Surface Modification Induces Oriented Zn(002) Deposition for Highly Stable Zinc Anode
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Guo, S.; Zhou, H. Recent Advances in Manipulating Strategy of Aqueous Electrolytes for Zn Anode Stabilization. Energy Storage Mater. 2023, 56, 227–257. [Google Scholar] [CrossRef]
- Bai, L.; Hu, Z.; Hu, C.; Zhang, S.; Ying, Y.; Zhang, Y.; Li, L.; Zhang, H.; Li, N.; Shi, S.; et al. Utilizing Cationic Vacancies and Spontaneous Polarization on Cathode to Enhance Zinc-Ion Storage and Inhibit Dendrite Growth in Zinc-Ion Batteries. Angew. Chemie-Int. Ed. 2023, 62, 2301631. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Huang, J. Chemical Passivation Stabilizes Zn Anode. Adv. Mater. 2022, 34, 2109872. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, N.; Long, C.; Dong, B.; Fang, D.; Liu, Z.; Zhao, Y.; Li, X.; Fan, J.; Chen, S.; et al. Achieving Both High Voltage and High Capacity in Aqueous Zinc-Ion Battery for Record High Energy Density. Adv. Funct. Mater. 2019, 29, 1906142. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, R.; Wang, Y.; Hu, Z.; Wang, Y.; Zhang, A.; Wu, C.; Bai, Y. Insights on Artificial Interphases of Zn and Electrolyte: Protection Mechanisms, Constructing Techniques, Applicability, and Prospective. Adv. Funct. Mater. 2023, 33, 2213510. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Zhang, X.; Xu, W.; Chen, W.; Zhao, K.; Wang, Y.; Hong, S.; Wu, Q.; Li, M.C.; et al. Synergic Effect of Dendrite-Free and Zinc Gating in Lignin-Containing Cellulose Nanofibers-MXene Layer Enabling Long-Cycle-Life Zinc Metal Batteries. Adv. Sci. 2022, 9, 2202380. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, Y.; Han, G.; Li, X.; Yuan, T.; Sun, H.; Gong, Y.; Chen, T. Recent Progress in Electrolyte Additives for Highly Reversible Zinc Anodes in Aqueous Zinc Batteries. Batteries 2023, 9, 284. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, S.; Li, Y.; Zheng, Z.; Dong, L. Sieve-Like Interface Built by ZnO Porous Sheets towards Stable Zinc Anodes. J. Colloid Interface Sci. 2023, 630, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Jin, Q.; Jiang, X.; Dang, Z.M.; Zhang, D.; Jin, Y. Vertical Crystal Plane Matching between AgZn3 (002) and Zn(002) Achieving a Dendrite-Free Zinc Anode. Small 2022, 18, 2200131. [Google Scholar] [CrossRef]
- Zhang, H.; Zhong, Y.; Li, J.; Liao, Y.; Zeng, J.; Shen, Y.; Yuan, L.; Li, Z.; Huang, Y. Inducing the Preferential Growth of Zn(002) Plane for Long Cycle Aqueous Zn-Ion Batteries. Adv. Energy Mater. 2023, 13, 2203254. [Google Scholar] [CrossRef]
- Shangguan, M.; Wang, K.; Zhao, Y.; Xia, L. Tetraethylene Glycol Dimethyl Ether (TEGDME)-Water Hybrid Electrolytes Enable Excellent Cyclability in Aqueous Zn-Ion Batteries. Batteries 2023, 9, 462. [Google Scholar] [CrossRef]
- Kong, D.; Zhang, Q.; Li, L.; Zhao, H.; Liu, R.; Guo, Z.; Wang, L. A Self-Growing 3D Porous Sn Protective Layer Enhanced Zn Anode. Batteries 2023, 9, 262. [Google Scholar] [CrossRef]
