Research on the Human–Robot Collaborative Disassembly Line Balancing of Spent Lithium Batteries with a Human Factor Load
Abstract
:1. Introduction
- (1)
- Establishing a human–robot collaborative disassembly line balancing model for SLIB considering time smoothness and workload smoothness.
- (2)
- Drawing an improved multi-objective optimization algorithm with Gaussian mutation and crowding distance.
- (3)
- Validating the effectiveness and sensitivity of models and algorithms by combining an SLIB disassembly practical case.
2. Human–Robot Collaborative Disassembly Modeling
2.1. Problem Description
2.2. Symbolic Description
2.3. Mathematical Model Construction
- (1)
- The structural information of the product to be dismantled is known and can be completely disassembled, and each task can be performed by an operator or robot.
- (2)
- The robot tool conversion time is ignored, and there is no fault in the execution of the equipment.
- (3)
- The disassembly time for the manual completion of the same task is the same, and the unit labor cost is the same.
- (4)
- The total disassembly time is determined by humans, robots, or both.
- (5)
- Under manual disassembly and the human–robot collaborative disassembly mode, the workload consumed by the task is fixed.
- (6)
- Each workstation can only be assigned a maximum of one employee and one robot.
- (7)
- Only one type of battery is disassembled.
3. Improved Multi-Objective Fruit Fly Optimization Algorithm
3.1. Encoding and Decoding
3.2. Population Initialization
3.3. Olfactory Search
3.4. Visual Operation
3.5. External File Update
4. Computational Experiment and Analysis
4.1. Experimental Design
4.2. Result Analysis
4.3. Algorithm Comparative Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaines, L. Lithium-ion battery recycling processes: Research towards a sustainable course. Sustain. Mater. Technol. 2018, 17, e00068. [Google Scholar] [CrossRef]
- Scheller, C.; Schmidt, K.; Spengler, T.S. Effects of network structures on the production planning in closed-loop supply chains-A case study based analysis for lithium-ion batteries in Europe. Int. J. Prod. Econ. 2023, 162, 108892. [Google Scholar] [CrossRef]
- Hao, H.; Liu, Z.; Zhao, F.; Geng, Y.; Sarkis, J. Material flow analysis of lithium in China. Resour. Policy 2017, 51, 100–106. [Google Scholar] [CrossRef]
- Alessia, A.; Alessandro, B.; Maria, V.-G.; Carlos, V.-A.; Francesca, B. Challenges for sustainable lithium supply: A critical review. J. Clean. Prod. 2021, 300, 126954. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, J.; Zhang, C.; Zhao, J.; Wang, G. Flexible integrated network planning considering echelon utilization of second life of used electric vehicle batteries. IEEE Trans. Transp. Electrif. 2022, 8, 263–276. [Google Scholar] [CrossRef]
- Wang, C.; Feng, X.T.; Woo, S. The optimization of an EV decommissioned battery recycling network: A third-party approach. J. Environ. Manag. 2023, 348, 119299. [Google Scholar] [CrossRef]
- Yuan, G.; Liu, X.; Zhang, C.; Pham, D.T.; Li, Z. A new heuristic algorithm based on multi-criteria resilience assessment of human–robot collaboration disassembly for supporting spent lithium-ion battery recycling. Eng. Appl. Artif. Intell. 2023, 126, 106878. [Google Scholar] [CrossRef]
