Heat Effects during the Operation of Lead-Acid Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Foundation
2.2. Equipment and Materials Used
2.3. Measurement Methodology and Experimental Conditions
3. Results
3.1. Cycling of the Cell CC/CV
3.2. Discharging
3.3. Charging
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dimopoulou, S.; Oppermann, A.; Boggasch, E.; Rausch, A. A Markov Decision Process for managing a Hybrid Energy Storage System. J. Energy Storage 2018, 19, 160–169. [Google Scholar] [CrossRef]
- Mugyema, M.; Botha, C.D.; Kamper, M.J.; Wang, R.J.; Sebitosi, A.B. Levelised cost of storage comparison of energy storage systems for use in primary response application. J. Energy Storage 2023, 59, 106573. [Google Scholar] [CrossRef]
- Laaksonen, H. Improvement of Power System Frequency Stability with Universal Grid-Forming Battery Energy Storages. IEEE Access 2023, 11, 10826–10841. [Google Scholar] [CrossRef]
- Choi, D.; Shamim, N.; Crawford, A.; Huang, Q.; Vartanian, C.K.; Viswanathan, V.V.; Paiss, M.D.; Alam, M.J.E.; Reed, D.M.; Sprenkle, V.L. Li-ion battery technology for grid application. J. Power Sources 2021, 511, 230419. [Google Scholar] [CrossRef]
- Poullikkas, A. A comparative overview of large-scale battery systems for electricity storage. Renew. Sustain. Energy Rev. 2013, 27, 778–788. [Google Scholar] [CrossRef]
- Shamsi, S.S.M.; Barberis, S.; Maccarini, S.; Traverso, A. Large scale energy storage systems based on carbon dioxide thermal cycles: A critical review. Renew. Sustain. Energy Rev. 2024, 192, 114245. [Google Scholar] [CrossRef]
- Salem, M.H.; Mansouri, K.; Chauveau, E.; Ben Salem, Y.; Abdelkrim, M.N. Multi-Power System Electrical Source Fault Review. Energies 2024, 17, 1187. [Google Scholar] [CrossRef]
- Krishnamoorthy, M.; Periyanayagam, A.; Kumar, C.S.; Kumar, B.P.; Srinivasan, S.; Kathiravan, P. Optimal Sizing, Selection, and Techno-Economic Analysis of Battery Storage for PV/BG-Based Hybrid Rural Electrification System. IETE J. Res. 2022, 68, 4061–4076. [Google Scholar] [CrossRef]
- Dietz, A.; Hörlin, S.; Graß, N. High voltage Battery storage system for multiuse. In Proceedings of the 11th International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 6–8 April 2016. [Google Scholar]
- Wecel, D.; Jurczyk, M.; Uchman, W.; Skorek-Osikowska, A. Investigation on System for Renewable Electricity Storage in Small Scale Integrating Photovoltaics, Batteries, and Hydrogen Generator. Energies 2020, 13, 6039. [Google Scholar] [CrossRef]
- Oancea, C.D. Aspects of Renewable Energy Supply to Small Consumers. In Proceedings of the International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 25–27 October 2012; pp. 964–967. [Google Scholar]
- Makola, C.S.; Le Roux, P.F.; Jordaan, J.A. Comparative Analysis of Lithium-Ion and Lead-Acid as Electrical Energy Storage Systems in a Grid-Tied Microgrid Application. Appl. Sci. 2023, 13, 3137. [Google Scholar] [CrossRef]
- Sajjad, M.; Zhang, J.; Zhang, S.; Zhou, J.; Mao, Z.; Chen, Z. Long-Life Lead-Carbon Batteries for Stationary Energy Storage Applications. Chem. Rec. 2024, 24, e202300315. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, B.; Sun, Q.; Wennersten, R. Application of energy storage in integrated energy systems—A solution to fluctuation and uncertainty of renewable energy. J. Energy Storage 2022, 52, 104812. [Google Scholar] [CrossRef]
- Choi, K.W.; Yao, N.P. Heat Transfer in Lead-Acid Batteries Designed for Electric-Vehicle Propulsion Application. J. Electrochem. Soc. 1979, 126, 1321. [Google Scholar] [CrossRef]
