Advancements and Challenges in Perovskite-Based Photo-Induced Rechargeable Batteries and Supercapacitors: A Comparative Review
Abstract
:1. Introduction
1.1. Background
Perovskite Materials
1.2. Energy Storage Systems
1.2.1. LIBs
1.2.2. SCs
1.2.3. PBs
2. Working Mechanism
2.1. Mechanism of Solar Cells
2.2. Mechanism of LIBs during the Charging and Discharging Process
2.3. Mechanism of the Photo-Battery
3. Materials Demand
4. Technological Challenges and Opportunities
4.1. Design of PSCs
4.2. Design of Photo-Batteries
5. Recent Developments in Photo-Battery Technology
5.1. Design Integration
5.2. Chemistry Integration
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Chen, Y.; Dai, L. Efficiently photo-charging Li-ion battery by perovskite solar cell. Nat. Commun. 2015, 6, 8103. [Google Scholar] [CrossRef]
- Tewari, N.; Lam, D.; Li, C.H.A.; Jonathan, E. Halper Recent advancements in batteries and photo-batteries using metal halide perovskites. APL Mater. 2022, 10, e040905. [Google Scholar] [CrossRef]
- Haight, R.; Haensch, W.; Friedman, D. Solar-powering the Internet of Things. Science 2016, 353, 124–125. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Copic, D.; George, C.; De Volder, M. Hierarchical assemblies of carbon nanotubes for ultraflexible Li-ion batteries. Adv. Mater. 2016, 28, 6705–6710. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Zhang, N.; Zou, H.; Liu, R.; Tao, C.; Fan, X.; Wang, Z.L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138. [Google Scholar] [CrossRef]
- Zhou, G.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338. [Google Scholar] [CrossRef]
- Zhou, G.; Sun, J.; Jin, Y.; Chen, W.; Zu, C.; Zhang, R.; Qiu, Y.; Zhao, J.; Zhuo, D.; Liu, Y.; et al. Sulfiphilic nickel phosphosulfide enabled Li2S impregnation in 3D graphene cages for Li-S batteries. Adv. Mater. 2017, 29, 1603366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Chen, J.; Huang, Y.; Guo, W.; Yang, J.; Du, J.; Fan, X.; Tao, C. A Wearable All-Solid Photovoltaic Textile. Adv. Mater. 2016, 28, 263–269. [Google Scholar] [CrossRef]
- Vlad, A.; Singh, N.; Galande, C.; Ajayan, P.M. Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 2015, 5, 1402115. [Google Scholar] [CrossRef]
- Xu, J.; Wu, H.; Lu, L.; Leung, S.-F.; Chen, D.; Chen, X.; Fan, Z.; Shen, G.; Li, D. Integrated photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 2014, 24, 1840–1846. [Google Scholar] [CrossRef]
- Méndez, M.A.; Peljo, P.; Scanlon, M.D.; Vrubel, H.; Girault, H.H. Photo-ionic cells: Two solutions to store solar energy and generate electricity on demand. J. Phys. Chem. C 2014, 118, 16872–16883. [Google Scholar] [CrossRef]
- Miyasaka, T.; Ikeda, N.; Murakami, T.N.; Teshima, K. Light energy conversion and storage with soft carbonaceous materials that solidify mesoscopic electrochemical interfaces. Chem. Lett. 2007, 36, 480–487. [Google Scholar] [CrossRef]
- Thimmappa, R.; Paswan, B.; Gaikwad, P.; Devendrachari, M.C.; Makri Nimbegondi Kotresh, H.; Rani Mohan, R.; Pattayil Alias, J.; Thotiyl, M.O. Chemically chargeable photo battery. J. Phys. Chem. C 2015, 119, 14010–14016. [Google Scholar] [CrossRef]
- Paolella, A.; Faure, C.; Bertoni, G.; Marras, S.; Guerfi, A.; Darwiche, A.; Hovington, P.; Commarieu, B.; Wang, Z.; Prato, M.; et al. Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries. Nat. Commun 2017, 8, 14643. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, O.; Courtin, E.; Sauvage, F.; Krins, N.; Sanchez, C.; Laberty-Robert, C. Shedding light on the light-driven Li-ion de-insertion reaction: Towards the design of a photo-rechargeable battery. J. Mater. Chem. A 2017, 5, 5927–5933. [Google Scholar] [CrossRef]
