Influence of the Arrangement of the Cells/Modules of a Traction Battery on the Spread of Fire in Case of Thermal Runaway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.1.1. Controlled Fire Test of an Electric Vehicle
2.1.2. Identification of the Most Damaged Cells in the Analyzed Battery
2.1.3. Generation of Samples for Structural and Cross-Sectional Analysis
2.1.4. Method for Carrying Out the Surface and Structural Analysis
2.1.5. Method for Carrying Out the Chemical Analysis
3. Results and Discussion
3.1. Surface Test Results: Surface Properties and Chemical Composition Analysis
3.2. Structural Test Results: Layer Properties of the Cell and Identification of Cell Details
4. Conclusions
- -
- After thermal runaway, the cathode surface is covered with off-white floccules, fragment debris from cathode materials, ash from cathode material and separators, and products of exothermal reactions and traces of anode graphite. It is observed that in the case of module 11, there are more dark-colored floccules than in the case of module 30, and there are more in the upper cathode than in the lower cathode. Therefore, it is concluded that module 11, in a vertical arrangement, experiences higher temperatures in the thermal runaway at the same SoC as module 30, which is in a horizontal arrangement.
- -
- Regarding the morphology, it is observed that in the case of the lower cathode of module 30 (horizontal arrangement), the particles are smaller compared to the upper cathode of module 30. This may be due to the higher temperature since it is more exposed. In the case of module 11 (vertical arrangement), there is no difference between the particle size of the upper cathode and the lower cathode.
- -
- It is observed that in the case of modules 30 and 11 with a SoC at 68% after thermal runaway, the pouch cell layered structure was destroyed, and adhesion of the particles dispersed outside the original layered structure occurred. The positive electrode material (cathode) reacted at high temperatures and decomposed. On the other hand, carbon particles from the anode (negative electrode) went into the cathode (positive electrode) structure through the damaged diaphragm.
- -
- In the lower cathode of module 30, there are higher amounts of fluorine, aluminum, manganese, phosphorus, nickel, and cobalt than in the upper cathode.
- -
- Regarding module 11, a higher amount of the aluminum and oxygen compound is observed. This may be because, in this case, the aluminum collector has been more damaged than in the case of module 30.
- -
- The analysis of the cell anodes after the fire test shows that the anode has peaks of oxygen and peaks of carbon, which could indicate the formation of lithium carbonate (Li2CO3). Nevertheless, we have to note that the EDS data can only identify elemental composition and its weight/atomic percentage without offering insights into the chemical structure of components.
- -
- After carrying out the comparative analysis of the different cathodes analyzed, it can be concluded that the cathodes of the ignited modules present compounds containing the elements of the cathode coating, but also present in some areas aluminum from the melting of the aluminum collector of the cathode and copper from the melting of the copper collector of the anode. There are also traces of fluorine from the electrolyte (LiPF6). Copper only appears on the lower cathode of module 11, yet more compounds appear, so it can be concluded that this is the most damaged cathode analyzed.
- -
- It is observed that when the cell fails, the pressure caused by the swelling due to outgassing leaves visible fractures in the cathode.
- -
- Analysis of the stacked layer samples allowed us to understand interesting aspects of the interior of the investigated battery, including in the tab area of the battery an additional separator layer, and it showed that on the edge of the battery, the separator and bag were welded together.
- -
- When analyzing the structure, it is observed that in zone 3, the cell of module 11 on the outside and the cell of module 30 on the inside are more damaged.
- -
- In both zone 1 (anode) and zone 2 (cathode), the cell of module 30 is more damaged than that of module 11 and in the case of zone 2.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noh, H.J.; Youn, S.; Yoon, C.S.; Sun, Y.K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 2013, 233, 121–130. [Google Scholar] [CrossRef]
- Electrek 2018. Available online: https://electrek.co/2018/06/16/tesla-model-s-battery-fire-investigating/ (accessed on 28 November 2023).
- Yahoo!News. 2019. Available online: https://sg.news.yahoo.com/tesla-car-catches-fire-hong-kong-parking-lot-050418281--finance.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAClpkmgR9urlu5KzzVB-y0uh0DW8ghCIrL9EdFrWSrIT8vBTETyCHsDA7mD5_1traEOgmIBOpuOZXf4YnfLD95g-yLPIlILgysRGQE48TSCJ4CdwpZKHvgTWfNP0r98GLV4CHFC9g-qRRZo2c0GcQPZZ3X4LK_4Y66TUg90JdNlN (accessed on 28 November 2023).
