A Comprehensive Review of Multiple Physical and Data-Driven Model Fusion Methods for Accurate Lithium-Ion Battery Inner State Factor Estimation
Abstract
:1. Introduction
2. Definition of Each State of Lithium-Ion Batteries
3. Summary of State Estimation Methods Based on Physical Model
3.1. Methods Based on Equivalent Circuit Models
3.2. Methods Based on Electrochemical Models
3.3. Methods Based on Thermoelectric Coupling Models
3.4. Methods Based on Aging Models
4. Summary of State Estimation Methods Based on Data-Driven Models
4.1. Methods Based on Supervised Learning
4.2. Methods Based on Unsupervised Learning
5. Summary of Algorithms Based on Multi-Physics Models and Data-Driven Model Fusion
5.1. Methods Based on Multi-Physics Model Fusion
5.2. Methods Based on Multi-Data-Driven Model Fusion
5.3. Methods Based on the Fusion of Multi-Physics and Data-Driven Models
- (a)
- Physical models generate initial predictions, and data-driven models correct the errors.
- (b)
- Physical model for feature extraction and data-driven models for state estimation
- (c)
- Physical models are used for constraint and interpretation, and data-driven models are used for state estimation
- (d)
- Parallel prediction at the model level
6. Conclusions
Funding
Conflicts of Interest
References
- Khan, F.N.U.; Rasul, M.G.; Sayem, A.; Mandal, N.K. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review. J. Energy Storage 2023, 71, 108033–108065. [Google Scholar] [CrossRef]
- Nyamathulla, S.; Dhanamjayulu, C. A review of battery energy storage systems and advanced battery management system for different applications: Challenges and recommendations. J. Energy Storage 2024, 86, 111179–111205. [Google Scholar] [CrossRef]
- Sesidhar, D.; Badachi, C.; Green, I.I.R.C. A review on data-driven SOC estimation with Li-Ion batteries: Implementation methods & future aspirations. J. Energy Storage 2023, 72, 108420–108442. [Google Scholar]
- Peng, S.; Zhu, J.; Wu, T.; Tang, A.; Kan, J.; Pecht, M. SOH early prediction of Lithium-ion batteries based on voltage interval selection and features fusion. Energy 2024, 308, 132993–133007. [Google Scholar] [CrossRef]
- Chen, W.; Chen, J.; Chen, Z.; Lin, H.; Chen, S.; Chen, J.; Chen, H.; Chen, W. A Data-Driven Online SOP Estimation Method for Lithium-ion Capacitors. In Proceedings of the 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 23–26 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1130–1135. [Google Scholar]
- Koseoglou, M.; Tsioumas, E.; Panagiotidis, I.; Papagiannis, D.; Jabbour, N.; Mademlis, C. A lithium-ion battery equivalent circuit model based on a hybrid parametrization approach. J. Energy Storage 2023, 73, 109051–109058. [Google Scholar] [CrossRef]
- Tao, J.; Wang, S.; Cao, W.; Cui, Y.; Fernandez, C.; Guerrero, J.M. Innovative multiscale fusion-antinoise extended long short-term memory neural network modeling for high precision state of health estimation of lithium-ion batteries. Energy 2024, 312, 133541–133559. [Google Scholar] [CrossRef]
- Jin, H.; Gao, Z.; Zuo, Z.; Zhang, Z.; Wang, Y.; Zhang, A. A combined model-based and data-driven fault diagnosis scheme for lithium-ion batteries. IEEE Trans. Ind. Electron. 2023, 71, 6274–6284. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Liu, K.; Wei, Z.; Hu, X.; Tang, X.; Chen, Z. System identification and state estimation of a reduced-order electrochemical model for lithium-ion batteries. Etransportation 2023, 18, 100295–100307. [Google Scholar] [CrossRef]
- Tang, A.; Huang, Y.; Liu, S.; Yu, Q.; Shen, W.; Xiong, R. A novel lithium-ion battery state of charge estimation method based on the fusion of neural network and equivalent circuit models. Appl. Energy 2023, 348, 121578–121589. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Gu, T. A hierarchical adaptive extended Kalman filter algorithm for lithium-ion battery state of charge estimation. J. Energy Storage 2023, 62, 106831–106842. [Google Scholar] [CrossRef]
- Al-Greer, M.; Bashir, I. Physics-based model informed smooth particle filter for remaining useful life prediction of lithium-ion battery. Measurement 2023, 214, 112838–112851. [Google Scholar]
- Babu, P.S. VI Enhanced SOC estimation of lithium ion batteries with RealTime data using machine learning algorithms. Sci. Rep. 2024, 14, 16036–16052. [Google Scholar]
- Peng, J.; Meng, J.; Wu, J.; Deng, Z.; Lin, M.; Mao, S.; Stroe, D.-I. A comprehensive overview and comparison of parameter benchmark methods for lithium-ion battery application. J. Energy Storage 2023, 71, 108197–108223. [Google Scholar] [CrossRef]
- Kim, E.; Kim, M.; Kim, J.; Kim, J.; Park, J.-H.; Kim, K.-T.; Park, J.H.; Kim, T.; Min, K. Data-driven methods for predicting the state of health, state of charge, and remaining useful life of li-ion batteries: A comprehensive review. Int. J. Precis. Eng. Manuf. 2023, 24, 1281–1304. [Google Scholar] [CrossRef]
- Sutanto, E.; Astawa, P.E.; Fahmi, F.; Hamid, M.I.; Yazid, M.; Shalannanda, W.; Aziz, M. Lithium-ion battery state-of-charge estimation from the voltage discharge profile using gradient vector and support vector machine. Energies 2023, 16, 1083. [Google Scholar] [CrossRef]
- Gotz, J.D.; Galvão, J.R.; Corrêa, F.C.; Badin, A.A.; Siqueira, H.V.; Viana, E.R.; Converti, A.; Borsato, M. Random Forest-Based Grouping for Accurate SOH Estimation in Second-Life Batteries. Vehicles 2024, 6, 799–813. [Google Scholar] [CrossRef]