- Ahmad, S.; George, C.; Beesley, D.J.; Baumberg, J.J.; De Volder, M. Photo-Rechargeable Organo-Halide Perovskite Batteries. Nano Lett. 2018, 18, 1856–1862. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. Towards an electricity-powered world. Energy Environ. Sci. 2011, 4, 3193–3222. [Google Scholar] [CrossRef]
- Weinstein, L.A.; Loomis, J.; Bhatia, B.; Bierman, D.M.; Wang, E.N.; Chen, G. Concentrating solar power. Chem. Rev. 2015, 115, 12797–12838. [Google Scholar] [CrossRef]
- Kruitwagen, L.; Story, K.T.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A global inventory of solar photovoltaic generating units-dataset. Nature 2021, 598, 604–611. [Google Scholar] [CrossRef]
- Um, H.D.; Choi, K.H.; Hwang, I.; Kim, S.H.; Seo, K.; Lee, S.Y. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state LIBs. Energy Environ. Sci. 2017, 10, 931–940. [Google Scholar] [CrossRef]
- Zeng, Q.; Lai, Y.; Jiang, L.; Liu, F.; Hao, X.; Wang, L.; Green, M.A. Integrated photorechargeable energy storage system: Next-generation power source driving the future. Adv. Energy Mater. 2020, 10, 1903930. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.L.; Tu, J.; Wang, J.; Wang, M.; Jiao, S. A review of integrated systems based on PSCs and energy storage units: Fundamental, progresses, challenges, and perspectives. Adv. Sci. 2021, 8, 2100552. [Google Scholar] [CrossRef] [PubMed]
- Gurung, A.; Reza, K.M.; Mabrouk, S.; Bahrami, B.; Pathak, R.; Lamsal, B.S.; Rahman, S.I.; Ghimire, N.; Bobba, R.S.; Chen, K.; et al. Rear-Illuminated Perovskite Photorechargeable Lithium Battery. Adv. Funct. Mater. 2020, 30, 2001865. [Google Scholar] [CrossRef]
- Hodes, G.; Manassen, J.; Cahen, D. Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes. Nature 1976, 261, 403–404. [Google Scholar] [CrossRef]
- Lv, J.; Tan, Y.X.; Xie, J.; Yang, R.; Yu, M.; Sun, S.; Li, M.; Yuan, D.; Wang, Y. Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew. Chem. 2018, 130, 12898–12902. [Google Scholar] [CrossRef]
- Chen, P.; Li, G.R.; Li, T.T.; Gao, X.P. Solar-driven rechargeable lithium–sulfur battery. Adv. Sci. 2019, 6, 1900620. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, Y.; Tang, D.; Zhou, H. Integrating a photocatalyst into a hybrid lithium–sulfur battery for direct storage of solar energy. Angew. Chem. Int. Ed. 2015, 54, 9271–9274. [Google Scholar] [CrossRef]
- Liu, Y.; Li, N.; Wu, S.; Liao, K.; Zhu, K.; Yi, J.; Zhou, H. Reducing the charging voltage of a Li–O2 battery to 1.9 V by incorporating a photocatalyst. Energy Environ. Sci. 2015, 8, 2664–2667. [Google Scholar]
- Yang, X.Y.; Feng, X.L.; Jin, X.; Shao, M.Z.; Yan, B.L.; Yan, J.M.; Zhang, X.B. An Illumination-Assisted Flexible Self-Powered Energy System Based on a Li–O2 Battery. Angew. Chem. 2019, 131, 16563–16567. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, Y.; Liu, J.; Liu, B.; Chen, X.; Ding, J.; Hu, W. Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery. Nat. Commun. 2019, 10, 4767. [Google Scholar] [CrossRef]
- Ingavale, S.; Gopalakrishnan, M.; Enoch, C.M.; Pornrungroj, C.; Rittiruam, M.; Praserthdam, S.; Kheawhom, S. Strategic Design and Insights into Lanthanum and Strontium Perovskite Oxides for Oxygen Reduction and Oxygen Evolution Reactions. Small 2024, 20, 2308443. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, X.; Yu, M.; Wang, A.; Wang, L.; Xue, L.; Wang, W. Cooperative Catalysis toward Oxygen Reduction Reaction under Dual Coordination Environments on Intrinsic AMnO3-Type Perovskites via Regulating Stacking Configurations of Coordination Units. Adv. Mater. 2020, 32, 2006145. [Google Scholar] [CrossRef]
