Charging Stations for Large-Scale Deployment of Electric Vehicles
Abstract
:1. Introduction
2. Technologies for Charging Stations
2.1. Definitions and Nomenclature
2.2. Battery Electric Vehicle Recharging Topologies
2.3. EV Charging Topologies
2.4. Different Levels of Charging Point
3. France, the Country of EVs?
Distributions and Counting
4. What Is the State of Charging Stations in Europe and Worldwide?
4.1. The Situation in Europe
4.2. The Situation in the World
4.3. Differences between France and Other Countries
5. Issues, Challenges and the Future of Charging Stations and EVs
5.1. Politics of Ecological Transition and the Disappearance of Thermal Vehicles
5.2. New Technologies?
5.3. Estimations and Extrapolation
6. Discussion, Limits and Conclusions
France | ||||||
Forecasts (year) | 2022 | 2030 | ||||
Sources | IAE [38] | Statistica [30] | AVERE [43] | IAE [38] | AVERE [43] | Extrapolation data |
Estimated number of public charging stations | 83.7 | 82.1 | 82.1 | - | 330 to 480 | 650 |
Europe | ||||||
Forecasts (year) | 2022 | 2030 | ||||
Sources | IAE [38] | EU [44] current policies | EU [44] Policies Options | IAE [38] | Transport & Environment Association * | Extrapolation data |
Estimated number of public charging stations (in thousands of units) | 518 | 2304.5 | 3500.7 to 3573.5 | 2380 | 2200 to 2900 | 1250 |
World | ||||||
Forecasts (year) | 2022 | 2030 | ||||
Sources | IAE [38] | - | - | IAE [38] | - | Extrapolation data |
Estimated number of public charging stations (in thousands of units) | 2700 | - | - | 12700 | - | not estimated |
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Acronyms
BEV | plug-in-Battery Electric Vehicle |
CCS | Combined Charging System |
EV | Electric Vehicle |
G2V | Grid to Vehicle power flow |
ICE | Internal Combustion Engine |
PHEV | Plug-in Hybrid Electric Vehicle |
SOC | State Of Charge |
TEN-T | Trans-European Network for Transport |
V2G | Vehicle to Grid power flow |
References
- Eltoumi, F.M.; Becherif, M.; Djerdir, A.; Ramadan, H.S. The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations. Renew. Sustain. Energy Rev. 2021, 138, 110534. [Google Scholar] [CrossRef]
- Di Rienzo, R.; Nicodemo, N.; Roncella, R.; Saletti, R.; Vennettilli, N.; Asaro, S.; Tola, R.; Baronti, F. Cloud-Based Optimization of a Battery Model Parameter Identification Algorithm for Battery State-of-Health Estimation in Electric Vehicles. Batteries 2023, 9, 486. [Google Scholar] [CrossRef]
- Kuntz, P.; Lonardoni, L.; Genies, S.; Raccurt, O.; Azaïs, P. Evolution of Safety Behavior of High-Power and High-Energy Commercial Li-Ion Cells after Electric Vehicle Aging. Batteries 2023, 9, 427. [Google Scholar] [CrossRef]
- Higueras-Castillo, E.; Guillén, A.; Herrera, L.J.; Liébana-Cabanillas, F. Adoption of electric vehicles: Which factors are really important? Int. J. Sustain. Transp. 2021, 15, 799–813. [Google Scholar] [CrossRef]
- Haidar, B. A Techno-Economic Analysis of the Electric Vehicle Transition: Policy, Infrastructure, Usage, and Design. 2021. Available online: https://theses.hal.science/tel-03557817 (accessed on 5 September 2023).
- De Wolf, D.; Diop, N.; Kilani, M. Environmental impacts of enlarging the market share of electric vehicles. Environ. Econ. Policy Stud. 2022. [Google Scholar] [CrossRef]
- Mariasiu, F.; Kelemen, E.A. Analysis of the Energy Efficiency of a Hybrid Energy Storage System for an Electric Vehicle. Batteries 2023, 9, 419. [Google Scholar] [CrossRef]
- Agence Internationale de l’Energie. Available online: https://www.iea.org/ (accessed on 29 November 2021).
- Erbach, G. CO2 Emission Standards for New Cars and Vans; European Parliament: Brussels, Belgium, 2019.