- Pan, R.; Liu, T.; Huang, W.; Wang, Y.; Yang, D.; Chen, J. State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree. Energy 2023, 285, 129460–129474. [Google Scholar] [CrossRef]
- Ge, D.; Jin, G.; Wang, J.; Zhang, Z. A novel data-driven IBA-ELM model for SOH/SOC estimation of lithium-ion batteries. Energy 2024, 305, 132395–132410. [Google Scholar] [CrossRef]
- Xu, H.; Wu, L.; Xiong, S.; Li, W.; Garg, A.; Gao, L. An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries. Energy 2023, 276, 127585–127595. [Google Scholar] [CrossRef]
- Tao, J.; Wang, S.; Cao, W.; Zhang, M.; Bobobee, E.D. An improved log-cosine variation slime mold-simplified gated recurrent neural network for the high-precision state of charge estimation of lithium-ion batteries. J. Energy Storage 2024, 94, 112412–112424. [Google Scholar] [CrossRef]
- Cai, Y.; Li, W.; Zahid, T.; Zheng, C.; Zhang, Q.; Xu, K. Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model. Heliyon 2023, 9, e17754. [Google Scholar] [CrossRef] [PubMed]
- Obregon, J.; Han, Y.-R.; Ho, C.W.; Mouraliraman, D.; Lee, C.W.; Jung, J.-Y. Convolutional autoencoder-based SOH estimation of lithium-ion batteries using electrochemical impedance spectroscopy. J. Energy Storage 2023, 60, 106680–106690. [Google Scholar] [CrossRef]
- Ye, M.; Wang, Q.; Yan, L.; Wei, M.; Lian, G.; Zhao, K.; Zhu, W. Enhanced robust capacity estimation of lithium-ion batteries with unlabeled dataset and semi-supervised machine learning. Expert Syst. Appl. 2024, 238, 121892–121904. [Google Scholar] [CrossRef]
- Khaleghi, S.; Hosen, M.S.; Van Mierlo, J.; Berecibar, M. Towards machine-learning driven prognostics and health management of Li-ion batteries. A Compr. Rev. Renew. Sustain. Energy Rev. 2024, 192, 114224–114254. [Google Scholar] [CrossRef]
- He, W.; Li, Z.; Liu, T.; Liu, Z.; Guo, X.; Du, J.; Li, X.; Sun, P.; Ming, W. Research progress and application of deep learning in remaining useful life, state of health and battery thermal management of lithium batteries. J. Energy Storage 2023, 70, 107868–107903. [Google Scholar] [CrossRef]
- Tian, J.; Chen, C.; Shen, W.; Sun, F.; Xiong, R. Deep learning framework for lithium-ion battery state of charge estimation: Recent advances and future perspectives. Energy Storage Mater. 2023, 61, 102883–102899. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, Y.; Yang, T. State of charge estimation for lithium-ion battery based on unscented Kalman filter and long short-term memory neural network. Batteries 2023, 9, 358. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, B.; Zhang, F. Adaptive fault detection for lithium-ion battery combining physical model-based observer and BiLSTMNN learning approach. J. Energy Storage 2024, 91, 112067–112085. [Google Scholar] [CrossRef]
- Meng, H.; Hu, M.; Kong, Z.; Niu, Y.; Liang, J.; Nie, Z.; Xing, J. Risk analysis of lithium-ion battery accidents based on physics-informed data-driven Bayesian networks. Reliab. Eng. Syst. Saf. 2024, 251, 110294–110308. [Google Scholar] [CrossRef]
- Nicodemo, N.; Di Rienzo, R.; Lagnoni, M.; Bertei, A.; Baronti, F. Estimation of lithium-ion battery electrochemical properties from equivalent circuit model parameters using machine learning. J. Energy Storage 2024, 99, 113257–113266. [Google Scholar] [CrossRef]
- Zhang, Y.; Wik, T.; Bergström, J.; Zou, C. State of health estimation for lithium-ion batteries under arbitrary usage using data-driven multimodel fusion. IEEE Trans. Transp. Electrif. 2023, 10, 1494–1507. [Google Scholar] [CrossRef]
- Ji, C.; Dai, J.; Zhai, C.; Wang, J.; Tian, Y.; Sun, W. A Review on Lithium-Ion Battery Modeling from Mechanism-Based and Data-Driven Perspectives. Processes 2024, 12, 1871. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Y.; Zhang, B.; Liu, M.; Wang, J.; Liu, C.; Hao, X. Review of state estimation and remaining useful life prediction methods for lithium–ion batteries. Sustainability 2023, 15, 5014. [Google Scholar] [CrossRef]
- Ghaeminezhad, N.; Ouyang, Q.; Wei, J.; Xue, Y.; Wang, Z. Review on state of charge estimation techniques of lithium-ion batteries: A control-oriented approach. J. Energy Storage 2023, 72, 108707–108731. [Google Scholar] [CrossRef]
- Zhou, L.; Lai, X.; Li, B.; Yao, Y.; Yuan, M.; Weng, J.; Zheng, Y. State estimation models of lithium-ion batteries for battery management system: Status, challenges, and future trends. Batteries 2023, 9, 131. [Google Scholar] [CrossRef]
- Tao, J.; Wang, S.; Cao, W.; Takyi-Aninakwa, P.; Fernandez, C.; Guerrero, J.M. A comprehensive review of state-of-charge and state-of-health estimation for lithium-ion battery energy storage systems. Ionics 2024, 30, 5903–5927. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Li, D.; Wang, K. State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: A review. Prot. Control Mod. Power Syst. 2023, 8, 1–17. [Google Scholar] [CrossRef]
- Urquizo, J.; Singh, P. A review of health estimation methods for Lithium-ion batteries in Electric Vehicles and their relevance for Battery Energy Storage Systems. J. Energy Storage 2023, 73, 109194–109205. [Google Scholar] [CrossRef]
- Liu, F.; Yu, D.; Shao, C.; Liu, X.; Su, W. A review of multi-state joint estimation for lithium-ion battery: Research status and suggestions. J. Energy Storage 2023, 73, 109071–109091. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Zhang, Y.; Wang, L.; Wang, K. Summary of health-state estimation of lithium-ion batteries based on electrochemical impedance spectroscopy. Energies 2023, 16, 5682. [Google Scholar] [CrossRef]