- Gholamrezaei, S.; Salavati-Niasari, M. Sonochemical synthesis of SrMnO3 nanoparticles as an efficient and new catalyst for O2 evolution from water splitting reaction. Ultrason. Sonochem. 2018, 40, 651–663. [Google Scholar] [CrossRef]
- Choi, S.R.; So, I.S.; Lee, S.W.; Yoo, J.; Seo, Y.S.; Cho, H.S.; Park, J.Y. 3D architecture double perovskite NdBa0.5Sr0.5Co1.5Fe0.5O5 + δ embedded hollow-net Co3O4 bifunctional electrocatalysts coupled with N-doped CNT and reduced graphene oxide for oxygen electrode reactions. J. Alloys Compd. 2020, 823, 153782. [Google Scholar] [CrossRef]
- Bochu, B.; Chenavas, J.; Joubert, J.C.; Marezio, M. High pressure synthesis and crystal structure of a new series of perovskite-like compounds CMn7O12 (C = Na, Ca, Cd, Sr, La, Nd). J. Solid State Chem. 1974, 11, 88–93. [Google Scholar] [CrossRef]
- Long, Y. A-site ordered quadruple perovskite oxides. Chin. Phys. B 2016, 25, e078108. [Google Scholar] [CrossRef]
- Yamada, I.; Fujii, H.; Takamatsu, A.; Ikeno, H.; Wada, K.; Tsukasaki, H.; Yagi, S. Bifunctional oxygen reaction catalysis of quadruple manganese perovskites. Adv. Mater. 2017, 29, 1603004. [Google Scholar] [CrossRef]
- Shigematsu, K.; Shimizu, K.; Yamamoto, K.; Nishikubo, T.; Sakai, Y.; Nikolaev, S.A.; Das, H.; Azuma, M. Strain Manipulation of Magnetic Anisotropy in Room-Temperature Ferrimagnetic Quadruple Perovskite CeCu3Mn4O12. ACS Appl. Electron. Mater. 2019, 1, 2514–2521. [Google Scholar] [CrossRef]
- Aftab, S.; Li, X.; Kabir, F.; Akman, E.; Aslam, M.; Pallavolu, M.R.; Koyyada, G.; Mohammed, A.; Assiri, M.A.; Rajpar, A.H. Lighting the future: Perovskite nanorods and their advances across applications. Nano Energy 2024, 124, 109504. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Ye, X.; Wang, W.; Liu, Z.; Qin, S.; Long, Y. Near-room-temperature ferrimagnetic ordering in a B-site-disordered 3d–5d-hybridized quadruple perovskite oxide, CaCu3Mn2Os2O12. Inorg. Chem. 2019, 58, 15529–15535. [Google Scholar] [CrossRef]
- Li, S.F.; Zhang, B.Q.; Li, Y.N.; Yan, D. Regulating the Electronic Structure of Ruddlesden–Popper-Type Perovskite by Chlorine Doping for Enhanced Oxygen Evolution Activity. Inorg. Chem. 2023, 62, 11233–11239. [Google Scholar] [CrossRef] [PubMed]
- IR de Larramendi, N.; Ortiz-Vitoriano, I.B.; Dzul-Bautista, T. Rojo, in Perovskite Materials—Synthesis, Characterisation, Properties, and Applications; Pan, L., Zhu, G., Eds.; InTechOpen: London, UK, 2016; pp. 589–617. [Google Scholar]
- Fop, S.; McCombie, K.S.; Wildman, E.J.; Skakle, J.M.; Mclaughlin, A.C. Hexagonal perovskite derivatives: A new direction in the design of oxide ion conducting materials. Chem. Commun. 2019, 55, 2127–2137. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.F.; King, G.; Dickerson, R.M.; Papin, P.A.; Gupta, S.; Kellogg, W.R.; Wu, G. Oxygen-deficient BaTiO3−x perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy 2015, 13, 423–432. [Google Scholar] [CrossRef]
- Gobeng, R.; Monama, A.B.; Kabelo, E.; Ramohlola, A.; Emmanuel, I.; Iwuoha, B.; Kwena, D.; Modibane, A. Progress on perovskite materials for energy application. Results Chem. 2022, 4, 100321. [Google Scholar] [CrossRef]
- DSchmidt, S.; Hager, M.D.; Schubert, U.S. Photo-Rechargeable electric energy storage systems. Adv. Energy Mater. 2016, 6, 1500369. [Google Scholar] [CrossRef]
- Julien, C.; Nazri, G.A. Solid State Batteries: Materials Design and Optimization; Kluwer: Boston, MA, USA, 1994. [Google Scholar]
- Jasinski, R. High-Energy Batteries; Plenum: New York, NY, USA, 1967. [Google Scholar]
- Julien, C. Design considerations for lithium batteries. In Materials for LIBs; Julien, C., Stoynov, Z., Eds.; Kluwer: Dordrecht, The Netherlands, 2000; pp. 1–20. [Google Scholar]
