A Freestanding Multifunctional Interlayer Based on Fe/Zn Single Atoms Implanted on a Carbon Nanofiber Membrane for High-Performance Li-S Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Binary Zeolitic Imidazolate Frameworks (FeZn-ZIF)
2.2. Synthesis of FeZn-PCNF Membrane
2.3. Material Characterizations
2.4. Adsorption Experiments
2.5. Symmetrical Cell Measurements
2.6. Li-S Cell Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shao, Q.; Zhu, S.; Chen, J. A Review on Lithium-Sulfur Batteries: Challenge, Development, and Perspective. Nano Res. 2023, 16, 8097–8138. [Google Scholar] [CrossRef]
- Yin, Y.-X.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angew. Chem. Int. Ed. 2013, 52, 13186–13200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, B.; Wu, M. Research Progress in Graphene as Sulfur Hosts in Lithium-Sulfur Batteries. Acta Phys. Chim. Sin. 2022, 38, 2101001. [Google Scholar] [CrossRef]
- Mccreary, C.; An, Y.; Kim, S.U.; Hwa, Y. A Perspective on Li/S Battery Design: Modeling and Development Approaches. Batteries 2021, 7, 82. [Google Scholar] [CrossRef]
- He, J.; Manthiram, A. A Review on the Status and Challenges of Electrocatalysts in Lithium-Sulfur Batteries. Energy Storage Mater. 2019, 20, 55–70. [Google Scholar] [CrossRef]
- Zhuang, Z.; Kang, Q.; Wang, D.; Li, Y. Single-Atom Catalysis Enables Long-Life, High-Energy Lithium-Sulfur Batteries. Nano Res. 2020, 13, 1856–1866. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Rechargeable Lithium-Sulfur Batteries. Chem. Rev. 2014, 114, 11751–11787. [Google Scholar] [CrossRef]
- Wang, P.; Xi, B.; Huang, M.; Chen, W.; Feng, J.; Xiong, S. Emerging Catalysts to Promote Kinetics of Lithium-Sulfur Batteries. Adv. Energy Mater. 2021, 11, 2002893. [Google Scholar] [CrossRef]
- Lim, W.-G.; Kim, S.; Jo, C.; Lee, J. A Comprehensive Review of Materials with Catalytic Effects in Li-S Batteries: Enhanced Redox Kinetics. Angew. Chem. Int. Ed. 2019, 58, 18746–18757. [Google Scholar] [CrossRef]
- Li, F.; Liu, Q.H.; Hu, J.W.; Feng, Y.Z.; He, P.B.; Ma, J.M. Recent Advances in Cathode Materials for Rechargeable Lithium-Sulfur Batteries. Nanoscale 2019, 11, 15418–15439. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, C.; Yang, J.; Zhao, C.; Ling, Z.; Qiu, J. Nitrogen-Doped Tubular/Porous Carbon Channels Implanted on Graphene Frameworks for Multiple Confinement of Sulfur and Polysulfides. J. Mater. Chem. A 2017, 5, 10380–10386. [Google Scholar] [CrossRef]
- Hao, H.; Hutter, T.; Boyce, B.L.; Watt, J.; Liu, P.; Mitlin, D. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries. Chem. Rev. 2022, 122, 8053–8125. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Li, M.; Li, X.; Xiao, W.; Chen, Z.; Lu, J. Interlayer Material Selection for Lithium-Sulfur Batteries. Joule 2019, 3, 361–386. [Google Scholar] [CrossRef]
- Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.-M.; Cui, Y. The Synergetic Effect of Lithium Polysulfide and Lithium Nitrate to Prevent Lithium Dendrite Growth. Nat. Commun. 2015, 6, 7436. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, H.; Wu, J.; Xiao, Y.; Deng, Y. Dual-Functional Electrolyte Additive for Lithium-Sulfur Batteries Limits Lithium Dendrite Formation and Increases Sulfur Utilization Rate. Batteries 2023, 9, 444. [Google Scholar] [CrossRef]
- Long, H.-L.; Peng, H.-J. Encapsulating-Polysulfide Electrolyte: An Answer to Practical Lithium-Sulfur Batteries. Chin. Chem. Lett. 2023, 34, 108033. [Google Scholar] [CrossRef]
- Ye, H.; Li, Y. Towards Practical Lean-Electrolyte Li–S Batteries: Highly Solvating Electrolytes or Sparingly Solvating Electrolytes? Nano Res. Energy 2022, 1, 9120012. [Google Scholar] [CrossRef]
- Castillo, J.; Soria-Fernández, A.; Rodriguez-Peña, S.; Rikarte, J.; Robles-Fernández, A.; Aldalur, I.; Cid, R.; González-Marcos, J.A.; Carrasco, J.; Armand, M.; et al. Graphene-Based Sulfur Cathodes and Dual Salt-Based Sparingly Solvating Electrolytes: A Perfect Marriage for High Performing, Safe, and Long Cycle Life Lithium-Sulfur Prototype Batteries. Adv. Energy Mater. 2023, 2302378. [Google Scholar] [CrossRef]
- Huang, J.Q.; Zhang, B.A.; Xu, Z.L.; Abouali, S.; Garakani, M.A.; Huang, J.Q.; Kim, J.K. Novel Interlayer Made from Fe3C/Carbon Nanofiber Webs for High Performance Lithium-Sulfur Batteries. J. Power Sources 2015, 285, 43–50. [Google Scholar] [CrossRef]
- Tu, S.; Chen, X.; Zhao, X.; Cheng, M.; Xiong, P.; He, Y.; Zhang, Q.; Xu, Y. A Polysulfide-Immobilizing Polymer Retards the Shuttling of Polysulfide Intermediates in Lithium–Sulfur Batteries. Adv. Mater. 2018, 30, 1804581. [Google Scholar] [CrossRef]
- Hu, F.; Peng, H.; Zhang, T.; Shao, W.; Liu, S.; Wang, J.; Wang, C.; Jian, X. A Lightweight Nitrogen/Oxygen Dual-Doping Carbon Nanofiber Interlayer with Meso-/Micropores for High-Performance Lithium-Sulfur Batteries. J. Energy Chem. 2021, 58, 115–123. [Google Scholar] [CrossRef]
- Saroha, R.; Oh, J.H.; Seon, Y.H.; Kang, Y.C.; Lee, J.S.; Jeong, D.W.; Cho, J.S. Freestanding Interlayers for Li-S Batteries: Design and Synthesis of Hierarchically Porous N-Doped C Nanofibers Comprising Vanadium Nitride Quantum Dots and MOF-Derived Hollow N-Doped C Nanocages. J. Mater. Chem. A 2021, 9, 11651–11664. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, C.; Zhao, C.; Song, X.; Han, X.; Liu, S.; Hao, C.; Qiu, J. Cobalt-Embedded Nitrogen-Doped Hollow Carbon Nanorods for Synergistically Immobilizing the Discharge Products in Lithium–Sulfur Battery. Energy Storage Mater. 2016, 5, 223–229. [Google Scholar] [CrossRef]
- Tsao, Y.; Gong, H.; Chen, S.; Chen, G.; Liu, Y.; Gao, T.Z.; Cui, Y.; Bao, Z. A Nickel-Decorated Carbon Flower/Sulfur Cathode for Lean-Electrolyte Lithium–Sulfur Batteries. Adv. Energy Mater. 2021, 11, 2101449. [Google Scholar] [CrossRef]