- Ren, Z.; Du, C. A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries. Energy Rep. 2023, 9, 2993–3021. [Google Scholar] [CrossRef]
- Martí-Florences, M.; Cecilia, A.; Costa-Castelló, R. Modelling and Estimation in Lithium-Ion Batteries: A Literature Review. Energies 2023, 16, 6846. [Google Scholar] [CrossRef]
- Ouyang, T.; Wang, C.; Xu, P.; Ye, J.; Liu, B. Prognostics and health management of lithium-ion batteries based on modeling techniques and Bayesian approaches: A review. Sustain. Energy Technol. Assess. 2023, 55, 102915–102929. [Google Scholar] [CrossRef]
- Yang, B.; Qian, Y.; Li, Q.; Chen, Q.; Wu, J.; Luo, E.; Xie, R.; Zheng, R.; Yan, Y.; Su, S.; et al. Critical summary and perspectives on state-of-health of lithium-ion battery. Renew. Sustain. Energy Rev. 2024, 190, 114077–114104. [Google Scholar] [CrossRef]
- Chen, G.; Peng, W.; Yang, F. An LSTM-SA model for SOC estimation of lithium-ion batteries under various temperatures and aging levels. J. Energy Storage 2024, 84, 110906. [Google Scholar] [CrossRef]
- Takyi-Aninakwa, P.; Wang, S.; Liu, G.; Bage, A.N.; Masahudu, F.; Guerrero, J.M. An enhanced lithium-ion battery state-of-charge estimation method using long short-term memory with an adaptive state update filter incorporating battery parameters. Eng. Appl. Artif. Intell. 2024, 132, 107946. [Google Scholar] [CrossRef]
- Fan, X.; Feng, H.; Yun, X.; Wang, C.; Zhang, X. SOC estimation for lithium-ion battery based on AGA-optimized AUKF. J. Energy Storage 2024, 75, 109689. [Google Scholar] [CrossRef]
- Li, F.; Zuo, W.; Zhou, K.; Li, Q.; Huang, Y.; Zhang, G. State-of-charge estimation of lithium-ion battery based on second order resistor-capacitance circuit-PSO-TCN model. Energy 2024, 289, 130025. [Google Scholar] [CrossRef]
- Chen, H.; Liu, F.; Hou, H.; Shen, X. Estimation of fractional SOC for lithium batteries based on OCV hysteretic characteristics. Ionics 2024, 30, 2627–2641. [Google Scholar] [CrossRef]
- Barcellona, S.; Codecasa, L.; Colnago, S. Inverse Open Circuit Voltage Curve Model for LiCoO2 Battery at Different Temperatures. Energies 2024, 17, 5137. [Google Scholar] [CrossRef]
- Vignesh, S.; Che, H.S.; Selvaraj, J.; Tey, K.S.; Lee, J.W.; Shareef, H.; Errouissi, R. State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges. Appl. Energy 2024, 369, 123542. [Google Scholar]
- Dini, P.; Colicelli, A.; Saponara, S. Review on modeling and soc/soh estimation of batteries for automotive applications. Batteries 2024, 10, 34. [Google Scholar] [CrossRef]
- Gao, Z.; Xie, H.; Yang, X.; Wang, W.; Liu, Y.; Xu, Y.; Ma, B.; Liu, X.; Chen, S. SOH estimation method for lithium-ion batteries under low temperature conditions with nonlinear correction. J. Energy Storage 2024, 75, 109690. [Google Scholar] [CrossRef]
- Demirci, O.; Taskin, S.; Schaltz, E.; Demirci, B.A. Review of battery state estimation methods for electric vehicles-Part II: SOH estimation. J. Energy Storage 2024, 96, 112703. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, S.; Zhang, G.; Takyi-Aninakwa, P.; Fernandez, C.; Blaabjerg, F. A review of data-driven whole-life state of health prediction for lithium-ion batteries: Data preprocessing, aging characteristics, algorithms, and future challenges. J. Energy Chem. 2024, 97, 630–649. [Google Scholar] [CrossRef]
- Su, L.; Xu, Y.; Dong, Z. State-of-health estimation of lithium-ion batteries: A comprehensive literature review from cell to pack levels. Energy Convers. Econ. 2024, 5, 224–242. [Google Scholar] [CrossRef]
- Shrivastava, P.; Naidu, P.A.; Sharma, S.; Panigrahi, B.K.; Garg, A. Review on technological advancement of lithium-ion battery states estimation methods for electric vehicle applications. J. Energy Storage 2023, 64, 107159. [Google Scholar] [CrossRef]
- Raoofi, T.; Yildiz, M. Comprehensive review of battery state estimation strategies using machine learning for battery Management Systems of Aircraft Propulsion Batteries. J. Energy Storage 2023, 59, 106486. [Google Scholar] [CrossRef]
- Dai, H.; Jiang, B.; Hu, X.; Lin, X.; Wei, X.; Pecht, M. Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends. Renew. Sustain. Energy Rev. 2021, 138, 110480. [Google Scholar] [CrossRef]
- Guo, R.; Shen, W. A review of equivalent circuit model based online state of power estimation for lithium-ion batteries in electric vehicles. Vehicles 2021, 4, 1–29. [Google Scholar] [CrossRef]
- Rojas, O.E.; Khan, M.A. A review on electrical and mechanical performance parameters in lithium-ion battery packs. J. Clean. Prod. 2022, 378, 134381. [Google Scholar] [CrossRef]
- Naseri, F.; Karimi, S.; Farjah, E.; Schaltz, E. Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques. Renew. Sustain. Energy Rev. 2022, 155, 111913. [Google Scholar] [CrossRef]
- Mukherjee, S.; Chowdhury, K. State of charge estimation techniques for battery management system used in electric vehicles: A review. Energy Systems. 2023, 1–44. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X. A novel low-complexity state-of-energy estimation method for series-connected lithium-ion battery pack based on “representative cell” selection and operating mode division. J. Power Sources 2022, 518, 230732. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X. A novel non-experiment-based reconstruction method for the relationship between open-circuit-voltage and state-of-charge/state-of-energy of lithium-ion battery. Electrochim. Acta 2022, 403, 139637. [Google Scholar] [CrossRef]