- Yuan, G.; Liu, X.; Zhu, C.; Wang, C.; Zhu, M.; Sun, Y. Multi-objective coupling optimization of electrical cable intelligent production line driven by digital twin. Robot. Comput.-Integr. Manuf. 2024, 86, 102682. [Google Scholar] [CrossRef]
- Alfaro-Algaba, M.; Ramirez, F. Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resour. Conserv. Recycl. 2020, 154, 104461. [Google Scholar] [CrossRef]
- Wegener, K.; Andrew, S.; Raatz, A.; Dröder, K.; Herrmann, C. Disassembly of electric vehicle batteries using the example of the Audi Q5 hybrid system. Procedia CIRP 2014, 23, 155–160. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, T.E.; Rübenbauer, W.; Rutrecht, B.; Pomberger, R. Forecasting real disassembly time of industrial batteries based on virtual MTM-UAS data. Procedia CIRP 2018, 69, 927–931. [Google Scholar] [CrossRef]
- Cong, L.; Zhou, K.; Liu, W.; Li, R. Retired lithium-ion battery pack disassembly line balancing based on precedence graph using a hybrid genetic-firework algorithm for remanufacturing. J. Manuf. Sci. Eng.-Trans. ASME 2023, 145, 051007. [Google Scholar] [CrossRef]
- Xiao, J.; Anwer, N.; Li, W.; Eynard, B.; Zheng, C. Dynamic Bayesian network-based disassembly sequencing optimization for electric vehicle battery. CIRP J. Manuf. Sci. Technol. 2022, 38, 824–835. [Google Scholar] [CrossRef]
- Baazouzi, S.; Grimm, J.; Birke, K.P. Multi-method model for the investigation of disassembly scenarios for electric vehicle batteries. Batteries 2023, 9, 587. [Google Scholar] [CrossRef]
- Xiao, J.H.; Jiang, C.R.; Wang, B. A review on dynamic recycling of electric vehicle battery: Disassembly and echelon utilization. Batteries 2023, 9, 57. [Google Scholar] [CrossRef]
- Tan, W.J.; Chin, C.M.; Garg, A.; Gao, L. A hybrid disassembly framework for disassembly of electric vehicle batteries. Int. J. Energy Res. 2021, 45, 8073–8082. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, Z.; Zhu, S.; Zhang, H. A knowledge graph based disassembly sequence planning for end-of-life power battery. Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 7, 849–861. [Google Scholar] [CrossRef]
- Herrmann, C.; Raatz, A.; Mennenga, M.; Schmitt, J.; Andrew, S. Assessment of automation potentials for the disassembly of automotive lithium ion battery systems. In Leveraging Technology for a Sustainable World, Proceedings of the 19th CIRP Conference on Life Cycle Engineering, Berkeley, CA, USA, 23–25 May 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 149–154. [Google Scholar]
- Hellmuth, J.; Difilippo, N.; Jouaneh, M. Assessment of the automation potential of electric vehicle battery disassembly. J. Manuf. Syst. 2021, 59, 398–412. [Google Scholar] [CrossRef]
- Chou, M.; Marti, B.; Tyapin, I. Task planner for robotic disassembly of electric vehicle battery pack. Metals 2021, 11, 387. [Google Scholar] [CrossRef]
- Zhou, L.; Garg, A.; Zheng, J.; Gao, L.; Oh, K.Y. Battery pack recycling challenges for the year 2030: Recommended solutions based on intelligent robotics for safe and efficient disassembly, residual energy detection, and secondary utilization. Energy Storage 2020, 3, e190. [Google Scholar] [CrossRef]