- Salhabi, E.H.M.; Zhao, J.; Wang, J.; Yang, M.; Wang, B.; Wang, D. Hollow Multi-Shelled Structural TiO2-X with Multiple Spatial Confinement for Long-Life Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2019, 58, 9078–9082. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Rao, D.; Zhou, J.; Wu, G.; Wang, G.; Zhu, Z.; Han, X.; Sun, R.; Li, H.; Wang, C.; et al. Amorphization-Induced Surface Electronic States Modulation of Cobaltous Oxide Nanosheets for Lithium-Sulfur Batteries. Nat. Commun. 2021, 12, 3102. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, L.; Lou, X.W. Embedding CoS2 Nanoparticles in N-Doped Carbon Nanotube Hollow Frameworks for Enhanced Lithium Storage Properties. Nano Res. 2017, 10, 4298–4304. [Google Scholar] [CrossRef]
- He, J.; Chen, Y.; Manthiram, A. Metal Sulfide-Decorated Carbon Sponge as a Highly Efficient Electrocatalyst and Absorbant for Polysulfide in High-Loading Li2S Batteries. Adv. Energy Mater. 2019, 9, 1900584. [Google Scholar] [CrossRef]
- Lim, W.-G.; Jo, C.; Cho, A.; Hwang, J.; Kim, S.; Han, J.W.; Lee, J. Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation. Adv. Mater. 2019, 31, 1806547. [Google Scholar] [CrossRef]
- Li, R.; Peng, H.; Wu, Q.; Zhou, X.; He, J.; Shen, H.; Yang, M.; Li, C. Sandwich-Like Catalyst-Carbon-Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2020, 59, 12129–12138. [Google Scholar] [CrossRef]
- Yue, X.-Y.; Zhang, J.; Bao, J.; Bai, Y.-F.; Li, X.-L.; Yang, S.-Y.; Fu, Z.-W.; Wang, Z.-H.; Zhou, Y.-N. Sputtered MoN Nanolayer as a Multifunctional Polysulfide Catalyst for High-Performance Lithium–Sulfur Batteries. eScience 2022, 2, 329–338. [Google Scholar] [CrossRef]
- Shi, K.; Sun, Y.; Xiong, Z.; Li, J.; Nan, H.; Lin, Y.; Wei, Z.; Liu, Q. Achieving Balanced Behavior between Polysulfides Adsorption and Catalytic Conversion from Heterostructure Fe3C-Fe3P Promotor for High-Performance Lithium-Sulfur Batteries. Chem. Eng. J. 2023, 460, 141794. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, J.; Li, Y.; Pan, Y.; Dong, Z.; Chen, B.; Guo, S.; Yuan, W.; Fang, H.; Hu, H.; et al. Propelling Polysulfide Redox by Fe3C-FeN Heterostructure@Nitrogen-Doped Carbon Framework Towards High-Efficiency Li-S Batteries. J. Energy Chem. 2023, 78, 105–114. [Google Scholar] [CrossRef]
- Fang, L.Z.; Feng, Z.E.; Cheng, L.; Winans, R.E.; Li, T. Design Principles of Single Atoms on Carbons for Lithium-Sulfur Batteries. Small Methods 2020, 4, 2000315. [Google Scholar] [CrossRef]
- Xiao, R.; Chen, K.; Zhang, X.; Yang, Z.; Hu, G.; Sun, Z.; Cheng, H.-M.; Li, F. Single-Atom Catalysts for Metal-Sulfur Batteries: Current Progress and Future Perspectives. J. Energy Chem. 2021, 54, 452–466. [Google Scholar] [CrossRef]
- Song, K.; Feng, Y.; Zhou, X.; Qin, T.; Zou, X.; Qi, Y.; Chen, Z.; Rao, J.; Wang, Z.; Yue, N.; et al. Exploiting the Trade-Offs of Electron Transfer in Mof-Derived Single Zn/Co Atomic Couples for Performance-Enhanced Zinc-Air Battery. Appl. Catal. B-Environ. 2022, 316, 121591. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Y.; Chen, Y.; Fan, T.; Li, Y. Double-Shelled Zn–Co Single-Atoms Enable Enhanced Conversion Kinetics in Lithium–Sulfur Batteries. J. Mater. Chem. A 2023, 11, 12025–12033. [Google Scholar] [CrossRef]