- CNN Business. 2019. Available online: https://edition.cnn.com/2019/05/16/business/tesla-fire-battery-software-update/index.html#:~:text=Tesla%20is%20upgrading%20the%20battery,and%20improve%20their%20overall%20longevity (accessed on 28 November 2023).
- Electrek. 2023. Available online: https://electrek.co/2023/04/27/tesla-fire-police-believed-battery-arson/ (accessed on 28 November 2023).
- Carnewschina. 2023. Available online: https://carnewschina.com/2023/08/09/tesla-model-s-fire-in-sichuan/ (accessed on 28 November 2023).
- Cbsnews. 2023. Available online: https://www.cbsnews.com/sacramento/news/tesla-spontaneously-catches-fire-in-rancho-cordova-high-end-vehicle-scrap-yard/ (accessed on 28 November 2023).
- Sun, P.; Bisschop, R.; Niu, H.; Huang, X. A Review of Battery Fires in Electric Vehicles. Fire Technol. 2020, 56, 1361–1410. [Google Scholar] [CrossRef]
- Balakrishnan, P.G.; Ramesh, R.; Kumar, T.P. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414. [Google Scholar] [CrossRef]
- Chen, M.; Yuen, R.; Wang, J. An experimental study about the effect of arrangement on the fire behaviors of lithium-ion batteries. J. Therm. Anal. Calor 2017, 129, 181–188. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal Runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Wang, H.; Lara-Curzio, E.; Rule, E.T.; Winchester, C.S. Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries. J. Power Sources 2017, 342, 913–920. [Google Scholar] [CrossRef]
- Huang, P.; Wang, Q.; Li, K.; Ping, P.; Sun, J. The combustion behavior of large scale lithium titanate battery. Sci. Rep. 2015, 5, 7788. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Lu, S.; Li, K.; Liu, C.; Cheng, X.; Zhang, H. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. J. Power Sources 2015, 273, 216–222. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, D.; Chen, X.; Zhang, W.; Liu, J.; Yuen, R.; Wang, J. Investigation on the Thermal Hazards of 18650 Lithium IonBatteries by Fire Calorimeter. J. Therm. Anal. Calorim. 2015, 122, 755–763. [Google Scholar] [CrossRef]
- Feng, X.; Fang, M.; He, X.; Ouyang, M.; Lu, L.; Wang, H.; Zhang, M. TR features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources 2014, 255, 294–301. [Google Scholar] [CrossRef]
- Roth, E.P.; Doughty, D.H. Thermal abuse performance of high-power 18650 Li-ion cells. J. Power Sources 2004, 128, 308–318. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Yao, X.; Chen, C. Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries. J. Electrochem. Soc. 2006, 153, A329–A333. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Zhang, S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 2020, 24, 247–254. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, L.; Ju, X.; Liao, B.; Ye, K.; Li, L.; Cao, B.; Ni, Y. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J. Hazard. Mater. 2020, 381, 120916. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Bai, F.; Chen, M.; Song, W.; Feng, Z.; Li, Y.; Ding, Y. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source. Appl. Therm. Eng. 2017, 126, 17–27. [Google Scholar] [CrossRef]
- Garg, M.; Tanim, T.R.; Rahn, C.D.; Bryngelsson, H.; Legnedahl, N. Elevated temperature for life extension for lithium ion power cells. Energy 2018, 159, 716–723. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Mechanism of gases generation during lithium-ion batteries cycling. J. Electrochem. Soc. 2019, 166, A897–A908. [Google Scholar] [CrossRef]