- Ren, Y.; Jin, C.; Fang, S.; Yang, L.; Wu, Z.; Wang, Z.; Peng, R.; Gao, K. A comprehensive review of key technologies for enhancing the reliability of lithium-ion power batteries. Energies 2023, 16, 6144. [Google Scholar] [CrossRef]
- Shan, C.; Chin, C.S.; Mohan, V.; Zhang, C. Review of Various Machine Learning Approaches for Predicting Parameters of Lithium-Ion Batteries in Electric Vehicles. Batteries 2024, 10, 181. [Google Scholar] [CrossRef]
- Uzair, M.; Abbas, G.; Hosain, S. Characteristics of battery management systems of electric vehicles with consideration of the active and passive cell balancing process. World Electr. Veh. J. 2021, 12, 120. [Google Scholar] [CrossRef]
- Huang, H.; Bian, C.; Wu, M.; An, D.; Yang, S. A novel integrated SOC–SOH estimation framework for whole-life-cycle lithium-ion batteries. Energy 2024, 288, 129801–129810. [Google Scholar] [CrossRef]
- Mo, D.; Wang, S.; Fan, Y.; Takyi-Aninakwa, P.; Zhang, M.; Wang, Y.; Fernandez, C. Enhanced multi-constraint dung beetle optimization-kernel extreme learning machine for lithium-ion battery state of health estimation with adaptive enhancement ability. Energy 2024, 307, 132723–132738. [Google Scholar] [CrossRef]
- Ma, C.; Wu, C.; Wang, L.; Chen, X.; Liu, L.; Wu, Y.; Ye, J. A Review of Parameter Identification and State of Power Estimation Methods for Lithium-Ion Batteries. Processes 2024, 12, 2166. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Chen, L.; Wang, Y.; Zhou, H.; Guerrero, J.M. Adaptive Kalman filter and self-designed early stopping strategy optimized convolutional neural network for state of energy estimation of lithium-ion battery in complex temperature environment. J. Energy Storage 2024, 83, 110750–110762. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Luo, L.; Zhang, C. A lithium-ion battery capacity and rul prediction fusion method based on decomposition strategy and GRU. Batteries 2023, 9, 323. [Google Scholar] [CrossRef]
- Ramezani-al, M.R.; Moodi, M. A novel combined online method for SOC estimation of a Li-Ion battery with practical and industrial considerations. J. Energy Storage 2023, 67, 107605–107618. [Google Scholar] [CrossRef]
- Rodríguez-Iturriaga, P.; Anseán, D.; Rodríguez-Bolívar, S.; González, M.; Viera, J.C.; López-Villanueva, J.A. A physics-based fractional-order equivalent circuit model for time and frequency-domain applications in lithium-ion batteries. J. Energy Storage 2023, 64, 107150–107164. [Google Scholar] [CrossRef]
- Li, R.; Li, K.; Liu, P.; Zhang, X. Research on Multi-Time Scale SOP Estimation of Lithium–Ion Battery Based on H∞ Filter. Batteries 2023, 9, 191. [Google Scholar] [CrossRef]
- An, F.; Zhang, W.; Sun, B.; Jiang, J.; Fan, X. A novel state-of-energy simplified estimation method for lithium-ion battery pack based on prediction and representative cells. J. Energy Storage 2023, 63, 107083–107096. [Google Scholar] [CrossRef]
- Li, D.; Liu, X.; Cheng, Z. The co-estimation of states for lithium-ion batteries based on segment data. J. Energy Storage 2023, 62, 106787–106798. [Google Scholar] [CrossRef]
- Wang, J.; Meng, J.; Peng, Q.; Liu, T.; Zeng, X.; Chen, G.; Li, Y. Lithium-ion battery state-of-charge estimation using electrochemical model with sensitive parameters adjustment. Batteries 2023, 9, 180. [Google Scholar] [CrossRef]
- Feng, Y.; Xue, C.; Han, F.; Cao, Z.; Yang, R.J. State-of-Charge and State-of-Health Estimation in Li-Ion Batteries Using Cascade Electrochemical Model-Based Sliding-Mode Observers. Batteries 2024, 10, 290. [Google Scholar] [CrossRef]
- Hashemzadeh, P.; Désilets, M.; Lacroix, M. Online state estimation of Li-ion batteries using continuous-discrete nonlinear Kalman filters based on a nonlinear simplified electrochemical model. Electrochim. Acta 2024, 481, 143953–143969. [Google Scholar] [CrossRef]
- Yu, Z.; Tian, Y.; Li, B. A simulation study of Li-ion batteries based on a modified P2D model. J. Power Sources 2024, 618, 234376–234393. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, L.; Wang, W.; Yang, K.; Zhang, Z.; Liang, X.; Chen, S.; Yang, S.; Li, J.; Liu, X. Lithium-ion battery multi-scale modeling coupled with simplified electrochemical model and kinetic Monte Carlo model. iScience 2023, 26, 107661. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, T.; Chen, H.; Gao, Q. Thermoelectric coupling model construction of 21,700 cylindrical ternary lithium batteries under wide temperature range environment. J. Therm. Anal. Calorim. 2024, 149, 12071–12082. [Google Scholar] [CrossRef]
- Zeng, J.; Wang, S.; Cao, W.; Zhou, Y.; Fernandez, C.; Guerrero, J.M. Battery asynchronous fractional-order thermoelectric coupling modeling and state of charge estimation based on frequency characteristic separation at low temperatures. Energy 2024, 307, 132730–132746. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, C.; Sun, B.; Liu, S. The electric-thermal coupling simulation and state estimation of lithium-ion battery. J. Energy Storage 2023, 58, 106431–106446. [Google Scholar] [CrossRef]
- Liu, W.; Teh, J.; Alharbi, B.; Yang, G.; Wang, B.; Meng, D.; Shi, J.; AlKassem, A.; Aljabr, A.; Alshammari, N. An electric-thermal coupling modeling method for lithium-ion battery using the state of charge normalization calculation method. J. Energy Storage 2023, 72, 108724–108738. [Google Scholar] [CrossRef]