- Meintz, A.; Zhang, J.; Vijayagopal, R.; Kreutzer, C.; Ahmed, S.; Bloom, I.; Burnham, A.; Carlson, R.B.; Dias, F.; Dufek, E.J.; et al. Enabling fast charging—Vehicle considerations. J. Power Sources 2017, 367, 216–227. [Google Scholar] [CrossRef]
- Cai, H.; Hao, X.; Jiang, Y.; Wang, Y.; Han, X.; Yuan, Y.; Zheng, Y.; Wang, H.; Ouyang, M. Degradation Evaluation of Lithium-Ion Batteries in Plug-In Hybrid Electric Vehicles: An Empirical Calibration. Batteries 2023, 9, 321. [Google Scholar] [CrossRef]
- Beretta, J. La mobilité électrique et les bornes de recharge. Ann. Mines Real. Ind. 2018, 2, 25–30. [Google Scholar] [CrossRef]
- Martin, C.; Barrioz, A.; Forget, M.; Peyrache-Gadeau, V. Déploiement spatial des bornes de recharge et enjeux de gouvernance de l’électromobilité en territoires de montagne. Espaces et Sociétés 2021, 182, 93–111. [Google Scholar] [CrossRef]
- Zhong, C.; Weng, S.; Wang, Z.; Zhan, C.; Wang, X. Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries. Nano Energy 2023, 117, 108894. [Google Scholar] [CrossRef]
- Becherif, M.; Ayad, M.Y.; Hissel, D.; Mkahl, R. Design and sizing of a stand-alone recharging point for battery electrical vehicles using photovoltaic energy. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011. [Google Scholar] [CrossRef]
- Cooper, A.; Furakawa, J.; Lam, L.; Kellaway, M. The UltraBattery—A new battery design for a new beginning in hybrid electric vehicle energy storage. J. Power Sources 2009, 188, 642–649. [Google Scholar] [CrossRef]
- Xie, W.; Liu, X.; He, R.; Li, Y.; Gao, X.; Li, X.; Peng, Z.; Feng, S.; Feng, X.; Yang, S. Challenges and opportunities toward fast-charging of lithium-ion batteries. J. Energy Storage 2020, 32, 101837. [Google Scholar] [CrossRef]
- Hardman, S.; Jenn, A.; Tal, G.; Axsen, J.; Beard, G.; Daina, N.; Figenbaum, E.; Jakobsson, N.; Jochem, P.; Kinnear, N.; et al. A review of consumer preferences of and interactions with electric vehicle charging infrastructure. Transp. Res. D Transp. Environ. 2018, 62, 508–523. [Google Scholar] [CrossRef]
- Das, H.S.; Rahman, M.M.; Li, S.; Tan, C.W. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renew. Sustain. Energy Rev. 2020, 120, 109618. [Google Scholar] [CrossRef]
- Alkawsi, G.; Baashar, Y.; Abbas, U.D.; Alkahtani, A.A.; Tiong, S.K. Review of Renewable Energy-Based Charging Infrastructure for Electric Vehicles. Appl. Sci. 2021, 11, 3847. [Google Scholar] [CrossRef]
- Danese, A.; Torsæter, B.N.; Sumper, A.; Garau, M. Planning of High-Power Charging Stations for Electric Vehicles: A Review. Appl. Sci. 2022, 12, 3214. [Google Scholar] [CrossRef]
- Wassiliadis, N.; Schneider, J.; Frank, A.; Wildfeuer, L.; Lin, X.; Jossen, A.; Lienkamp, M. Review of fast charging strategies for lithium-ion battery systems and their applicability for battery electric vehicles. J. Energy Storage 2021, 44, 103306. [Google Scholar] [CrossRef]
- Hopkins, E.; Potoglou, D.; Orford, S.; Cipcigan, L. Can the equitable roll out of electric vehicle charging infrastructure be achieved? Renew. Sustain. Energy Rev. 2023, 182, 113398. [Google Scholar] [CrossRef]
- Baazouzi, S.; Rist, F.P.; Weeber, M.; Birke, K.P. Optimization of Disassembly Strategies for Electric Vehicle Batteries. Batteries 2021, 7, 74. [Google Scholar] [CrossRef]
- Nski, S.; Di Pace, R.; Coppola, A.; Leijon, J.; Boström, C. Charging Electric Vehicles Today and in the Future. World Electr. Veh. J. 2022, 13, 139. [Google Scholar] [CrossRef]
- Real-Time Simulation of Level 1, Level 2, and Level 3 Electric Vehicle Charging Systems. Available online: https://www.researchgate.net/publication/355925431_Real-Time_Simulation_of_Level_1_Level_2_and_Level_3_Electric_Vehicle_Charging_Systems (accessed on 20 October 2023).