- Bouguern, M.D.; Madikere Raghunatha Reddy, A.K.; Li, X.; Deng, S.; Laryea, H.; Zaghib, K. Engineering Dry Electrode Manufacturing for Sustainable LIBs. Batteries 2024, 10, 39. [Google Scholar] [CrossRef]
- Yoshio, M.; Brodd, R.J.; Kozawa, A. Lithium Batteries, Science and Technologies; Springer: New York, NY, USA, 2009. [Google Scholar]
- Julien, C.; Mauger, A.; Vijh, A.; Zaghib, K. Lithium Batteries: Science and Technology. MRS Bull. 2016, 41, 707. [Google Scholar] [CrossRef]
- Pandolfo, A.G.; Hollenkamp, A.F. Carbon properties and their role in SCs. J. Power Sources 2006, 157, 11–27. [Google Scholar] [CrossRef]
- Kötz, R.; Carlen, M.J.E.A. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498. [Google Scholar] [CrossRef]
- Miller, J.R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on SCs: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Tehrani, Z.; Thomas, D.J.; Korochkina, T.; Phillips, C.O.; Lupo, D.; Lehtimäki, S.; Gethin, D.T. Large-area printed supercapacitor technology for low-cost domestic green energy storage. Energy 2017, 118, 1313–1321. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhao, X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef] [PubMed]
- Ahammad, A.S.; Odhikari, N.; Shah, S.S.; Hasan, M.M.; Islam, T.; Pal, P.R.; Qasem, M.A.A.; Aziz, M.A. Porous tal palm carbon nanosheets: Preparation, characterization and application for the simultaneous determination of dopamine and uric acid. Nanoscale Adv. 2019, 1, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.; Qasem, M.A.A.; Berni, R.; Del Casino, C.; Cai, G.; Contal, S.; Ahmad, I.; Siddiqui, K.S.; Gatti, E.; Predieri, S.; et al. Physico-chemical properties and toxicological effects on plant and algal models of carbon nanosheets from a nettle fibre clone. Sci. Rep. 2021, 11, 6945. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Chen, J.; Chen, J.; Chen, G. Completely decentralized energy management system for fuel cell-battery-ultracapacitor hybrid energy storage system. IEEE Trans. Ind. Electron. 2023, 13, 428–449. [Google Scholar] [CrossRef]
- Mineo, G.; Bruno, E.; Mirabella, S. Advances in WO3-Based Supercapacitors: State-of-the-Art Research and Future Perspectives. Nanomaterials 2023, 13, 1418. [Google Scholar] [CrossRef] [PubMed]
- Ates, M.; Chebil, A.; Yoruk, O.; Dridi, C.; Turkyilmaz, M. Reliability of electrode materials for SCs and batteries in energy storage applications: A review. Ionics 2022, 28, 27–52. [Google Scholar] [CrossRef]
- Singha, D.K.; Mohanty, R.I.; Bhanja, P.; Jena, B.K. Metal–organic framework and graphene composites: Advanced materials for electrochemical supercapacitor applications. Mater. Adv. 2023, 4, 4679–4706. [Google Scholar] [CrossRef]
- Liu, L.; Niu, Z.; Chen, J. Unconventional SCs from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 2016, 45, 4340–4363. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatti, T.S. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, C.; Chen, T.; Li, W.; Zheng, S.; Pi, Y.; Luo, Y.; Pang, H. MXene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric SCs. Angew. Chem. 2021, 133, 25522–25526. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes–A review. J. Mater. 2016, 2, 37–54. [Google Scholar] [CrossRef]
- Shi, W.; Zhu, J.; Sim, D.H.; Tay, Y.Y.; Lu, Z.; Zhang, X.; Sharma, Y.; Srinivasan, M.; Zhang, H.; Hng, H.H.; et al. Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 2011, 21, 3422–3427. [Google Scholar] [CrossRef]
- Hada, H.; Takaoka, K.; Saikawa, M.; Yonezawa, Y. Energy Conversion and Storage in Solid-state Photogalvanic Cells. Bull. Chem. Soc. Jpn. 1981, 54, 1640–1644. [Google Scholar] [CrossRef]