- Zhou, G.; Zhao, S.; Wang, T.; Yang, S.-Z.; Johannessen, B.; Chen, H.; Liu, C.; Ye, Y.; Wu, Y.; Peng, Y.; et al. Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li-S Batteries. Nano Lett. 2020, 20, 1252–1261. [Google Scholar] [CrossRef]
- Wang, C.; Song, H.; Yu, C.; Ullah, Z.; Guan, Z.; Chu, R.; Zhang, Y.; Zhao, L.; Li, Q.; Liu, L. Iron Single-Atom Catalyst Anchored on Nitrogen-Rich Mof-Derived Carbon Nanocage to Accelerate Polysulfide Redox Conversion for Lithium Sulfur Batteries. J. Mater. Chem. A 2020, 8, 3421–3430. [Google Scholar] [CrossRef]
- Yang, J.-L.; Yang, P.; Cai, D.-Q.; Wang, Z.; Fan, H.J. Atomically Dispersed Fe–N4 and Ni–N4 Independent Sites Enable Bidirectional Sulfur Redox Electrocatalysis. Nano Lett. 2023, 23, 4000–4007. [Google Scholar] [CrossRef]
- Zhang, H.; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; Qiao, Z.; Xie, X.; Wang, C.; Su, D.; et al. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. J. Am. Chem. Soc. 2017, 139, 14143–14149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yu, C.; Ling, Z.; Yu, J.; Li, S.; Zhao, C.; Huang, H.; Qiu, J. A Recyclable Route to Produce Biochar with a Tailored Structure and Surface Chemistry for Enhanced Charge Storage. Green Chem. 2019, 21, 2095–2103. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, F.; Xiang, Z.; Shen, Z.; Yun, J.; Cao, D. Zif-Derived in Situ Nitrogen-Doped Porous Carbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Energy Environ. Sci. 2014, 7, 442–450. [Google Scholar] [CrossRef]
- Zou, J.; Dong, H.; Wu, H.; Huang, J.; Zeng, X.; Dou, Y.; Yao, Y.; Li, Z. Laser-Induced Rapid Construction of Co/N-Doped Honeycomb-Like Carbon Networks as Oxygen Electrocatalyst Used in Zinc-Air Batteries. Carbon 2022, 200, 462–471. [Google Scholar] [CrossRef]
- Wang, F.; Liao, X.; Wang, H.; Zhao, Y.; Mao, J.; Truhlar, D.G. Bioinspired Mechanically Interlocking Holey Graphene@SiO2 Anode. Interdiscip. Mater. 2022, 1, 517–525. [Google Scholar] [CrossRef]
- Sun, W.; Liu, S.; Li, Y.; Wang, D.; Guo, Q.; Hong, X.; Xie, K.; Ma, Z.; Zheng, C.; Xiong, S. Monodispersed FeS2 Electrocatalyst Anchored to Nitrogen-Doped Carbon Host for Lithium–Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2205471. [Google Scholar] [CrossRef]
- Han, J.; Meng, X.; Lu, L.; Bian, J.; Li, Z.; Sun, C. Single-Atom Fe-Nx-C as an Efficient Electrocatalyst for Zinc–Air Batteries. Adv. Funct. Mater. 2019, 29, 1808872. [Google Scholar] [CrossRef]
- Paul, R.; Zhai, Q.; Roy, A.K.; Dai, L. Charge Transfer of Carbon Nanomaterials for Efficient Metal-Free Electrocatalysis. Interdiscip. Mater. 2022, 1, 28–50. [Google Scholar] [CrossRef]
- Peng, H.-J.; Hou, T.-Z.; Zhang, Q.; Huang, J.-Q.; Cheng, X.-B.; Guo, M.-Q.; Yuan, Z.; He, L.-Y.; Wei, F. Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfur-Containing Guest for Highly Stable Lithium-Sulfur Batteries: Mechanistic Insight into Capacity Degradation. Adv. Mater. Interfaces 2014, 1, 1400227. [Google Scholar] [CrossRef]