- Wegener, K.; Chen, W.H.; Dietrich, F.; Dröder, K.; Kara, S. Robot assisted disassembly for the recycling of electric vehicle batteries. Procedia CIRP 2015, 29, 716–721. [Google Scholar] [CrossRef]
- Kay, I.; Farhad, S.; Mahajan, A. Robotic disassembly of electric vehicles’ battery modules for recycling. Energies 2022, 15, 4856. [Google Scholar] [CrossRef]
- Li, L.; Zheng, P.; Yang, T.; Sturges, R.; Ellis, M.W.; Li, Z. Disassembly automation for recycling end-of-life lithium-ion pouch cells. J. Met. 2019, 71, 4457–4464. [Google Scholar] [CrossRef]
- Schäfer, J.; Singer, R.; Hofmann, J.; Fleischer, J. Challenges and solutions of automated disassembly and condition-based remanufacturing of lithium-ion battery modules for a circular economy. Procedia Manuf. 2020, 43, 614–619. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, H.; Jiang, Z.; Yan, W.; Wang, Y.; Zhou, Q. Disassembly task planning for end-of-life automotive traction batteries based on ontology and partial destructive rules. J. Manuf. Syst. 2022, 62, 347–366. [Google Scholar] [CrossRef]
- Qu, W.; Li, J.; Zhang, R.; Liu, S.; Bao, J. Adaptive planning of human-robot collaborative disassembly for end-of-life lithium-ion batteries based on digital twin. J. Intell. Manuf. 2023, 35, 2021–2043. [Google Scholar] [CrossRef]
- Wang, J.B.; Huang, J.; Li, R.Y. Knowledge graph construction of end-of-life electric vehicle batteries for robotic disassembly. Appl. Sci. 2023, 13, 13153. [Google Scholar] [CrossRef]
- Zhang, H.W.; Zhang, Y.S.; Wang, Z.G. A novel knowledge-driven flexible human-robot hybrid disassembly line and its key technologies for electric vehicle batteries. J. Manuf. Syst. 2023, 68, 338–353. [Google Scholar] [CrossRef]
- Wu, T.F.; Zhang, Z.Q.; Yin, T.; Zhang, Y. Multi-objective optimisation for cell-level disassembly of waste power battery modules in human-machine hybrid mode. Waste Manag. 2022, 144, 513–526. [Google Scholar] [CrossRef]
- Tian, G.D.; Yuan, G.; Anatoly, A.; Zhang, T.; Li, Z.; Fathollahi-Fard, A.M.; Ivanov, M. Recycling of spent lithium-ion batteries: Key challenges and future trends. Sustain. Energy Technol. Assess. 2022, 53, 447–457. [Google Scholar]
No. | Name of Part | Direction | Priority Task | Operate Time (s) | Quantity |
---|---|---|---|---|---|
1 | Low-voltage harness | +Z | 1 | 13 | 1 |
2 | Housing cover | +Z | 2, 3 | 62 | 1 |
3 | Upper cover seal | −Z | 1, 2 | 8 | 1 |
4 | High-voltage harness | −X | 1, 5, 6 | 16 | 1 |
5 | High-voltage connectors | +X | 4, 6, 7 | 36 | 1 |
6 | Electronics | −Z | 5, 7 | 28 | 4 |
7 | Top plate | +Z | 4, 6, 9 | 84 | 1 |
8 | Cells | +Z | 8 | 425 | 216 |
9 | Cell models | −Z | 7, 10 | 246 | 12 |
10 | Housing | −Z | 9, 7, 12 | 45 | 1 |
11 | Battery cooling | +X | 10, 12 | 22 | 1 |
12 | Underbody cover | +Y | 10 | 18 | 1 |
13 | Lower cover seal | +Z | 11, 12 | 10 | 1 |
Solution | (s) | (CNY) | ||
---|---|---|---|---|
1 | Human: 2→3→5→7→9 Robot: 1→4→6 Human–robot: 8→10→13→12→11 | 1058 | 33 | 124 |
2 | Human: 2→3→5→7 Robot: 1→4→6→11 Human–robot: 8→9→10→13→12 | 1074 | 32 | 116 |
3 | Human: 1→2→3→4→12 Robot: 5→6→11 Human–robot: 7→8→9→10→13 | 1182 | 42 | 118 |
4 | Human: 3→4→8→9 Robot: 1→2→5→6→11 Human–robot: 7→10→13→12 | 1013 | 31 | 132 |
5 | Human: 1→2→3→4→8→9 Robot: 5→6→11 Human–robot: 7→10→13→12 | 1006 | 34 | 107 |