- Gayathri, R.; Husna, M.A.U.; Poojasri, R.; Sutha, S.; Pappa, N.; Vijayakarthick, M. Hybrid Electro-Thermal model based optimal charging of Lithium-ion Battery using MOGA for Enhanced State-of-Health. IFAC-PapersOnLine 2024, 57, 173–178. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Feng, Y.; Liao, C.; Yang, J. An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework. Energy 2024, 298, 131277–131291. [Google Scholar] [CrossRef]
- Fang, D.; Wu, W.; Li, J.; Yuan, W.; Liu, T.; Dai, C.; Wang, Z.; Zhao, M. Performance simulation method and state of health estimation for lithium-ion batteries based on aging-effect coupling model. Green Energy Intell. Transp. 2023, 2, 100082–100095. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, D.; Schaltz, E.; Stroe, D.-I.; Gismero, A.; Yang, B. Lithium-ion battery calendar aging mechanism analysis and impedance-based State-of-Health estimation method. J. Energy Storage 2023, 64, 107029–107042. [Google Scholar] [CrossRef]
- Hofmann, T.; Li, J.; Hamar, J.; Erhard, S.; Schmidt, J.P. The ΔQ-method: State of health and degradation mode estimation for lithium-ion batteries using a mechanistic model with relaxed voltage points. J. Power Sources 2024, 596, 234107–234121. [Google Scholar] [CrossRef]
- Wang, G.; Cui, N.; Li, C.; Cui, Z.; Yuan, H. A state-of-health estimation method based on incremental capacity analysis for Li-ion battery considering charging/discharging rate. J. Energy Storage 2023, 73, 109010–109020. [Google Scholar] [CrossRef]
- Xiong, W.; Xu, G.; Li, Y.; Zhang, F.; Ye, P.; Li, B. Early prediction of lithium-ion battery cycle life based on voltage-capacity discharge curves. J. Energy Storage 2023, 62, 106790–106798. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Li, C.; Yu, Y.; Zhou, G.; Wang, C.; Zhao, W. Temperature prediction of lithium-ion battery based on artificial neural network model. Appl. Therm. Eng. 2023, 228, 120482–120496. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, N.; Chen, C.; Guo, Y. Adaptive self-attention LSTM for RUL prediction of lithium-ion batteries. Inf. Sci. 2023, 635, 398–413. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Wu, L. Life prediction model for lithium-ion battery considering fast-charging protocol. Energy 2023, 263, 126109–126121. [Google Scholar] [CrossRef]
- Qin, H.; Fan, X.; Fan, Y.; Wang, R.; Shang, Q.; Zhang, D. A Computationally Efficient Approach for the State-of-Health Estimation of Lithium-Ion Batteries. Energies 2023, 16, 5414. [Google Scholar] [CrossRef]
- Hai, N.; Wang, S.; Huang, Q.; Xie, Y.; Fernandez, C. Improved K-means clustering-genetic backpropagation modeling for online state-of-charge estimation of lithium-ion batteries adaptive to low-temperature conditions. J. Energy Storage 2024, 99, 113399–113415. [Google Scholar] [CrossRef]
- Fei, Z.; Huang, Z.; Zhang, X. Voltage and temperature information ensembled probabilistic battery health evaluation via deep Gaussian mixture density network. J. Energy Storage 2023, 73, 108587–108600. [Google Scholar] [CrossRef]
- Wu, M.; Zhong, Y.; Wu, J.; Wang, Y.; Wang, L. State of health estimation of the lithium-ion power battery based on the principal component analysis-particle swarm optimization-back propagation neural network. Energy 2023, 283, 129061–129069. [Google Scholar]
- Sudarshan, M.; Serov, A.; Jones, C.; Ayalasomayajula, S.M.; García, R.E.; Tomar, V. Data-driven autoencoder neural network for onboard BMS Lithium-ion battery degradation prediction. J. Energy Storage 2024, 82, 110575–110583. [Google Scholar] [CrossRef]
- Zeng, Y.; Meng, J.; Peng, J.; Feng, F.; Yang, F. State of health estimation of lithium-ion battery considering sensor uncertainty. J. Energy Storage 2023, 72, 108667–108676. [Google Scholar] [CrossRef]
- Shi, H.; Wang, S.; Huang, Q.; Fernandez, C.; Liang, J.; Zhang, M.; Qi, C.; Wang, L. Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries. Appl. Energy 2024, 353, 122174–122195. [Google Scholar] [CrossRef]
- Xi, R.; Mu, Z.; Ma, Z.; Jin, W.; Ma, H.; Liu, K.; Li, J.; Yu, M.; Jin, D.; Cheng, F. Lifetime prediction of rechargeable lithium-ion battery using multi-physics and multiscale model. J. Power Sources 2024, 608, 234622–234631. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Guo, S.; Zhao, M.; Cui, W.; Li, L.; Zhao, L.; Wang, Z. A method of lithium-ion battery failure diagnosis based on parameter boundaries of heterogeneous multi-physics aging model. J. Power Sources 2023, 576, 233235–233244. [Google Scholar]
- Zhou, B.; Fan, G.; Wang, Y.; Liu, Y.; Chen, S.; Sun, Z.; Meng, C.; Yang, J.; Zhang, X. Life-extending optimal charging for lithium-ion batteries based on a multi-physics model and model predictive control. Appl. Energy 2024, 361, 122918–122942. [Google Scholar] [CrossRef]
- Li, J.; Ye, M.; Ma, X.; Wang, Q.; Wang, Y. SOC estimation and fault diagnosis framework of battery based on multi-model fusion modeling. J. Energy Storage 2023, 65, 107296–107308. [Google Scholar] [CrossRef]
- Sun, C.; Gao, M.; Cai, H.; Xu, F.; Zhu, C. Data-driven state-of-charge estimation of a lithium-ion battery pack in electric vehicles based on real-world driving data. J. Energy Storage 2024, 101, 113986–114000. [Google Scholar] [CrossRef]