- Wang, G.; Kong, D.; Ping, P.; He, X.; Lv, H.; Zhao, H.; Hong, W. Modelingventing behavior of lithium-ion batteries during thermal runaway propa-gation by coupling CFD and thermal resistance network. Appl. Energy 2023, 334, 12066. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, N.; Jiang, F. Study on the effect of spacing on thermal runaway propagation for lithium-ion batteries. J. Therm. Anal. Calorim. 2020, 140, 2849–2863. [Google Scholar] [CrossRef]
- Fang, J.; Cai, J.; He, X. Experimental study on the vertical thermal runaway propagation in cylindrical Lithium-ion batteries: Effects of spacing and state of charge. Appl. Therm. Eng. 2021, 197, 11739. [Google Scholar] [CrossRef]
- Feng, X.; Sun, J.; Ouyang, M.; Wang, F.; He, X.; Lu, L.; Peng, H. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J. Power Sources 2015, 275, 261–273. [Google Scholar] [CrossRef]
- Feng, X.; Lu, L.; Ouyang, M.; Li, J.; He, X. A 3D thermal runaway propagation model for a large format lithium ion battery module. Energy 2016, 115, 194–208. [Google Scholar] [CrossRef]
- Lopez, C.F.; Jeevarajan, J.A.; Mukherjee, P.P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J. Electrochem. Soc. 2015, 162, A1905–A1915. [Google Scholar] [CrossRef]
- Wilke, S.; Schweitzer, B.; Khateeb, S.; Al-Hallaj, S. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. J. Power Sources 2017, 340, 51–59. [Google Scholar] [CrossRef]
- Lamb, J.; Orendorff, C.J.; Steele, L.A.M.; Spangler, S.W. Failure propagation in multi-cell lithium ion batteries. J. Power Sources 2015, 283, 517–523. [Google Scholar] [CrossRef]
- Gao, S.; Feng, X.; Lu, L.; Kamyab, N.; Du, J.; Comsn, P.; White, R.E.; Ouyang, M. An experimental and analytical study of thermal runaway propagation in a large format lithium ion battery module with NMC pouch-cells in parallel. Int. J. Heat Mass Transf. 2019, 135, 93–103. [Google Scholar] [CrossRef]
- Kovachev, G.; Schröttner, H.; Gstrein, G.; Aiello, L.; Hanzu, I.; Wilkening, H.M.R.; Foitzik, A.; Wellm, M.; Sinz, W.; Ellersdorfer, C. Analytical Disection of an Automotive Li-Ion Pouch Cell. Batteries 2019, 5, 67. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, Z.; Wang, Z.; Wang, H.; Lin, N.; Shan, C. Thermal runaway in commercial lithium-ion cells under overheating condition and the safety assessment method: Effects of SoCs, cathode materials and packaging forms. J. Energy Storage 2023, 68, 107768. [Google Scholar] [CrossRef]
- Shin, H.; Lee, Y.K.; Lu, W. Structural degradation of graphite anode induced by dissolved manganese ions in lithium-ion batteries. J. Power Sources 2022, 528, 231223. [Google Scholar] [CrossRef]
- Arora, P.; Zhang, Z. Battery Separators. Chem. Rev. 2004, 104, 4419–4462. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.J.; Guo, Y.Z.; Kang, J.Q. Ternary-material lithium-ion battery SOC estimation under various ambient temperature. Ionics 2018, 24, 1907–1917. [Google Scholar] [CrossRef]
- Wang, J.L.; Wu, H.L.; Cui, Y.H. A new class of ternary compound for lithium-ion battery: From composite to solid solution Acs. Appl. Mater. Interfaces 2018, 10, 5125–5231. [Google Scholar] [CrossRef]
- Xie, H.J.; Sun, J.; Li, J.G.; Zhou, T.; Wei, S.P.; Yi, Z.H. Lithium-Ion Battery Thermal Runaway Electro-Thermal Triggering. Method and Toxicity Analysis. IOP Conf. Ser. Earth Environ. Sci. 2021, 701, 012007. [Google Scholar] [CrossRef]
- Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Michiel, M.D.; Hinds, G.; Bretta, D.J.L.; Shearing, P.R. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: An operando and multi-scale X-ray CT study†. Phys. Chem. Chem. Phys. 2016, 18, 30912–30919. [Google Scholar] [CrossRef]
Vehicle | Battery Electric Vehicle |
---|---|
Date of first registration | 17 December 2015 |
Range | 121 km (EPA test) |
Battery specifications | |
Capacity | 24 kWh |
Battery Voltage | 360 V |
Battery | Lithium-ion battery |
Cell type | Laminate-type, pouch cells |
Cathode Active Material | LMO (LiMn2O4) with NCA (lithium nickel-cobalt-aluminium oxide Ni0.8Co0.15Al0.05O2) |
Anode Active Material | Graphite |
Capacity | 32.5 Ah |
Nominal Voltage | 3.75 V |
Battery Modules | 48 |
Cells per module | 4 |
Energy Density | 157 Wh/kg |
Battery Weight | ~180 kg |
Battery Price | 7000 € |
State of Charge (SoC) | 68.0% |
Fire test specifications | |
Place and date | Zaragoza, 5 December 2019 |
Vehicle under test | Battery Electric Vehicle |
TEST | |
Vehicle | Vehicle only with voltage battery |
Fire | Ignition Burners (fossil fuel) |
Method to extinguish the fire | Bridgehill Car Fire Blanket |
Temperature monitoring | Thermal Imaging Infrared Camera: FLIR T640 |
Thermal Imaging Infrared camera distance | 13.7 m |
Ambient Temperature | 7.1 °C |
Average Wind Speed | 2.5 m/s |
Maximum Wind Speed | 8.9 m/s |
Maximum Temperature reached | ~1000 °C |
Time to start Battery Thermal Runaway | ~8 min |
After removing the blanket | |
Amount of water to extinguish the fire | 400 L |
Standard Detectors | Detected Signals | Typical Application |
In-lens detector (annular SE detector) | SE | Surface Structure |
SE detector (Everhart-Thornley type) | SE2 | Topography |
Optional Detectors | Detected Signals | Typical Application |
EsB® detector with filtering grid (in-column detector) | BSE | Pure material contrast |
AsB® detector, integrated | BSE | Channeling contrast (cristal orientation), compositional contrast |
C | O | F | Al | Mn | Co | Ni | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | ||
Compound 1: LiNiMnCoO2 | Spectrum 1 | 8.46 | 19.32 | 29.5 | 50.6 | 1.42 | 1.44 | 3.89 | 1.94 | 9.57 | 4.45 | 46.69 | 21.82 | ||
Compound 2; LMO + F | Spectrum 2 | 5.19 | 11.84 | 31.29 | 53.52 | 2.54 | 3.66 | 1.17 | 1.19 | 59.8 | 29.79 |
O | F | Al | P | Mn | Ni | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | ||
Compound 1: Mn and O, with some F and P | Spectrum 1 | 26.91 | 50.88 | 6.7 | 10.66 | 1.26 | 1.41 | 2.94 | 2.87 | 60.38 | 33.24 | 1.81 | 0.93 |
Compound 2: F and Ni | Spectrum 2 | 30.55 | 47.88 | 20.86 | 27.54 | 4.49 | 4.17 | 1.47 | 1.19 | 34.57 | 15.78 | 7.19 | 3.07 |
O | F | Al | Mn | Co | Ni | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | ||
Compound 1: O and Mn | Spectrum 1 | 29.71 | 59.05 | 0.59 | 0.7 | 67.4 | 39.01 | 0.74 | 0.4 | 1.56 | 0.85 | ||
Compound 2: O and Ni, with some Mn, F, Co and Al | Spectrum 2 | 24.77 | 49.88 | 6.17 | 10.46 | 2.04 | 2.43 | 10.63 | 1.19 | 5.68 | 3.1 | 50.56 | 27.74 |
C | O | Al | Mn | Co | Ni | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | ||
Compound 1: C and O | Spectrum 1 | 17.92 | 22.61 | 81.51 | 77.2 | 0.12 | 0.07 | 0.44 | 0.12 | ||||
Compound 2: O and Al | Spectrum 2 | 6.49 | 9.97 | 60.91 | 70.18 | 25.88 | 17.68 | 2.79 | 0.94 | 3.93 | 1.23 | ||