- Yonezawa, Y.; Okai, M.; Ishino, M.; Hada, H. Photochemical Storage Battery with an n-GaP Photoelectrode. Bull. Chem. Soc. Jpn. 1983, 56, 2873–2876. [Google Scholar] [CrossRef]
- Betz, G.; Fiechter, S.; Tributsch, H. Photon Energy Conversion and Storage with a Light-driven Insertion Reaction. J. Appl. Phys. 1987, 62, 4597–4605. [Google Scholar] [CrossRef]
- Kanbara, T.; Takada, K.; Yamamura, Y.; Kondo, S. Photo-Rechargeable Solid-State Battery. Solid State Ion. 1990, 40−41, 955–958. [Google Scholar] [CrossRef]
- Nomiyama, T.; Kuriyaki, H.; Hirakawa, K. Photo-Rechargeable Battery Using New Layer Compound CuFeTe2. Synth. Met. 1995, 71, 2237–2238. [Google Scholar] [CrossRef]
- Zou, X.; Maesako, N.; Nomiyama, T.; Horie, Y.; Miyazaki, T. Photo-Rechargeable Battery with TiO2/Carbon Fiber Electrodes Prepared by Laser Deposition. Sol. Energy Mater. Sol. Cells 2000, 62, 133–142. [Google Scholar] [CrossRef]
- Hauch, A.; Georg, A.; Krasovec, U.O.; Orel, B. Photovoltaically Self-Charging Battery. J. Electrochem. Soc. 2002, 149, A1208. [Google Scholar] [CrossRef]
- Al-Ezzi, A.S.; Ansari, M.N.M. Photovoltaic Solar Cells: A Review. Appl. Syst. Innov. 2022, 5, 67. [Google Scholar] [CrossRef]
- Floyd, T.L. Electronic Devices, 9th ed.; Pearson: London, UK, 2011. [Google Scholar]
- Julien, C.; Mauger, A.; Vijh, A.; Zaghib, K. Lithium Batteries. In Lithium Batteries; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. J. Power Sources 2011, 196, 9743–9750. [Google Scholar] [CrossRef]
- Zaghib, K.; Guerfi, A.; Hovington, P.; Vijh, A.; Trudeau, M.; Mauger, A.; Goodenough, J.B.; Julien, C.M. Review and analysis of nanostructured olivine-based lithium RBs: Status and trends. J. Power Sources 2013, 232, 357–369. [Google Scholar] [CrossRef]
- Zaghib, K.; Dontigny, M.; Guerfi, A.; Charest, P.; Rodrigues, I.; Mauger, A.; Julien, C.M. Safe and fast-charging Li-ion battery with long shelf life for power applications. J. Power Sources 2011, 196, 3949–3954. [Google Scholar] [CrossRef]
- Milot, R.L.; Sutton, R.J.; Eperon, G.E.; Haghighirad, A.A.; Martinez Hardigree, J.; Miranda, L.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Charge-carrier dynamics in 2D hybrid metal–halide perovskites. Nano Lett. 2016, 16, 7001–7007. [Google Scholar] [CrossRef] [PubMed]
- Paolella, A.; Vijh, A.; Guerfi, A.; Zaghib, K.; Faure, C. Review—Li-Ion Photo-Batteries: Challenges and Opportunities. J. Electrochem. Soc. 2020, 167, 120545. [Google Scholar] [CrossRef]
- Zhang, C. Solar storage: Two-electrode single systems. Nat. Energy 2017, 2, 17079. [Google Scholar] [CrossRef]
- Yu, M.; Ren, X.; Ma, L.; Wu, Y. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. Nat. Commun. 2014, 5, 5111. [Google Scholar] [CrossRef]
- Li, Q.; Li, N.; Ishida, M.; Zhou, H. Saving electric energy by integrating a photoelectrode into a Li-ion battery. J. Mater. Chem. A 2015, 3, 20903. [Google Scholar] [CrossRef]
- Wang, Z.; Chiu, H.; Paolella, A.; Zaghib, K.; Demopoulos, G.P. Lithium photo-intercalation of CdS-Sensitized WO3 anode for energy storage and photoelectrochromic applications. ChemSusChem 2019, 12, 2220–2230. [Google Scholar] [CrossRef] [PubMed]
- Dokouzis, A.; Bella, F.; Theodosiou, K.; Gerbaldi, C.; Leftheriotis, G. Photoelectrochromic devices with cobalt redox electrolytes. Mater. Today Energy 2020, 15, 100365. [Google Scholar] [CrossRef]
- Maloney, J. From Mineral Exploration to Advanced Manufacturing: Developing Value Chains for Critical Minerals in Canada; RNNR Committee Report; Parliament of Canada: Ottawa, ON, Canada, 2021. [Google Scholar]
- Critical Minerals Data Explorer. Available online: https://www.iea.org/data-and-statistics/data-tools/critical-minerals-data-explorer (accessed on 17 May 2024).