- Zhang, Y.; Wik, T.; Bergström, J.; Zou, C. Practical battery State of Health estimation using data-driven multi-model fusion. IFAC-PapersOnLine 2023, 56, 3776–3781. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, Y.; Li, K.; Chen, Z. State of health estimation for lithium-ion batteries using Gaussian process regression-based data reconstruction method during random charging process. J. Energy Storage 2023, 72, 108390–108402. [Google Scholar] [CrossRef]
- Xia, Z.; Wu, Y. A hybrid network of NARX and DS-attention applied for the state estimation of lithium-ion batteries. Int. J. Electrochem. Sci. 2024, 19, 100632–100640. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Yun, X.; Meng, X.; Fan, X. Robust state-of-charge estimation method for lithium-ion batteries based on the fusion of time series relevance vector machine and filter algorithm. Energy 2023, 285, 129466–129478. [Google Scholar] [CrossRef]
- Pang, H.; Wu, L.; Liu, J.; Liu, X.; Liu, K. Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions. J. Energy Chem. 2023, 78, 1–12. [Google Scholar] [CrossRef]
- Mao, L.; Hu, Q.; Zhao, J.; Yu, X. State-of-charge of lithium-ion battery based on equivalent circuit model–Relevance vector machine fusion model considering varying ambient temperatures. Measurement 2023, 221, 113487–113499. [Google Scholar] [CrossRef]
- Dai Nguyen, C.; Bae, S.J. Equivalent circuit simulated deep network architecture and transfer learning for remaining useful life prediction of lithium-ion batteries. J. Energy Storage 2023, 71, 108042–108055. [Google Scholar] [CrossRef]
- Kim, S.W.; Kwak, E.; Kim, J.-H.; Oh, K.-Y.; Lee, S. Modeling and prediction of lithium-ion battery thermal runaway via multiphysics-informed neural network. J. Energy Storage 2023, 60, 106654–106669. [Google Scholar] [CrossRef]
- Das Goswami, B.R.; Mastrogiorgio, M.; Ragone, M.; Jabbari, V.; Shahbazian-Yassar, R.; Mashayek, F.; Yurkiv, V. A combined multiphysics modeling and deep learning framework to predict thermal runaway in cylindrical Li-ion batteries. J. Power Sources 2024, 595, 234065–234077. [Google Scholar] [CrossRef]
- Wang, C.; Li, R.; Cao, Y.; Li, M. A hybrid model for state of charge estimation of lithium-ion batteries utilizing improved adaptive extended Kalman filter and long short-term memory neural network. J. Power Sources 2024, 620, 235272–235285. [Google Scholar] [CrossRef]
- Liu, F.; Yu, D.; Su, W.; Bu, F. Multi-state joint estimation of series battery pack based on multi-model fusion. Electrochim. Acta 2023, 443, 141964–141980. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, P.; Duan, B.; Zhang, C. A hybrid data-driven method optimized by physical rules for online state collaborative estimation of lithium-ion batteries. Energy 2024, 301, 131710–131724. [Google Scholar] [CrossRef]
- Wu, J.; Meng, J.; Lin, M.; Wang, W.; Wu, J.; Stroe, D.-I. Lithium-ion battery state of health estimation using a hybrid model with electrochemical impedance spectroscopy. Reliab. Eng. Syst. Saf. 2024, 252, 110450–110466. [Google Scholar] [CrossRef]
- Murawwat, S.; Gulzar, M.M.; Alzahrani, A.; Hafeez, G.; Khan, F.A.; Abed, A.M. State of charge estimation and error analysis of lithium-ion batteries for electric vehicles using Kalman filter and deep neural network. J. Energy Storage 2023, 72, 108039–108060. [Google Scholar]
- Najera-Flores, D.A.; Hu, Z.; Chadha, M.; Todd, M.D. A physics-constrained Bayesian neural network for battery remaining useful life prediction. Appl. Math. Model. 2023, 122, 42–59. [Google Scholar] [CrossRef]
- Wang, F.; Zhai, Z.; Zhao, Z.; Di, Y.; Chen, X. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis. Nat. Commun. 2024, 15, 4332–4343. [Google Scholar] [CrossRef]
- Kouhestani, H.S.; Liu, L.; Wang, R.; Chandra, A. Data-driven prognosis of failure detection and prediction of lithium-ion batteries. J. Energy Storage 2023, 70, 108045–108056. [Google Scholar] [CrossRef]
Author | Years | Target Estimation States | Methods | Highlights |
---|---|---|---|---|
Zhou et al. [36] | 2023 | SOC | ECM-based, data-driven | Emphasizes the potential application of cutting-edge technologies in battery state estimation, such as intelligent sensing, big data, and cloud computing. |
Tao et al. [37] | 2024 | SOC, SOH | ECM-based, EM-based, data-driven, hybrid models | Provides a comprehensive analysis of different types of algorithms, with an in-depth discussion on the critical role of datasets and future trends in state estimation. |
Liu et al. [38] | 2023 | SOH | ECM-based, data-driven | Systematically reviews the application of Electrochemical impedance spectroscopy (EIS) in SOH estimation for LIB. |
Urquizo et al. [39] | 2023 | SOH | ECM-based, EM-based, empirical models, performance-based, statistical models | Discusses each model’s advantages and disadvantages in detail, emphasizes the need for new testing standards and experimental data for battery energy systems, and summarizes the results of accelerated aging tests. |
Liu et al. [40] | 2023 | SOC, SOH, SOP, State of energy (SOE), State of temperature (SOT) | ECM-based, data-driven | Systematically summarizes the definitions of seven major battery states and their interrelationships, highlighting the technical challenges and future directions for multi-state joint estimation. |
Sun et al. [41] | 2023 | SOH | ECM-based, data-driven | Highlights the advantages of EIS as a non-destructive testing method and proposes a trend toward combining model-driven and data-driven approaches. |