- Marques de Véhicules Électriques. Available online: https://www.midaevse.com/fr/ev-guide-3/ (accessed on 10 October 2023).
- Components of EV Charging Station—Power Electronics, Charge Controller, Network Controller, Cables—India Renewable Energy Consulting—Solar, Biomass, Wind, Cleantech. Available online: https://www.eai.in/blog/2018/12/components-of-ev-charging-infrastructure.html (accessed on 10 October 2023).
- Voiture Électrique: Nombre de Points d’Accès de Recharge Monde 2010–2016. Statista. Available online: https://fr.statista.com/statistiques/942381/evolution-point-acces-recharge-vehicule-electrique-monde/ (accessed on 10 October 2023).
- Voitures Électriques: Nombre de Points de Recharge en France. Statista. Available online: https://fr.statista.com/statistiques/1052382/vehicule-electrique-point-recharge-disponible-france/#:~:text=Durant%20ce%20laps%20de%20temps,une%20voiture%20%C3%A9lectrique%20ou%20hybride (accessed on 10 October 2023).
- Charging Stations in France. Available online: https://www.electromaps.com/en/charging-stations/france (accessed on 10 October 2023).
- Avere-France et Ministère de la Transition Énergétique sur la base des données Gireve. [Baromètre]. Available online: https://www.avere-france.org/publication (accessed on 5 September 2023).
- Déploiement des bornes de recharge en France—Union Française de l’Electricité. Available online: https://ufe-electricite.fr/watt-the-carte/deploiement-bornes-de-recharge-en-france/ (accessed on 10 October 2023).
- Article R4321-5—Code de la Santé Publique—Légifrance. Available online: https://www.legifrance.gouv.fr/codes/article_lc/LEGIARTI000006913987 (accessed on 12 October 2023).
- Bornes de Recharge Rapide: La Moitié des Aires d’Autoroute Équipée—Sciences et Avenir. Available online: https://www.sciencesetavenir.fr/nature-environnement/bornes-pour-voitures-electriques-le-gouvernement-accelere-pour-atteindre-son-objectif_155842 (accessed on 10 October 2023).
- Combien de Bornes de Recharge y a-t-il en Europe: Les Chiffres! Available online: https://insideevs.fr/news/583692/station-recharge-europe-voiture-electrique/ (accessed on 10 October 2023).
- Europe. 70% des Bornes de Recharge sont Concentrées dans Seulement 3 Pays. Available online: https://www.largus.fr/actualite-automobile/europe-70-des-bornes-de-recharge-concentrees-dans-seulement-3-pays-10660410.html (accessed on 10 October 2023).
- AIE. Global EV Outlook 2023: Catching Up with Climate Ambitions; Éditions OCDE: Paris, France, 2023. [Google Scholar] [CrossRef]
- Chen, Y.; Oudalov, A.; Wang, J.S. Integration of electric vehicle charging system into distribution network. In Proceedings of the 8th International Conference on Power Electronics—ECCE Asia, Jeju, Republic of Korea, 30 May–3 June 2011; pp. 593–598. [Google Scholar] [CrossRef]
- European Court of Auditors. Infrastructure for Charging Electric Vehicles: More Charging Stations but Uneven Deployment Makes Travel across the EU Complicated; Special Report 05/2021; European Court of Auditors: Luxembourg, 2021.
- Publications Office of the EU. The Future of the EU Automotive Sector. Available online: https://op.europa.eu/en/publication-detail/-/publication/56ff3240-32e4-11ec-bd8e-01aa75ed71a1/language-en (accessed on 10 October 2023).
- Avere-France. Hit the Road Tome 1 État des Lieux de la Recharge en France. Available online: https://www.avere-france.org/etude-publication-dune-etude-sur-les-besoin-de-recharge-a-lhorizon-2035/ (accessed on 18 December 2023).