Compound 3: C, O and Ni, with some Al, Mn and Co | Spectrum 3 | 23.4 | 47.63 | 17.05 | 26.05 | 2.59 | 2.35 | 5.46 | 2.43 | 5.51 | 2.29 | 45.69 | 19.03 |
C | O | F | Al | Mn | Co | Ni | Cu | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | |
Spectrum 1 Compound 1: Ni, Mn, O, Cu, C, Co with F | 5.73 | 15.49 | 17.97 | 36.46 | 4.28 | 7.32 | 1.08 | 1.3 | 18.06 | 10.67 | 4.4 | 2.42 | 37.3 | 20.62 | 11.19 | 5.72 |
Spectrum 2 Compound 2: Ni, Mn, Co, O, C | 2.02 | 7.83 | 5.95 | 17.34 | 0.36 | 0.61 | 21.87 | 18.56 | 9.06 | 7.17 | 60.4 | 47.98 | ||||
Spectrum 3 Compound 3: Cu and O | 14.26 | 33.54 | 20.81 | 36.75 | 0.45 | 0.47 | 5.56 | 2.86 | 0.49 | 0.23 | 2.75 | 1.32 | 55.56 | 24.71 | ||
Spectrum 4 Compound 4: Ni, O, Mn with F | 8.5 | 18.07 | 24.26 | 38.71 | 14.7 | 19.75 | 0.29 | 0.28 | 13.23 | 6.15 | 4.44 | 1.92 | 34.36 | 14.94 | ||
Spectrum 5 Compound 5: Mn and O with Al | 9.2 | 17.35 | 37.15 | 52.58 | 3.81 | 4.54 | 11.71 | 9.83 | 34.42 | 14.19 | 2.14 | 0.82 | 1.3.6 | 0.48 |
CATHODE | Compound 1 | Compound 2 | Compound 3 | Compound 4 | Compound 5 | Comments |
---|---|---|---|---|---|---|
Pristine Cathode | LiNiMnCoO2 | LMO + F | 1. Compound 1 is the chemistry of a NMC cathode 2. Compound 2 is an LMO, and the F may be from the electrolyte (LiPF6) in contact with the cathode and anode. | |||
Upper Cathode of Module 30 | Mn and O, with some F and P | F and Ni | 1. Compound 2 is due to the reactions in the TR, and is why there are leftovers of the electrolyte. | |||
Lower Cathode of Module 30 | O and Mn | O and Ni with some Mn, F, Co, and Al | 1. Aluminum of compound 2 comes from the fusion of the cathode aluminum collector. | |||
Upper Cathode of Module 11 | C and O | O and Al | C, O, Mn, Co, and Ni, with some Al | 1. Compound 2 is formed from the fusion of the cathode aluminum collector. 2. The aluminum of compound 3 comes from the fusion of the cathode aluminum collector. | ||
Lower Cathode of Module 11 | Ni, Mn, O, C, Co with Al and Cu | Ni, Mn, C, Co and O | Cu and O | Ni, O, Mn with F | Mn and O with Al | 1. Compound 1 presents all the elements of the cathode coating; the copper may come from the anode collector. 2. Compound 3 has probably been formed because the anode collector has melted. 3. Compound 4 has F due to the reactions in the TR and why there are leftovers of the electrolyte. 4. Compound 5 is formed from the active material of the cathode, and there is also aluminum from the aluminum collector of the cathode. |
C | O | F | P | S | Mn | Cu | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | |
Spectrum 1 Compound 1: C, O, F and P | 17.9 | 27.54 | 21.36 | 24.67 | 37.97 | 36.93 | 8.55 | 5.1 | 5.31 | 3.06 | 2.14 | 0.72 | 6.77 | 1.97 |
Spectrum 2 Compound 2: C, O, F with P | 56.04 | 67.86 | 16.53 | 15.03 | 18.19 | 13.92 | 2.64 | 1.24 | 1.84 | 0.83 | 0.86 | 0.23 | 3.91 | 0.89 |
C | O | F | Mg | Si | Ca | Fe | Cu | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | |
Spectrum 3 Compound 3: O, Ca and C | 7.4 | 14.33 | 35.64 | 51.81 | 0.89 | 1.08 | 0.56 | 0.53 | 0.46 | 0.38 | 53.72 | 31.17 | 0.94 | 0.39 | ||
Spectrum 4 Compound 4: C, O, Fe with F | 10.61 | 25.37 | 20.01 | 35.94 | 1.62 | 2.44 | 0.58 | 0.69 | 1.35 | 1.38 | 0.42 | 0.3 | 60.39 | 31.07 | 2.8 | 1.27 |
C | O | F | Al | P | Mn | Cu | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | |
Spectrum 1 Compound 5: Mn and O | 6.69 | 14.5 | 31.1 | 50.57 | 5.27 | 7.22 | 1.15 | 1.11 | 0.47 | 0.39 | 53.59 | 25.38 | 1.45 | 0.59 |
