
α⇆β | β⇆γ | Melting | ||||
T, K | ΔH, J/g | T, K | ΔH, J/g | T, K | ΔH, J/g | |
SrDyCuSe3 | 1550 | 22.3 | 1573 | 3.6 | 1606 | 27.2 |
SrHoCuSe3 | 1555 | 42.0 | 1572 | 7.4 | 1584 | 14.2 |
SrErCuSe3 | 1569 | 31.2 | 1599 | 6.0 | 1634 | 38.1 |
SrTmCuSe3 | 1578 | 74.9 | 1600 | 14.8 | 1620 | - |
Compound | Sr (mass %) | Ln (mass %) | Cu (mass %) | Se (mass %) | ||||
---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | |
SrDyCuSe3 | 15.91 | 15.3 ± 0.3 | 29.52 | 31.4 ± 0.4 | 11.53 | 10.5 ± 0.5 | 43.0 | 42.8 ± 0.5 |
SrHoCuSe3 | 15.84 | 14.9 ± 0.5 | 29.82 | 30.5 ± 0.2 | 11.48 | 12.3 ± 0.2 | 42.81 | 42.3 ± 0.3 |
SrErCuSe3 | 15.78 | 15.2 ± 0.5 | 30.13 | 31.9 ± 0.5 | 11.44 | 11.0 ± 0.6 | 42.63 | 41.8 ± 0.4 |
SrTmCuSe3 | 15.73 | 16.6 ± 0.4 | 30.32 | 29.0 ± 0.2 | 11.40 | 11.5 ± 0.2 | 42.50 | 42.8 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibullayev, N.N.; Naumov, N.G.; Lavrov, A.N.; Kuratieva, N.V.; Aleksandrovsky, A.S.; Oreshonkov, A.S.; Molokeev, M.S.; Palamarchuk, I.V.; Yurev, I.O.; Denisenko, Y.G.; et al. Magnetic, Optical, and Thermic Properties of SrLnCuSe3 (Ln = Dy, Ho, Er, Tm) Compounds. Magnetochemistry 2023, 9, 194. https://doi.org/10.3390/magnetochemistry9080194
Habibullayev NN, Naumov NG, Lavrov AN, Kuratieva NV, Aleksandrovsky AS, Oreshonkov AS, Molokeev MS, Palamarchuk IV, Yurev IO, Denisenko YG, et al. Magnetic, Optical, and Thermic Properties of SrLnCuSe3 (Ln = Dy, Ho, Er, Tm) Compounds. Magnetochemistry. 2023; 9(8):194. https://doi.org/10.3390/magnetochemistry9080194
Chicago/Turabian StyleHabibullayev, Navruzbek N., Nikolay G. Naumov, Alexander N. Lavrov, Natalia V. Kuratieva, Aleksandr S. Aleksandrovsky, Aleksandr S. Oreshonkov, Maxim S. Molokeev, Irina V. Palamarchuk, Ilya O. Yurev, Yuriy G. Denisenko, and et al. 2023. "Magnetic, Optical, and Thermic Properties of SrLnCuSe3 (Ln = Dy, Ho, Er, Tm) Compounds" Magnetochemistry 9, no. 8: 194. https://doi.org/10.3390/magnetochemistry9080194
APA StyleHabibullayev, N. N., Naumov, N. G., Lavrov, A. N., Kuratieva, N. V., Aleksandrovsky, A. S., Oreshonkov, A. S., Molokeev, M. S., Palamarchuk, I. V., Yurev, I. O., Denisenko, Y. G., Andreev, O. V., & Zakharova, A. D. (2023). Magnetic, Optical, and Thermic Properties of SrLnCuSe3 (Ln = Dy, Ho, Er, Tm) Compounds. Magnetochemistry, 9(8), 194. https://doi.org/10.3390/magnetochemistry9080194