- Wang, Y.; Adekoya, D.; Sun, J.; Tang, T.; Qiu, H.; Xu, L.; Zhang, S.; Hou, Y. Manipulation of Edge-Site Fe-N2 Moiety on Holey Fe, N Codoped Graphene to Promote the Cycle Stability and Rate Capacity of Li-S Batteries. Adv. Funct. Mater. 2019, 29, 1807485. [Google Scholar] [CrossRef]
- Li, Y.; Chen, G.; Mou, J.; Liu, Y.; Xue, S.; Tan, T.; Zhong, W.; Deng, Q.; Li, T.; Hu, J.; et al. Cobalt Single Atoms Supported on N-Doped Carbon as an Active and Resilient Sulfur Host for Lithium-Sulfur Batteries. Energy Storage Mater. 2020, 28, 196–204. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Ahn, H.; Kim, O.; Park, M.J. Synthesis of Three-Dimensionally Interconnected Sulfur-Rich Polymers for Cathode Materials of High-Rate Lithium–Sulfur Batteries. Nat. Commun. 2015, 6, 7278. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Pan, H.; Chen, J.; Meng, X.; Wang, R. Separator Modified by Cobalt-Embedded Carbon Nanosheets Enabling Chemisorption and Catalytic Effects of Polysulfides for High-Energy-Density Lithium-Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1901609. [Google Scholar] [CrossRef]
- Huang, X.; Tang, J.; Luo, B.; Knibbe, R.; Lin, T.; Hu, H.; Rana, M.; Hu, Y.; Zhu, X.; Gu, Q.; et al. Sandwich-Like Ultrathin TiS2 Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithium-Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1901872. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, P.; Li, H.; Gao, T.; Zhou, L.; Zhang, Y.; Xiao, N.; Xia, Z.; Wang, L.; Zhang, Q.; et al. A Freestanding Flexible Single-Atom Cobalt-Based Multifunctional Interlayer toward Reversible and Durable Lithium-Sulfur Batteries. Small Methods 2020, 4, 1900701. [Google Scholar] [CrossRef]
- Mu, J.; Zhang, M.; Li, Y.; Dong, Z.; Pan, Y.; Chen, B.; He, Z.; Fang, H.; Kong, S.; Gu, X.; et al. Laser Irradiation Constructing All-in-One Defective Graphene-Polyimide Separator for Effective Restraint of Lithium Dendrites and Shuttle Effect. Nano Res. 2023, 16, 12304–12314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Kong, S.; Chen, B.; Wu, M. A Freestanding Multifunctional Interlayer Based on Fe/Zn Single Atoms Implanted on a Carbon Nanofiber Membrane for High-Performance Li-S Batteries. Batteries 2024, 10, 15. https://doi.org/10.3390/batteries10010015
Zhang M, Kong S, Chen B, Wu M. A Freestanding Multifunctional Interlayer Based on Fe/Zn Single Atoms Implanted on a Carbon Nanofiber Membrane for High-Performance Li-S Batteries. Batteries. 2024; 10(1):15. https://doi.org/10.3390/batteries10010015
Chicago/Turabian StyleZhang, Mengdi, Shuoshuo Kong, Bei Chen, and Mingbo Wu. 2024. "A Freestanding Multifunctional Interlayer Based on Fe/Zn Single Atoms Implanted on a Carbon Nanofiber Membrane for High-Performance Li-S Batteries" Batteries 10, no. 1: 15. https://doi.org/10.3390/batteries10010015
APA StyleZhang, M., Kong, S., Chen, B., & Wu, M. (2024). A Freestanding Multifunctional Interlayer Based on Fe/Zn Single Atoms Implanted on a Carbon Nanofiber Membrane for High-Performance Li-S Batteries. Batteries, 10(1), 15. https://doi.org/10.3390/batteries10010015