- IEA. Critical Minerals Market Review 2023; International Energy Agency (IEA): Paris, France, 2023. [Google Scholar]
- Oyewole, O.K.; Oyelade, O.V.; Ichwani, R.; Koech, R.; Oyewole, D.O.; Cromwell, J.; Olanrewaju, Y.; Soboyejo, W.O. Mechanical Properties of Solar Cell Structures, Comprehensive Structural Integrity, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 185–208. ISBN 9780323919456. [Google Scholar] [CrossRef]
- Zuo, C.; Henk; Bolink, J.; Han, H.; Huang, J.; Cahen, D.; Ding, L. Advances in PSCs. Adv. Sci. 2016, 3, 1500324. [Google Scholar] [CrossRef] [PubMed]
- Kojima, A.; Teshima, K.; Miyasaka, T.; Shirai, Y. Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2). In Proceedings of the 210th ECS Meeting, Cancun, Mexico, 30 June 2006. [Google Scholar]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Im, J.H.; Lee, C.R.; Lee, J.W.; Park, S.W.; Park, N.G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.M.; Lee, M.M.; Hey, A.; Snaith, H.J. Low-temperature processed meso-superstructured to thin-film PSCs. Energy Environ. Sci. 2013, 6, 1739–1743. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.B.; Duan, H.S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient PSCs. Science 2014, 345, 542–546. [Google Scholar] [CrossRef]
- Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid PSCs. Nat. Commun. 2015, 6, 7747. [Google Scholar] [CrossRef]
- Dong, Q.; Yuan, Y.; Shao, Y.; Fang, Y.; Wang, Q.; Huang, J. Abnormal crystal growth in CH3NH3PbI3−xClx using a multi-cycle solution coating process. Energy Environ. Sci. 2015, 8, 2464–2470. [Google Scholar] [CrossRef]
- Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A.K.; Liu, B.; Nazeeruddin, M.K.; Gratzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Wan, J.; Tao, H.; Liu, Q.; Xiong, L.; Qin, P.; Wang, J.; Lei, H.; Yang, G.; et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat. Commun. 2015, 6, 6700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, M.; Eperon, G.E.; Leijtens, T.C.; McMeekin, D.; Saliba, M.; Zhang, W.; de Bastiani, M.; Petrozza, A.; Herz, L.M.; et al. Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic PSCs. Mater. Horiz. 2015, 2, 315–322. [Google Scholar] [CrossRef]
- Bhattacharyya, R.G.; Mandal, D.P.; Bera, S.C.K.K. Rohatgi-Mukherjee, Photo electro synthesis of Dihyodrogen via water-splitting using S(2-)x as ana anolyte: A first step for a viable solar rechargeable battery. Int. J. Hydrogen Energy 1996, 21, 343–347. [Google Scholar] [CrossRef]
- Büttner, J.; Berestok, T.; Burger, S.; Schmitt, M.; Daub, M.; Hillebrecht, H.; Krossing, I.; Fischer, A. Are Halide-Perovskites Suitable Materials for Battery and Solar-Battery Applications–Fundamental Reconsiderations on Solubility, Lithium Intercalation, and Photo-Corrosion. Adv. Funct. Mater. 2022, 32, 2206958. [Google Scholar] [CrossRef]
- PSCs. Solar Energy Technologies Office; The US Department of Energy (DOE): SW Washington, DC, USA, 2023.
- Peplow, M. A new kind of solar cell is coming: Is it the future of green energy? Nature 2023, 623, 902–905. [Google Scholar] [CrossRef]
- Volumetric Energy Density of LIBs Increased by More Than Eight Times between 2008 and 2020. Available online: https://www.energy.gov/eere/vehicles/articles/fotw-1234-april-18-2022-volumetric-energy-density-Li-ion-batteries (accessed on 18 April 2022).
- US Department of Energy. Spotlight: Solving Industry’s Energy Storage Challenges; Office of Technology Transfer: SW Washington, DC, USA, 2019. Available online: https://www.energy.gov/sites/prod/files/2019/07/f64/2018-OTT-Energy-Storage-Spotlight.pdf (accessed on 5 August 2024).