6 | Human: 3→4→8→9→13 Robot: 1→2→5→6 Human–robot: 7→10→11→12 | 1122 | 38 | 103 |
7 | Human: 3→4→7→8→10 Robot: 1→2→5→6 Human–robot: 9→11→13→12 | 1046 | 41 | 123 |
8 | Human: 2→3→10→13→12 Robot: 1→4→6 Human–robot: 5→7→8→9→11 | 1025 | 38 | 126 |
PopSize | Gmax | Pareto Solutions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
NSGA-II | FOA | IMFOA | ||||||||
f1 | f2 | f3 | f1 | f2 | f3 | f1 | f2 | f3 | ||
30 | 30 | 1093 1134 1145 1179 | 36 42 44 46 | 138 134 129 135 | 1175 1167 1057 1088 1231 | 42 39 38 43 44 | 136 138 125 117 129 | 1058 1038 1054 1078 1124 1175 | 34 39 47 41 37 36 | 128 113 125 124 112 128 |
50 | 50 | 1138 1146 1178 1096 1112 | 36 39 40 39 41 | 129 133 127 130 126 | 1142 1137 1074 1073 1182 1164 | 41 40 36 39 42 39 | 118 124 113 128 125 119 | 1039 1064 1063 1143 1034 1155 1073 1140 | 39 42 38 38 44 37 36 40 | 133 118 124 117 121 120 119 125 |
100 | 100 | 1156 1168 1175 1203 1197 | 744 721 729 694 713 | 128 119 124 121 122 | 1123 1168 1185 1184 1075 1174 1173 | 41 34 35 36 42 39 38 | 127 132 114 121 126 129 127 | 1058 1074 1082 1013 1006 1022 1046 1025 | 33 32 42 31 34 38 41 38 | 124 116 118 132 107 103 123 126 |
Case | Algorithm | ET(s) | CM (Mean ± Std Dev) | HV (Mean ± Std Dev) |
---|---|---|---|---|
P1 | NSGA-II | 4.2 | 4.32 ± 4.62 × 10−4 | 2.36 ± 4.37 × 10−5 |
FOA | 3.4 | 1.32 ± 2.21 × 10−4 | 1.93 ± 3.46 × 10−4 | |
IMFOA | 2.8 | 1.36 ± 1.51 × 10−4 | 2.82 ± 3.14 × 10−4 | |
P2 | NSGA-II | 10.2 | 1.25 ± 3.34 × 10−3 | 1.76 ± 6.53 × 10−4 |
FOA | 6.3 | 2.57 ± 1.84 × 10−3 | 2.25 ± 3.44 × 10−4 | |
IMFOA | 3.5 | 1.26 ± 4.45 × 10−4 | 2.32 ± 4.16 × 10−3 | |
P3 | NSGA-II | 13.6 | 2.36 ± 1.37 × 10−2 | 1.72 ± 3.15 × 10−4 |
FOA | 9.5 | 2.53 ± 3.34 × 10−2 | 2.36 ± 1.34 × 10−4 | |
IMFOA | 5.7 | 1.55 ± 3.38 × 10−3 | 1.52 ± 2.75 × 10−4 | |
P4 | NSGA-II | 20.1 | 3.24 ± 2.51 × 10−3 | 1.21 ± 3.32 × 10−4 |
FOA | 12.3 | 1.63 ± 2.44 × 10−3 | 3.53 ± 2.35 × 10−5 | |
IMFOA | 8.5 | 1.23 ± 3.68 × 10−4 | 1.48 ± 3.25 × 10−4 | |
P5 | NSGA-II | 18.3 | 3.43 ± 1.83 × 10−3 | 1.33 ± 2.04 × 10−5 |
FOA | 10.4 | 2.21 ± 3.86 × 10−3 | 2.02 ± 4.11 × 10−5 | |
IMFOA | 7.6 | 1.55 ± 2.17 × 10−4 | 2.53 ± 3.22 × 10−4 | |
P6 | NSGA-II | 22.7 | 4.01 ± 2.35 × 10−3 | 1.75 ± 4.30 × 10−4 |
FOA | 13.6 | 3.39 ± 1.27 × 10−3 | 2.53 ± 1.14 × 10−4 | |
IMFOA | 8.5 | 2.66 ± 3.26 × 10−4 | 2.28 ± 3.41 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, J.; Feng, G.; Yuan, G. Research on the Human–Robot Collaborative Disassembly Line Balancing of Spent Lithium Batteries with a Human Factor Load. Batteries 2024, 10, 196. https://doi.org/10.3390/batteries10060196
Jiao J, Feng G, Yuan G. Research on the Human–Robot Collaborative Disassembly Line Balancing of Spent Lithium Batteries with a Human Factor Load. Batteries. 2024; 10(6):196. https://doi.org/10.3390/batteries10060196
Chicago/Turabian StyleJiao, Jie, Guangsheng Feng, and Gang Yuan. 2024. "Research on the Human–Robot Collaborative Disassembly Line Balancing of Spent Lithium Batteries with a Human Factor Load" Batteries 10, no. 6: 196. https://doi.org/10.3390/batteries10060196
APA StyleJiao, J., Feng, G., & Yuan, G. (2024). Research on the Human–Robot Collaborative Disassembly Line Balancing of Spent Lithium Batteries with a Human Factor Load. Batteries, 10(6), 196. https://doi.org/10.3390/batteries10060196