- Torabi, F.; Esfahanian, V. Study of Thermal–Runaway in Batteries I. Theoretical Study and Formulation. J. Electrochem. Soc. 2011, 158, A850. [Google Scholar] [CrossRef]
- Torabi, F.; Esfahanian, V. Study of Thermal-Runaway in Batteries: II. The Main Sources of Heat Generation in Lead-Acid Batteries. J. Electrochem. Soc. 2013, 160, A223. [Google Scholar] [CrossRef]
- May, G.J.; Davidson, A.; Monahov, B. Lead batteries for utility energy storage: A review. J. Energy Storage 2018, 15, 145–157. [Google Scholar] [CrossRef]
- Khan, M.R.; Swierczynski, M.J.; Kær, S.K. Towards an ultimate battery thermal management system: A review. Batteries 2017, 3, 9. [Google Scholar] [CrossRef]
- Henke, M.; Hailu, G. Thermal Management of Stationary Battery Systems: A Literature Review. Energies 2020, 13, 4194. [Google Scholar] [CrossRef]
- Newman, J.; Tiedemann, W. Temperature Rise in a Battery Module with Constant Heat Generation. J. Electrochem. Soc. 1995, 142, 1054. [Google Scholar] [CrossRef]
- Cai, L.; White, R.E. Reduction of model order based on proper orthogonal decomposition for lithium-ion battery simulations. J. Electrochem. Soc. 2008, 156, A154. [Google Scholar] [CrossRef]
- Cai, L.; White, R.E. An efficient electrochemical–thermal model for a lithium-ion cell by using the proper orthogonal decomposition method. J. Electrochem. Soc. 2010, 157, A1188. [Google Scholar] [CrossRef]
- Ansari, A.B.; Esfahanian, V.; Torabi, F. Discharge, rest and charge simulation of lead-acid batteries using an efficient reduced order model based on proper orthogonal decomposition. Appl. Energy 2016, 173, 152–167. [Google Scholar] [CrossRef]
- Esfahanian, V.; Shahbazi, A.A.; Torabi, F. A real-time battery engine simulation tool (BEST) based on lumped model and reduced-order modes: Application to lead-acid battery. J. Energy Storage 2019, 24, 100780. [Google Scholar] [CrossRef]
- Ansari, A.B.; Esfahanian, V.; Torabi, F. Thermal-electrochemical simulation of lead-acid battery using reduced-order model based on proper orthogonal decomposition for real-time monitoring purposes. J. Energy Storage 2021, 44, 103491. [Google Scholar] [CrossRef]
- Broda, B.; Inzelt, G. Internal resistance and temperature change during over-discharge of lead-acid battery. J. Electrochem. Sci. Eng. 2018, 8, 129–139. [Google Scholar] [CrossRef]
- Křivík, P. Nové poznatky ve vývoji, výzkumu a optimalizaci olověných akumulátorů (New Findings in Research, Development And Optimization Of Lead-Acid Batteries). Věd. Sp. Vysok. Uč. Tech. V Brně Edice Habilitační Inaug. Sp. 2015, 495, 1–29. (In Czech) [Google Scholar]
- Křivík, P.; Vanýsek, P. Changes of temperature during pulse charging of lead acid battery cell in a flooded state. J. Energy Storage 2017, 14, 364–371. [Google Scholar] [CrossRef]
- Křivík, P. Temperature Changes of Lead Acid Battery Cell with Pulse Charging in a Flooded State. ECS Trans. 2016, 74, 123. [Google Scholar] [CrossRef]
- Křivík, P. Influence of the Oxygen Cycle on the Temperature of the Lead Acid Battery Cell. ECS Trans. 2014, 48, 273. [Google Scholar] [CrossRef]
- Kiehne, H.A. Battery Technology Handbook (Electrical & Computer Engineering), 2nd ed.; Kiehne, H.A., Ed.; CRC Press: Boca Raton, FL, USA, 2003; p. 542. [Google Scholar]
- Treptow, R.S. The Lead-Acid Battery: Its Voltage in Theory and in Practice. J. Chem. Educ. 2002, 79, 334. [Google Scholar] [CrossRef]
- NIST. NIST Chemistry WebBook. Available online: https://webbook.nist.gov/ (accessed on 13 January 2024).