- Pujari, A.; Kim, B.-M.; Sayed, F.N.; Sanders, K.; Dose, W.M.; Mathieson, A.; Grey, C.P.; Greenham, N.C.; De Volder, M. Does Heat Play a Role in the Observed Behavior of Aqueous Photobatteries? ACS Energy Lett. 2023, 8, 4625–4633. [Google Scholar] [CrossRef] [PubMed]
- Salunke, A.D.; Chamola, S.; Mathieson, A.; Boruah, B.D.; de Volder, M.; Ahmad, S. Photo-Rechargeable LIBs: Device Configurations, Mechanisms, and Materials. ACS Appl. Energy Mater. 2022, 5, 7891–7912. [Google Scholar] [CrossRef]
- Kin, L.; Liu, Z.; Astakhov, O.; Agbo, S.N.; Tempel, H.; Yu, S.; Kungl, H.; Eichel, R.-A.; Rau, U.; Kirchartz, T.; et al. Efficient Area Matched Converter Aided Solar Charging of LIBs Using High Voltage PSCs. ACS Appl. Energy Mater. 2020, 3, 431–439. [Google Scholar] [CrossRef]
- Gurung, A.; Chen, K.; Khan, R.; Abdulkarim, S.S.; Varnekar, G.; Pathak, R.; Naderi, R.; Qiao, Q. Highly Efficient Perovskite Solar Cell Photocharging of Li-ion Battery Using DC–DC Booster. Adv. Energy Mater. 2017, 7, 1602105. [Google Scholar] [CrossRef]
- Bi, J.; Zhang, J.; Giannakou, P.; Wickramanayake, T.; Yao, X.; Wang, M.; Liu, X.; Shkunov, M.; Zhang, W.; Zhao, Y. A Highly integrated flexible photo-rechargeable system based on stable ultrahigh-rate quasi-solid-state zinc-ion micro-batteries and PSCs. Energy Storage Mater. 2022, 51, 239–248. [Google Scholar] [CrossRef]
- Chen, P.; Li, T.-T.; Yang, Y.-B.; Li, G.-R.; Gao, X.-P. Coupling aqueous zinc batteries and PSCs for simultaneous energy harvest, conversion and storage. Nat. Commun. 2022, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Wang, X.; Zhu, H.; Jin, Y.; Li, Y.; Pang, B.; Shang, M.; Dong, H.; Yu, L.; Dong, L. Photo-assisted enhancement of Li-ion battery performance with a LiFePO4/TiO2 composite cathode. Ceram. Int. 2024, 50, 11291–11297. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Zhang, X.; Chen, J.; Wang, Y. An organic-halide perovskite-based photo-assisted Li-ion battery for photoelectrochemical storage. Nanoscale 2022, 14, 10903–10909. [Google Scholar] [CrossRef] [PubMed]
- Tuc Altaf, C.; Rostas, A.M.; Popa, A.; Toloman, D.; Stefan, M.; Demirci Sankir, N.; Sankir, M. Recent Advances in Photochargeable Integrated and All-in-One Supercapacitor Devices. ACS Omega 2023, 8, 47393–47411. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, S.; Zhang, H.; Shen, Y.; Zakeeruddin, S.M.; Graetzel, M.; Cheng, Y.-B.; Wang, M. A Power Pack Based on Organometallic Perovskite Solar Cell and Supercapacitor. ACS Nano 2015, 9, 1782–1787. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, C.; Hu, H.; Li, Y.; Shen, Z.; Li, F.; Liu, Y.; Liu, R.; Chen, J.; Dong, C.; et al. Strategies for high-performance PSCs from materials, film engineering to carrier dynamics and photon management. InfoMat 2022, 4, e12322. [Google Scholar] [CrossRef]
- Tewari, N.; Shivarudraiah, S.B.; Halpert, J.E. Photorechargeable Lead-Free Perovskite LIBs Using Hexagonal Cs3Bi2I9 Nanosheets. Nano Lett. 2021, 21, 5578–5585. [Google Scholar] [CrossRef]
- Li, C.; Cong, S.; Tian, Z.; Song, Y.; Yu, L.; Lu, C.; Shao, Y.; Li, J.; Zou, G.; Rümmeli, M.H.; et al. Flexible perovskite solar cell-driven photo-rechargeable Li-ion capacitor for self-powered wearable strain sensors. Nano Energy 2019, 60, 247–256. [Google Scholar] [CrossRef]