- Yang, H.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X.; He, P.; Zhou, H. Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angew. Chemie 2020, 132, 9463–9467. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, R.; Peng, C.; Chen, W.; Wu, T.; Hu, B.; Weng, W.; Yao, Y.; Zeng, J.; Chen, Z.; et al. Horizontally Arranged Zinc Platelet Electrodeposits Modulated by Fluorinated Covalent Organic Framework Film for High-Rate and Durable Aqueous Zinc Ion Batteries. Nat. Commun. 2021, 12, 6606. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Wang, X.; Liu, Z.; Lei, H.; Cui, S.; Xie, X.; Hu, Y.; Ma, G. Alleviating Zn Dendrites by Growth of Ultrafine ZnO Nanowire Arrays through Horizontal Anodizing for High-Capacity, Long-Life Zn Ion Capacitors. ACS Appl. Mater. Interfaces 2023, 15, 4071–4080. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Y.; Yu, H.; Liu, W.; Kuang, G.; Mei, L.; Wu, Z.; Wei, W.; Ji, X.; Qu, B.; et al. A Multifunctional Artificial Interphase with Fluorine-Doped Amorphous Carbon Layer for Ultra-Stable Zn Anode. Adv. Funct. Mater. 2022, 32, 2205600. [Google Scholar] [CrossRef]
- Feng, J.; Li, X.; Cui, X.; Zhao, H.; Xi, K.; Ding, S. Periodically Alternating Electric Field Layers Induces the Preferential Growth of Zn(002) Plane for Ultralow Overpotential Zinc-Ion Batteries. Adv. Energy Mater. 2023, 13, 2204092. [Google Scholar] [CrossRef]
- Chen, M.; Yang, M.; Zhou, W.; Tian, Q.; Han, X.; Chen, J.; Zhang, P. Oriented Zn Plating Guided by Aligned ZnO Hexagonal Columns Realizing Dendrite-Free Zn Metal Electrodes. J. Colloid Interface Sci. 2023, 644, 368–377. [Google Scholar] [CrossRef]
- Xin, T.; Wang, Y.; Xu, Q.; Shang, J.; Yuan, X.; Song, W.; Liu, J. Forming an Amorphous ZnO Nanosheet Network by Confined Parasitic Reaction for Stabilizing Zn Anodes and Reducing Water Activity. ACS Appl. Energy Mater. 2022, 5, 2290–2299. [Google Scholar] [CrossRef]
- Hu, X.; Borowiec, J.; Zhu, Y.; Liu, X.; Wu, R.; Ganose, A.M.; Parkin, I.P.; Boruah, B.D. Dendrite-Free Zinc Anodes Enabled by Exploring Polar-Face-Rich 2D ZnO Interfacial Layers for Rechargeable Zn-Ion Batteries. Small 2023, 2306827, 2306827. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Yuan, H.; Xiong, F.; Liu, Q.; An, Y.; Zhang, J.; Wu, L.; Sun, J.; Zhang, Y.W.; et al. Achieving Highly Reversible Zinc Metal Anode via Surface Termination Chemistry. Sci. Bull. 2023, 68, 2993–3002. [Google Scholar] [CrossRef]
- Wang, R.; Xin, S.; Chao, D.; Liu, Z.; Wan, J.; Xiong, P.; Luo, Q.; Hua, K.; Hao, J.; Zhang, C. Fast and Regulated Zinc Deposition in a Semiconductor Substrate toward High-Performance Aqueous Rechargeable Batteries. Adv. Funct. Mater. 2022, 32, 2207751. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, H.; Ren, Y.; Mo, L.; He, Y.; Tan, P.; Huang, Y.; Li, Z.; Zhu, D.; Hu, L. Building Near-Unity Stacked (002) Texture for High-Stable Zinc Anode. Adv. Funct. Mater. 2023, 34, 2312506. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, X.; Liu, R.; Yang, Z.; Zhang, S.; Zhang, Y.; Wang, H.; Cao, Y.; Chen, A.; Sun, J. Manipulating the Zinc Deposition Behavior in Hexagonal Patterns at the Preferential Zn (100) Crystal Plane to Construct Surficial Dendrite-Free Zinc Metal Anode. Small 2022, 18, 2105978. [Google Scholar] [CrossRef]