C | O | F | Si | P | S | Mn | Cu | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | |
Spectrum 2 Compound 6: C and O with F and P, Cu and S | 37.83 | 51.52 | 23.87 | 24.41 | 19.17 | 16.51 | 1.78 | 1.04 | 3.4 | 1.8 | 2.98 | 1.52 | 0.92 | 0.27 | 8.8 | 2.27 |
C | O | F | P | Cu | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | ||
Compound 1: Cu and O | Spectrum 2 | 12.44 | 29.63 | 22.9 | 40.97 | 0.58 | 0.54 | 64.08 | 28.86 | ||
Compound 2: C and O | Spectrum 3 | 80.31 | 85.45 | 16.39 | 13.09 | 0.82 | 0.55 | 1.93 | 0.8 | 0.55 | 0.11 |
C | O | Cu | |||||
---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | ||
Compound 3: Cu, C and O | Spectrum 4 | 10.15 | 25.18 | 23.45 | 43.67 | 66.4 | 31.14 |
C | O | F | P | Mn | Ni | Cu | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | |
Spectrum 1 Compound 3: Cu, C and O | 8.8 | 23.11 | 21.12 | 41.67 | 0.63 | 0.65 | 0.36 | 0.21 | 1.1 | 0.59 | 67.98 | 33.77 | ||
Spectrum 2 Compound 3: Cu, C and O | 11.2 | 26.72 | 22.2 | 39.69 | 3.28 | 4.95 | 4.02 | 1.96 | 59.27 | 26.68 | ||||
Spectrum 3 Compound 4: F, Cu and O | 5.77 | 9.93 | 7.7 | 9.96 | 68.03 | 74.09 | 18.51 | 6.03 | ||||||
Spectrum 4 Compound 1: Cu and O | 5.03 | 7.99 | 71.19 | 84.87 | 23.78 | 7.14 |
C | O | F | P | Cu | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | ||
Compound 1: C and O with F | Spectrum 1 | 19.23 | 24.44 | 70.73 | 67.49 | 10.04 | 8.07 | ||||
Compound 2: Cu, C and O | Spectrum 2 | 15.55 | 45.38 | 2.89 | 6.34 | 2.29 | 4.22 | 0.56 | 0.63 | 78.71 | 43.42 |
C | O | F | Al | P | Mn | Cu | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | |
Spectrum 1 Compound 1: C | 100 | 100 | ||||||||||||
Spectrum 2 Compound 2: F, Cu and O | 3.16 | 6.28 | 11.72 | 17.47 | 48.95 | 61.48 | 1.45 | 1.29 | 1.02 | 0.78 | 0.77 | 0.33 | 32.93 | 12.37 |
Spectrum 3 Compound 3: Cu, C and O | 17.7 | 40.76 | 16.52 | 28.58 | 1.73 | 2.52 | 0.35 | 0.36 | 0.68 | 0.34 | 63.01 | 27.44 | ||
Spectrum 4 Compound 4: Cu, C and O | 22.43 | 46.75 | 19.34 | 30.25 | 0.92 | 0.42 | 57.31 | 22.57 | ||||||
Spectrum 5 Compound 5: Cu, C and O | 8.13 | 21.76 | 21.06 | 42.31 | 1.55 | 0.91 | 69.25 | 35.03 | ||||||
Spectrum 6 Compound 3: Cu, C and O | 9.09 | 19.54 | 34.02 | 54.92 | 2.19 | 2.98 | 0.76 | 0.63 | 53.93 | 21.92 |
C | O | F | P | Mn | Cu | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | ||
Compound 1: F, Cu and O | Spectrum 1 | 11.27 | 16.76 | 56.01 | 70.15 | 2.12 | 1.63 | 30.6 | 11.46 | ||||
Compound 2: Cu and O | Spectrum 2 | 9.43 | 16.41 | 54.94 | 71.73 | 2.98 | 1.13 | 32.65 | 10.73 | ||||
Compound 1: F, Cu and O | Spectrum 3 | 3.02 | 5.83 | 8.14 | 11.78 | 58.17 | 70.9 | 0.83 | 0.62 | 29.84 | 10.87 | ||
Compound 1: F, Cu and O | Spectrum 4 | 7.66 | 15.87 | 11.24 | 17.48 | 37.6 | 49.28 | 0.71 | 0.57 | 0.41 | 0.18 | 42.39 | 16.61 |
Compound 3: Cu, C and O | Spectrum 5 | 10.03 | 25.01 | 20.16 | 37.73 | 3.81 | 6 | 0.2 | 0.2 | 0.79 | 0.43 | 65.01 | 30.63 |
Compound 3: Cu, C and O | Spectrum 6 | 10.49 | 26.3 | 22.19 | 41.76 | 0.56 | 0.31 | 66.76 | 31.63 |
ANODE | Compound 1 | Compound 2 | Compound 3 | Compound 4 | Compound 5 | Compound 6 | Comments |
---|---|---|---|---|---|---|---|