- Wang, L.; Wang, X.; Yang, W. Optimal design of electric vehicle battery recycling network—From the perspective of electric vehicle manufacturers. Appl. Energy 2020, 275, 115328. [Google Scholar] [CrossRef]
- Hill, N.; Clarke, D.; Blair, L.; Menadue, H.; European Commission; Joint Research Centre; Ricardo Energy & Environment. Circular Economy Perspectives for the Management of Batteries used in Electric Vehicles; European Commission: Brussels, Belgium, 2019. [CrossRef]
Name of the Component | Utility |
---|---|
Unit control | This component manages the charging process and communicates with the vehicle. It includes a display screen to provide information regarding charging status, such as the amount of energy delivered and the charging time remaining. |
Power input | This component is the connecting point where the charging point is connected as an electrical power source. This input can be a plug or a hardwired connection. |
Connector (nozzle) | This is the physical connection between the charging station and the car. There are different kinds of connectors, such as type 1 connectors or Combined Charging Systems (CCSs) |
Charging cable | The charging cable connects the charging station to the vehicle through the connector. It can be removable or attached to the charging point. |
Overcurrent protection (In Cable Control Box) | The overcurrent protection shuts off automatically if the charging point detects an overflow of the electrical current. |
Converter (sometimes) | The need for this component depends on the nature of the charging point. Either an AC or DC charging station may need a power converter. In a battery, the current is direct (DC). If a user wants to charge their battery with alternating current, an DC-AC converter is needed. |
AC Charging | DC Charging | |
---|---|---|
used current | AC | DC |
charging speed | Slow | Fast |
Cost | Average | Expensive |
complexity | Average | Complex |
Type | Type 1 | Type 2 * | Type2 ** | CHAdeMO ** | CCS Combo 1 & 2 | Super- Charger Tesla V3/V4 | ChaoJi *** | |
---|---|---|---|---|---|---|---|---|
Power | 3 kW to 7.4 kW | 3 kW to 22 kW | 3.7 kW to 43 kW | 62.5 kW | 41.5 kW | 22 kW to 350 kW | 250 kW | 400 kW |
Current | AC | AC | AC | DC | high AC | high DC | DC | DC |
Phase | Mono | Mono | Tri | DC | Mono/Tri | DC | DC | DC |
Current maximum | 32 A | 13 A | 63 A | 125–200 A | 63 A | 125 A | - | 400–500 A |
Number of connectors | 5 | 7 | 7 | 10 | 5 + 2 | 7 + 2 | - | 7 |
Norm | IEC 62196-1 SAE J1772 | IEC 62196-2 SAE J1772 | IEC 62196-2 SAE J3068 | IEC 61296-3 | SAE J1772 + 2 pins | IEC 61296-3 | - | - |
Time needed to fully charge a 40 kW EV battery | 18 h | 12 h | 2 h 30 | 10’ to 20’ | 1 h | 10’ to 20’ | 20’ | 15’ |
Country/Region | 2022 | Stated Policies Scenario 2030 | Announced Pledges Scenario 2030 |
---|---|---|---|
China | 0.8% | 3.8% | 4.0% |
Europe | 0.7% | 4.7% | 5.7% |
United States | 0.4% | 5.4% | 6.3% |
Japan | 0.1% | 1.7% | 2.2% |
India | 0.1% | 1.7% | 2.5% |
Global | 0.5% | 3.2% | 3.8% |
New Technologies | Explanation |
---|---|
High-power charging | This technology delivers more power to electric cars. The power ranges from 100 kW to 350 kW and reduces the time needed for recharging. High-power charging is useful for long-distance travel. |
Ultra-fast charging and XFC | This technology represents an improvement over high-power charging. These charging stations can deliver 400 kW and more. |
Smart charging | Smart charging optimizes the charging process by considering multiple factors, including the condition of the network, energy prices, and user preferences. Smart charging helps to ease the load on the network. |
Wireless charging | Wireless charging eliminates the physical contact between the charging stations and the EVs. Like an induction charge for phones, it uses electromagnetic fields to transfer energy. However, in general, it delivers less power than a classic charging station. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benmouna, A.; Borderiou, L.; Becherif, M. Charging Stations for Large-Scale Deployment of Electric Vehicles. Batteries 2024, 10, 33. https://doi.org/10.3390/batteries10010033
Benmouna A, Borderiou L, Becherif M. Charging Stations for Large-Scale Deployment of Electric Vehicles. Batteries. 2024; 10(1):33. https://doi.org/10.3390/batteries10010033
Chicago/Turabian StyleBenmouna, Amel, Laurence Borderiou, and Mohamed Becherif. 2024. "Charging Stations for Large-Scale Deployment of Electric Vehicles" Batteries 10, no. 1: 33. https://doi.org/10.3390/batteries10010033
APA StyleBenmouna, A., Borderiou, L., & Becherif, M. (2024). Charging Stations for Large-Scale Deployment of Electric Vehicles. Batteries, 10(1), 33. https://doi.org/10.3390/batteries10010033