- Li, T.; Hu, S.; Wang, C.; Wang, D.; Xu, M.; Chang, C.; Xu, X.; Han, C. Engineering Fluorine-Rich Double Protective Layer on Zn Anode for Highly Reversible Aqueous Zinc-Ion Batteries. Angew. Chemie Int. Ed. 2023, 62, 2314883. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Fu, K.; Yu, R.; Zhu, J.; Cai, H.; Zhang, X.; Wu, J.; Luo, W.; Mai, L. Ion Tunnel Matrix Initiated Oriented Attachment for Highly Utilized Zn Anodes. Adv. Mater. 2023, 35, 2302353. [Google Scholar] [CrossRef]
- Jia, R.; Zhang, R.; Yu, L.; Kong, X.; Bao, S.; Tu, M.; Liu, X.; Xu, B. Engineering a Hierarchical Carbon Supported Magnetite Nanoparticles Composite from Metal Organic Framework and Graphene Oxide for Lithium-Ion Storage. J. Colloid Interface Sci. 2023, 630, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Allouche, A. Software News and Updates Gabedit—A Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2012, 32, 174–182. [Google Scholar] [CrossRef]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef]
- Yin, H.; Liu, Y.; Zhu, Y.; Ye, F.; Xu, G.; Lin, M.; Kang, W. Bimetal-Initiated Concerted Zn Regulation Enabling Highly Stable Aqueous Zn-Ion Batteries. Batteries 2024, 10, 70. [Google Scholar] [CrossRef]
- Kim, E.; Vaynzof, Y.; Sepe, A.; Guldin, S.; Scherer, M.; Cunha, P.; Roth, S.V.; Steiner, U. Gyroid-Structured 3D ZnO Networks Made by Atomic Layer Deposition. Adv. Funct. Mater. 2014, 24, 863–872. [Google Scholar] [CrossRef]
- Fan, C.; Meng, W.; Li, D.; Jiang, L. Stratified Adsorption Strategy Facilitates Highly Stable Dendrite Free Zinc Metal Anode. Energy Storage Mater. 2023, 56, 468–477. [Google Scholar] [CrossRef]
- Han, Y.; Wang, F.; Zhang, B.; Yan, L.; Hao, J.; Zhu, C.; Zou, X.; Zhou, Y.; Xiang, B. Building Block Effect Induces Horizontally Oriented Bottom Zn(002) Deposition for a Highly Stable Zinc Anode. Energy Storage Mater. 2023, 62, 102928. [Google Scholar] [CrossRef]
- Bao, S.; Tu, M.; Huang, H.; Wang, C.; Chen, Y.; Sun, B.; Xu, B. Heterogeneous Iron Oxide Nanoparticles Anchored on Carbon Nanotubes for High-Performance Lithium-Ion Storage and Fenton-like Oxidation. J. Colloid Interface Sci. 2021, 601, 283–293. [Google Scholar] [CrossRef]
- Ke, X.; Li, L.; Wang, S.; Wang, A.; Jiang, Z.; Wang, F.R.; Kuai, C.; Guo, Y. Mn-Oxide Cathode Material for Aqueous Zn-Ion Battery: Structure, Mechanism, and Performance. Next Energy 2024, 2, 100095. [Google Scholar] [CrossRef]
- Liang, R.; Fu, J.; Deng, Y.P.; Pei, Y.; Zhang, M.; Yu, A.; Chen, Z. Parasitic Electrodeposition in Zn-MnO2 Batteries and Its Suppression for Prolonged Cyclability. Energy Storage Mater. 2021, 36, 478–484. [Google Scholar] [CrossRef]
- Xie, F.; Li, H.; Wang, X.; Zhi, X.; Chao, D.; Davey, K.; Qiao, S.Z. Mechanism for Zincophilic Sites on Zinc-Metal Anode Hosts in Aqueous Batteries. Adv. Energy Mater. 2021, 11, 2003419. [Google Scholar] [CrossRef]
- Zhao, R.; Dong, X.; Liang, P.; Li, H.; Zhang, T.; Zhou, W.; Wang, B.; Yang, Z.; Wang, X.; Wang, L.; et al. Prioritizing Hetero-Metallic Interfaces via Thermodynamics Inertia and Kinetics Zincophilia Metrics for Tough Zn-Based Aqueous Batteries. Adv. Mater. 2023, 35, 2209288. [Google Scholar] [CrossRef]