- Zheng, D.; Sun, X.; An, C.; Pan, F.; Qin, C.; Wang, Z.; Deng, Q.; Song, Y.; Li, Y. Flexible multi-layered porous CuxO/NiO (x = 1, 2) photo-assisted electrodes for hybrid supercapacitors: Design and mechanism insight. Chem. Eng. J. 2023, 473, 145289. [Google Scholar] [CrossRef]
- Dang, C.; He, S.; Liu, Y.; Zhao, L.; Shan, A.; Li, M.; Kong, L.; Gao, L. Designing In2S3@Bi2S3 type II heterostructure for bifunctional photo-enhanced Li-O2 batteries. Chem. Eng. J. 2023, 476, 146775. [Google Scholar] [CrossRef]
Ref. | Enhanced Performance Strategy | Photo-Battery System | Properties | ηsolar-to-batt (%) | PCE (%) | Storage/Discharge Capacity (1st Cycle) | Capacity Retention (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
Perovskite System | Battery System | VOC (V) | PW (V) | |||||||
[1] | PSC pack | 4-cell PSCs | CH3NH3PbI3 | LiFePO4/Li4Ti5O12 | 3.84 | 2.5‒4 | 12.65 | 7.8 | 140.4 mAh/g (0.5C) | 79.49 (10 cycles) |
Single PSC | CH3NH3PbI3 | LiFePO4/Li4Ti5O12 | 0.96 | 1–2.6 | 15.67 | ‒ | ‒ | ‒ | ||
[23] | Rear-illuminated PSC | CH3NH3Pb(IxBr1-x)3 | LiCoO2/Li4Ti5O12 | ‒ | 1.0–3.14 | 10.25 | 7.3 | 155.2 (1C) mAh/g | 64 (30 cycles) | |
[117] | QSS Zn-ion system-inkjet printing-Ni layer | 2-cell PSCs | Cs0.05(FA0.85MA0.15)Pb(I0.85Br0.15)3 | MnO2/Zn | 1.94 | 16.6 | ‒ | 120.0 mAh/cm (50C) | ‒ | |
Single PSC | Cs0.05(FA0.85MA0.15)Pb(I0.85Br0.15)3 | MnO2/Zn | 1.07 | 1.0‒1.7 | 11.1 | 5.28 | 184.3 mAh/cm (50C) | 87 (100 cycles) | ||
[116] | Different active area of PSCs | 4-cell PSCs (0.64 cm2) | CH3NH3PbI3 | LiFePO4/Li4Ti5O12 | 1.24 | ‒ | 13.4 | ‒ | ‒ | ‒ |
PSC large (0.90 cm2) | CH3NH3PbI3 | LiFePO4/Li4Ti5O12 | 1.25 | ‒ | 14.9 | 9.8 | ‒ | ‒ | ||
[117] | Single PSC + DC–DC booster | PSC + booster | CH3NH3PbI3 | LiCoO2/Li4Ti5O12 | 0.96 | 1.0–3.14 | ‒ | 9.36 | 151.3 mAh/g (0.1C) | 88 (10 cycles) 81 (20 cycles) |
Single PSC | CH3NH3PbI3 | LiCoO2-Li4Ti5O12 | 0.68 | 1.0–3.14 | 14.2 | 7.89 | ||||
[125] | Lead-free perovskite coin-cell format | Cs3Bi2I9 | Li metal | ‒ | 0.01−2.50 | ‒ | ~0.43 | 410 mAh/g | 73 (10 cycles) 24 (40 cycles) | |
[16] | Perovskite coin-cell format | 3D iodide | (C6H9C2H4NH3)2PbBr4 | Li metal | ‒ | 1.4‒3 | ‒ | 0.034 | 90‒100 mAh/g | No fading |
2D bromide | (C6H9C2H4NH3)2PbI4 | Li metal | ‒ | 1.4‒3 | ‒ | 0.034 | 410 mAh/g | No fading | ||
[121] | Zn-ion system | Cs0.15FA0.85PbI3 | Co2P-CoP-NiCoO2/ Zn | ‒ | 1.4–1.9 | ‒ | 6.4 | 170 mAh/g | No fading (200 cycles) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
M. R., A.K.; Nekahi, A.; Bouguern, M.D.; Ma, D.; Zaghib, K. Advancements and Challenges in Perovskite-Based Photo-Induced Rechargeable Batteries and Supercapacitors: A Comparative Review. Batteries 2024, 10, 284. https://doi.org/10.3390/batteries10080284
M. R. AK, Nekahi A, Bouguern MD, Ma D, Zaghib K. Advancements and Challenges in Perovskite-Based Photo-Induced Rechargeable Batteries and Supercapacitors: A Comparative Review. Batteries. 2024; 10(8):284. https://doi.org/10.3390/batteries10080284
Chicago/Turabian StyleM. R., Anil Kumar, Atiyeh Nekahi, Mohamed Djihad Bouguern, Dongling Ma, and Karim Zaghib. 2024. "Advancements and Challenges in Perovskite-Based Photo-Induced Rechargeable Batteries and Supercapacitors: A Comparative Review" Batteries 10, no. 8: 284. https://doi.org/10.3390/batteries10080284
APA StyleM. R., A. K., Nekahi, A., Bouguern, M. D., Ma, D., & Zaghib, K. (2024). Advancements and Challenges in Perovskite-Based Photo-Induced Rechargeable Batteries and Supercapacitors: A Comparative Review. Batteries, 10(8), 284. https://doi.org/10.3390/batteries10080284