Pristine Anode | C, O, F with P | C, O, F with P | O, Ca, and C | C, O, Fe, with F | Mn and O | C and O with F and P, Cu, and S | 1. The F of compound 1 can be attributed to the decomposition of the electrolyte. 2. The C of compound 2 allows the active material of the anode (graphite). The traces of P are remnants of the electrolyte (LiPF6). 3. In compounds 3 and 4, there are Ca and Fe due to the preparation of the sample (impurities). 4. The Mn in compound 5 comes from the manganese-based cathode. 5. In compound 6, the traces of F and P may be due to electrolytes, and the traces of Cu and S may be due to the sample preparation (impurities). |
Upper Anode of Module 30 | Cu and O | C and O | Cu, C, and O | F, Cu, and O | 1. Compound 1 may be due to the anode collector having melted due to elevated temperatures. 2. The compound 2 may be due to the coating of the graphite anode. 3. In the case of compound 3, it can come, on the one hand, from Cu due to the melting of the copper collector of the anode and, on the other hand, from C due to the coating of the graphite anode. 4. The existence of F in compound 4 is due to the electrolyte. | ||
Lower Anode of Module 30 | C and O with F | Cu, C, and O | 1. The compound 1 may be due to the coating of the graphite anode. And the existence of F is due to the electrolyte. 2. In the case of compound 2, its elements can come, on the one hand, from Cu due to the melting of the copper collector of the anode, and on the other hand, C from the coating of the graphite anode. | ||||
Upper Anode of Module 11 | C | F, Cu, and O | Cu, C, and O | 1. Compound 1 is C, coming from graphite. 2. The existence of F in compound 2 is due to the electrolyte. And Cu comes from the melting of the copper collector of the anode. 3. In the case of compound 3, its elements can come, on the one hand, from Cu due to the melting of the copper collector of the anode, and on the other hand, C from the coating of the graphite anode. | |||
Lower Anode of Module 11 | F, Cu, and O | Cu and O | Cu, C, and O | 1. The existence of F in compound 2 is due to electrolyte. And Cu comes from the melting of the copper collector of the anode. 2. In the case of compound 3, its elements can come, on the one hand, from Cu due to the melting of the copper collector of the anode and, on the other hand, from C due to the coating of the graphite anode. |
C | O | F | P | Cu | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | |
Spectrum 1 | 81.14 | 71.43 | 1.57 | 1.84 | 14.57 | 20.29 | 2.61 | 5.94 | 0.11 | 0.51 |
Spectrum 2 | 83.58 | 74.96 | 1.87 | 2.24 | 12.39 | 17.59 | 2.07 | 4.79 | 0.09 | 0.42 |
Spectrum 3 | 81.16 | 71.74 | 1.73 | 2.03 | 14.49 | 20.26 | 2.61 | 5.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olona, A.; Castejón, L. Influence of the Arrangement of the Cells/Modules of a Traction Battery on the Spread of Fire in Case of Thermal Runaway. Batteries 2024, 10, 55. https://doi.org/10.3390/batteries10020055
Olona A, Castejón L. Influence of the Arrangement of the Cells/Modules of a Traction Battery on the Spread of Fire in Case of Thermal Runaway. Batteries. 2024; 10(2):55. https://doi.org/10.3390/batteries10020055
Chicago/Turabian StyleOlona, Ana, and Luis Castejón. 2024. "Influence of the Arrangement of the Cells/Modules of a Traction Battery on the Spread of Fire in Case of Thermal Runaway" Batteries 10, no. 2: 55. https://doi.org/10.3390/batteries10020055
APA StyleOlona, A., & Castejón, L. (2024). Influence of the Arrangement of the Cells/Modules of a Traction Battery on the Spread of Fire in Case of Thermal Runaway. Batteries, 10(2), 55. https://doi.org/10.3390/batteries10020055