- Li, Y.; Jia, H.; Ali, U.; Liu, B.; Gao, Y.; Li, L.; Zhang, L.; Chai, F.; Wang, C. In-Situ Interfacial Layer with Ultrafine Structure Enabling Zinc Metal Anodes at High Areal Capacity. Chem. Eng. J. 2022, 450, 138374. [Google Scholar] [CrossRef]
- Tan, L.; Wei, C.; Zhang, Y.; An, Y.; Xiong, S.; Feng, J. Long-Life and Dendrite-Free Zinc Metal Anode Enabled by a Flexible, Green and Self-Assembled Zincophilic Biomass Engineered MXene Based Interface. Chem. Eng. J. 2022, 431, 134277. [Google Scholar] [CrossRef]
- Wang, M.; Wu, X.; Yang, D.; Zhao, H.; He, L.; Su, J.; Zhang, X.; Yin, X.; Zhao, K.; Wang, Y.; et al. A Colloidal Aqueous Electrolyte Modulated by Oleic Acid for Durable Zinc Metal Anode. Chem. Eng. J. 2023, 451, 138589. [Google Scholar] [CrossRef]
- Li, Y.; Wu, P.; Zhong, W.; Xie, C.; Xie, Y.; Zhang, Q.; Sun, D.; Tang, Y.; Wang, H. A Progressive Nucleation Mechanism Enables Stable Zinc Stripping-Plating Behavior. Energy Environ. Sci. 2021, 14, 5563–5571. [Google Scholar] [CrossRef]
- Qin, H.; Kuang, W.; Hu, N.; Zhong, X.; Huang, D.; Shen, F.; Wei, Z.; Huang, Y.; Xu, J.; He, H. Building Metal-Molecule Interface towards Stable and Reversible Zn Metal Anodes for Aqueous Rechargeable Zinc Batteries. Adv. Funct. Mater. 2022, 32, 2206695. [Google Scholar] [CrossRef]
- Li, Y.; Jia, H.; Ali, U.; Wang, H.; Liu, B.; Li, L.; Zhang, L.; Wang, C. Successive Gradient Internal Electric Field Strategy Toward Dendrite-Free Zinc Metal Anode. Adv. Energy Mater. 2023, 13, 2301643. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, T.; Yin, J.; Tian, Z.; Ma, Y.; Liu, Z.; Zhu, Y.; Alshareef, H.N. Controlled Deposition of Zinc-Metal Anodes via Selectively Polarized Ferroelectric Polymers. Adv. Mater. 2022, 34, 2106937. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.G.; Hua, W.; Sun, H.; Huyan, Y.; Tian, S.; Hou, Z.; Yang, J.; Wei, C.; Kang, F. Building Ohmic Contact Interfaces toward Ultrastable Zn Metal Anodes. Adv. Sci. 2021, 8, 2102612. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Xi, M.; Huang, Y.; Li, H.; Jin, H.; Ding, J.; Zhang, S.; Zhang, C.; Guo, Z. Interfacial Engineering of Zn Metal via a Localized Conjugated Layer for Highly Reversible Aqueous Zinc Ion Battery. Angew. Chemie Int. Ed. 2024, 63, 2319091. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, F.; Li, Z.; Gao, L.; Xu, B.; Wang, C. Surface Modification Induces Oriented Zn(002) Deposition for Highly Stable Zinc Anode. Batteries 2024, 10, 178. https://doi.org/10.3390/batteries10060178
Zhang H, Li F, Li Z, Gao L, Xu B, Wang C. Surface Modification Induces Oriented Zn(002) Deposition for Highly Stable Zinc Anode. Batteries. 2024; 10(6):178. https://doi.org/10.3390/batteries10060178
Chicago/Turabian StyleZhang, Hongfei, Fujie Li, Zijin Li, Liu Gao, Binghui Xu, and Chao Wang. 2024. "Surface Modification Induces Oriented Zn(002) Deposition for Highly Stable Zinc Anode" Batteries 10, no. 6: 178. https://doi.org/10.3390/batteries10060178
APA StyleZhang, H., Li, F., Li, Z., Gao, L., Xu, B., & Wang, C. (2024). Surface Modification Induces Oriented Zn(002) Deposition for Highly Stable Zinc Anode. Batteries, 10(6), 178. https://doi.org/10.3390/batteries10060178