- Pavlov, D. Energy balance of the closed oxygen cycle and processes causing thermal runaway in valve-regulated lead/acid batteries. J. Power Sources 1997, 64, 131–137. [Google Scholar] [CrossRef]
- Spingler, F.B.; Naumann, M.; Jossen, A. Capacity Recovery Effect in Commercial LiFePO4/Graphite Cells. J. Electrochem. Soc. 2020, 167, 040526. [Google Scholar] [CrossRef]
- Berndt, D. Electrochemical Energy Storage. In Battery Technology Handbook, 2nd ed.; Kiehne, H.A., Ed.; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Berndt, D.; Spahrbier, D. Batteries, 1. General. In Ullmann’s Energy: Resources, Processes, Products; Elvers, B., Ed.; Wiley-VCH: Weinheim, Germany, 2015; Volume 1, pp. 3–25. [Google Scholar]
- Giauque, W.F.; Hornung, E.W.; Kunzler, J.E.; Rubin, T.R. The Thermodynamic Properties of Aqueous Sulfuric Acid Solutions and Hydrates from 15 to 300°K. J. Am. Chem. Soc. 1960, 82, 62–70. [Google Scholar] [CrossRef]
- Pavlov, D. Lead-Acid Batteries: Science and Technology–A Handbook of Lead-Acid Battery Technology and Its Influence on the Product, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 621–662. [Google Scholar]
- Hu, J.; Guo, Y.; Zhou, X. Thermal runaway of valve-regulated lead-acid batteries. J. Appl. Electrochem. 2006, 36, 1083–1089. [Google Scholar] [CrossRef]
- Calábek, M.; Micka, K.; Bača, P.; Křivák, P.; Šmarda, V. Analysis of positive-plate resistance during cycling and the effect of compression. J. Power Sources 1997, 67, 85–91. [Google Scholar] [CrossRef]
- Vinod, M.P.; Vijayamohanan, K. Effect of gelling on the impedance parameters of Pb/PbSO4 electrode in maintenance-free lead-acid batteries. J. Power Sources 2000, 89, 88–92. [Google Scholar] [CrossRef]
- Calábek, M.; Micka, K. Time effects in conductivity measurements of lead/acid battery electrodes. J. Power Sources 1990, 30, 309–314. [Google Scholar] [CrossRef]
- Micka, K.; Calábek, M.; Bača, P.; Křivák, P.; Lábus, R.; Bilko, R. Studies of doped negative valve-regulated lead-acid battery electrodes. J. Power Sources 2009, 191, 154–158. [Google Scholar] [CrossRef]
Discharging | |||||||
---|---|---|---|---|---|---|---|
Interval | t | R | QJ | QR | Qcell | Qcal | Qz |
min | mΩ | J | J | J | J | J | |
1 | 245 | 99.5 | 2106 | −1278 | 474 | 227 | 128 |
2 | 93 | 150 | 1205 | −485 | 545 | 129 | 99 |
Charging | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Interval | t | R | QJ | QR | Qcell | Qcal | Qz | Rpol | Qjpol | QRP |
min | mΩ | J | J | J | J | J | mΩ | J | J | |
1 | 17 | 152 | 223 | 89 | 252 | 35 | 34 | |||
2 | 35 | 95 | 287 | 183 | 293 | 45 | 97 | |||
3 | 165 | 94 | 1340 | 861 | 555 | 144 | 615 | |||
4 | 67 | 93 | 538 | 349 | 566 | 144 | 314 | 46 | 265 | |
5 | 769 | 93 | 260 | 440 | −2819 | −718 | 1059 | >138 | 1003 | −1524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bača, P.; Vanýsek, P.; Langer, M.; Zimáková, J.; Chladil, L. Heat Effects during the Operation of Lead-Acid Batteries. Batteries 2024, 10, 148. https://doi.org/10.3390/batteries10050148
Bača P, Vanýsek P, Langer M, Zimáková J, Chladil L. Heat Effects during the Operation of Lead-Acid Batteries. Batteries. 2024; 10(5):148. https://doi.org/10.3390/batteries10050148
Chicago/Turabian StyleBača, Petr, Petr Vanýsek, Martin Langer, Jana Zimáková, and Ladislav Chladil. 2024. "Heat Effects during the Operation of Lead-Acid Batteries" Batteries 10, no. 5: 148. https://doi.org/10.3390/batteries10050148
APA StyleBača, P., Vanýsek, P., Langer, M., Zimáková, J., & Chladil, L. (2024). Heat Effects during the Operation of Lead-Acid Batteries. Batteries, 10(5), 148. https://doi.org/10.3390/batteries10050148