Ren et al. [42] | 2023 | SOC, SOH | Data-driven | Discusses the performance of different machine learning algorithms through numerous practical application cases from recent studies. |
Martí-Florences et al. [43] | 2023 | SOC, SOH | ECM-based, EM-based, data-driven | Focuses on various EM simplification methods and provides an in-depth analysis of finite-dimensional simplification models, such as finite difference and finite volume methods. |
Ouyang et al. [44] | 2023 | SOH, RUL | ECM-based, EM-based, empirical models, black-box models | Conducts a systematic review of battery aging mechanisms, model construction, and SOH estimation, integrating Bayesian methods with existing battery health management techniques. |
Yang et al. [45] | 2024 | SOH | ECM-based, EM-based, data-driven | Systematically summarizes data-driven and hybrid methods, reviews commonly used public battery datasets and provides a forward-looking analysis of SOH estimation trends. |
Abbreviations | Explanations | Abbreviations | Explanations |
---|---|---|---|
AEKF | Adaptive Extended Kalman Filter | MPC | Model Predictive Control |
AR | Autoregressive | NARX | Nonlinear Autoregressive with eXogenous Inputs |
Attention | Attention Mechanism | OCV | Open Circuit Voltage |
DaNN | Domain-Adversarial Neural Network | PCA | Principal Component Analysis |
DFNN | Deep Feedforward Neural Network | PINN | Physics-Informed Neural Network |
DGMDN | Deep Gaussian Mixture Density Network | Rint-DM | Rint Difference Model |
ECS | Equivalent Circuit Simulation | RLS | Recursive Least Squares |
FEA | Finite Element Analysis | RVM | Relevance Vector Machine |
FFRLS | Forgetting Factor Recursive Least Square | SEI | Solid Electrolyte Interphase |
GPR | Gaussian Process Regression | SMO | Sliding Mode Observer |
GRU | Gated Recurrent Unit | SPM | Single Particle Model |
HMA | Heterogeneous Multi-Physics Aging | SPMT | Single Particle Thermodynamic Model |
ICA | Incremental Capacity Analysis | UKF | Unscented Kalman Filter |
LightGBM | Light Gradient Boosting Machine | WLS-SVM | Weighted Least Squares Support Vector Machine |
LS-SVM | Least Squares Support Vector Machine | WQR | Weighted Quantile Regression |
State Type | Definition Method | Definition Formula | Formula Description | References |
---|---|---|---|---|
SOC | Capacity ratio method | : Current remaining capacity; : Current actual maximum capacity | Chen et al. [46]; Takyi-Aninakwa et al. [47]; Fan et al. [48] | |
Open circuit voltage method | : SOC-OCV mapping relationship | Li et al. [49]; Chen et al. [50]; Barcellona et al. [51] | ||
SOH | Capacity fade method | : Current available capacity; : Initial capacity of a new battery | Vignesh et al. [52]; Dini et al. [53]; Gao et al. [54] | |
Internal resistance method | : Initial internal resistance; : Internal resistance at the end of life; : Internal resistance at sampling time t | Demirci et al. [55]; Xie et al. [56]; Su et al. [57] | ||
SOP | Power output ratio method | : Current power; : Maximum power | Shrivastava et al. [58]; Raoofi et al. [59]; Dai et al. [60] | |
Maximum power point method | : Open circuit voltage; : Minimum allowable voltage; : Battery internal resistance | Guo et al. [61]; Rojas et al. [62]; Naseri et al. [63] | ||
SOE | Energy ratio method | : Current remaining energy; : Total energy of the battery | Mukherjee et al. [64]; Zhang et al. [65]; Zhang et al. [66] | |
RUL | Cycle life method | : Total design life; : Cycles used | Ren et al. [67]; Shan et al. [68]; Uzair et al. [69] |
Model Type | Required Data | Primary Applications | Applicable Algorithms | Relevant References |
---|---|---|---|---|
Equivalent circuit model | Current; Voltage; Temperature | SOC, SOH, SOP | EKF; Ampere-hour integration; RLS | Ramezani-al et al. (2023) [75] |
Rodríguez-Iturriaga et al. (2023) [76] | ||||
Li et al. (2023) [77] | ||||
An et al. (2023) [78] | ||||
Li et al. (2023) [79] | ||||
Electrochemical model | Current; Voltage; Temperature | SOC, SOH, SOE, RUL | EKF; PF; FEA; Differential equation | Wang et al. (2023) [80] |
Feng et al. (2024) [81] | ||||
Hashemzadeh et al. (2024) [82] | ||||
Yu et al. (2024) [83] | ||||
Yu et al. (2023) [84] | ||||
Thermo-electric coupling model | Current; Voltage; Battery Temperature; Ambient Temperature | SOC, SOE, RUL | EKF; PF; FEA | Chen et al. (2024) [85] |
Zeng et al. (2024) [86] | ||||
Xu et al. (2023) [87] | ||||
Liu et al. (2023) [88] | ||||
Gayathri et al. (2024) [89] | ||||
Aging model | Current; Voltage; Temperature; Cycle Count | SOH, RUL | RLS; Monte Carlo simulation; Time series analysis | Li et al. (2024) [90] |
Fang et al. (2023) [91] | ||||
Zhang et al. (2023) [92] | ||||
Hofmann et al. (2024) [93] | ||||
Wang et al. (2023) [94] |
Learning Method | Base Model Name | Algorithm Abbreviation | Target Estimated State | Relevant Literature |
---|---|---|---|---|
Supervised learning | SVM | WLS-SVM | RUL | Xiong et al. (2023) [95] |
ANN | Elman-NN | SOT | Wang et al. (2023) [96] | |
LSTM | SA-LSTM | RUL | Wang et al. (2023) [97] | |
RF | NN-RF-BO | RUL | Zhang et al. (2023) [98] | |
GBDT | LightGBM-WQR | SOH | Qin et al. (2023) [99] | |
Unsupervised learning | K-Means | KMC-GBP | SOC | Hai et al. (2023) [100] |
GMM | DGMDN | SOH | Fei et al. (2023) [101] | |
PCA | PCA-PSO-BPNN | SOH | Wu et al. (2023) [102] | |
Autoencoder | CD-Net | RUL | Sudarshan et al. (2024) [103] | |
DBSCAN | DFMF | SOH | Zeng et al. (2023) [104] |
Base Model Name | Relied Physical-Chemical Mechanisms | Base Algorithms | Target Estimated States | Related References |
---|---|---|---|---|
Improved Electro-thermal Aging Multi-Physics Coupling Model | Second-order RC model, simplified thermal path model, slow capacity degradation phenomenon | AMTDIE, FFRLS, EKF | SOC, SOT, SOH | Shi et al. (2024) [105] |
Electrochemical-Thermal-Aging Coupling Model | SEI layer formation and growth, lithium deposition, manganese dissolution and migration | Arrhenius empirical formula, Butler–Volmer equation, Bernardi equation | SOT, SOH | Xi et al. (2024) [106] |
HMA Model | Active material loss, diffusion-induced stress, SEI layer formation and growth | Least squares fitting method, boundary parameter determination method | SOH, RUL | Wang et al. (2023) [107] |
Electrochemical-Thermal-Aging Coupling Model | Electrochemical reaction kinetics, SEI layer formation, lithium metal deposition, thermodynamic model | MPC, UKF | SOC, SOH, RUL | Zhou et al. (2024) [108] |
Thevenin Model—Second-Order RC Model | Battery electrochemical characteristics analysis based on Shepherd and Nernst models | FFRLS, UKF, Bayesian fusion with probability weighting, RLS | SOC | Li et al. (2023) [109] |
Fusion Type | Base Models | Fusion Theory Basis | Target State Estimation | Relevant Literature |
---|---|---|---|---|
Spatiotemporal feature fusion neural network | CNN, Bi-LSTM, Attention Mechanism | Spatiotemporal feature decomposition and fusion, Enhanced nonlinear mapping, Selective focusing via attention mechanism | SOC | Sun et al. (2024) [110] |
Data-driven multi-model fusion Kalman filtering | GPR, BRR, RFR, DNN | Quantification of uncertainty from multi-source heterogeneous models, Dynamic weighted fusion with Kalman filtering | SOH | Zhang et al. (2024) [111] |
Gaussian process reconstruction-memory fusion under random charging | GPR, LSTM | Synergy between data reconstruction and sequence modeling, Enhanced by uncertainty quantification | SOH | Xiong et al. (2023) [112] |
NARX-DS adaptive separation attention network | NARX model, DS Attention Mechanism | Feature separation of exogenous inputs and state outputs, Adaptive weight optimization, Closed-loop NARX to enhance prediction accuracy | SOC, SOH | Xia et al. (2024) [113] |
Multi-kernel incremental regression with seasonal adaptive filtering | Multi-kernel Incremental RVM, Seasonal ARIMA, AEKF | Adaptive integration of multiple kernel functions, Combination of time-series prediction and dynamic filtering, Optimal parameter adaptive tuning | SOC | Wang et al. (2023) [114] |
Fusion Theory Basis | Physical Model | Data-Driven Model | Target Estimated State | Related Literature |
---|---|---|---|---|
SPMT-derived features fed into BiLSTM | SPMT | BiLSTM | SOT | Pang et al. (2023) [115] |
Bayesian-based multi-network fusion | Second-order RC model | RVM | SOC | Mao et al. (2023) [116] |
ECS structure-based fusion LSTM model | ECS layer | LSTM | RUL, SOH | Nguyen et al. (2023) [117] |
Physics-based direct fusion in PINN | Battery thermal and chemical dynamic physical models | PINN | SOT | Kim et al. (2023) [118] |
Multi-physics data for neural network training | Thermal models, P2D models, and degradation models | CNN, YOLO | SOT | Goswami et al. (2024) [119] |
ECM-based modeling with data-driven deep learning | Second-order RC model | ILSTM | SOC | Wang et al. (2024) [120] |
Novel mean-difference fusion for AR and ECM | Rint-DM | AR-MM | SOC | Liu et al. (2023) [121] |
Multi-state estimation with GRU and Ampere-hour integration | Ampere-hour integration | GRU | SOC, SOH | Zhang et al. (2024) [122] |
EIS-based physical info for DaNN training | EIS | DaNN, GPR | SOH | Wu et al. (2024) [123] |
ECM-based DFNN fusion architecture | Second-order RC model | DFNN | SOC | Murawwat et al. (2023) [124] |
Physics degradation model-constrained BNN | Failure prediction model | BNN | RUL | Najera-Flores et al. (2023) [125] |
Physics-based degradation-constrained neural network training | Empirical degradation model | DFNN | SOH | Wang et al. (2024) [126] |
Multi-physics, multi-scale fault prediction via local conservation principles | Energy conservation and momentum conservation principles | Local curvature information and model-independent of training data | RUL | Kouhestani et al. (2023) [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Wang, S.; Cao, W.; Fernandez, C.; Blaabjerg, F. A Comprehensive Review of Multiple Physical and Data-Driven Model Fusion Methods for Accurate Lithium-Ion Battery Inner State Factor Estimation. Batteries 2024, 10, 442. https://doi.org/10.3390/batteries10120442
Tao J, Wang S, Cao W, Fernandez C, Blaabjerg F. A Comprehensive Review of Multiple Physical and Data-Driven Model Fusion Methods for Accurate Lithium-Ion Battery Inner State Factor Estimation. Batteries. 2024; 10(12):442. https://doi.org/10.3390/batteries10120442
Chicago/Turabian StyleTao, Junjie, Shunli Wang, Wen Cao, Carlos Fernandez, and Frede Blaabjerg. 2024. "A Comprehensive Review of Multiple Physical and Data-Driven Model Fusion Methods for Accurate Lithium-Ion Battery Inner State Factor Estimation" Batteries 10, no. 12: 442. https://doi.org/10.3390/batteries10120442
APA StyleTao, J., Wang, S., Cao, W., Fernandez, C., & Blaabjerg, F. (2024). A Comprehensive Review of Multiple Physical and Data-Driven Model Fusion Methods for Accurate Lithium-Ion Battery Inner State Factor Estimation. Batteries, 10(12), 442. https://doi.org/10.3390/batteries10120442