Thermal Safety Research of Lithium-Ion Batteries Based on Flame-Retardant Phase Change Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Material Properties
2.2.1. Chemical Properties and Thermophysical Properties
2.2.2. Flame-Retardant Performance
2.3. Battery Thermal Management Experimental Settings
3. Results and Discussion
3.1. Characteristics of Flame-Retardant CPCMs
3.2. Flammability Test of Flame-Retardant Composite Phase Change Materials
3.3. Thermal Management Characteristics of Monomer Batteries
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, X.; Deng, C.; Shen, P.; Qian, Y.; Xie, M. Environmental Impact and Carbon Footprint Analysis of Pure Electric Vehicles Based on Life Cycle Assessment. Res. Environ. Sci. 2023, 36, 2179–2188. [Google Scholar]
- Hu, L.; Tian, Q.; Huang, J.; Ye, Y.; Wu, X. Review on Energy Distribution and Parameter Matching of Lithium-ion Battery-super Capacitor Hybrid Energy Storage System for Electric Vehicles. J. Mech. Eng. 2022, 58, 224–237. [Google Scholar]
- Wu, K.; Zhang, Y.; Zeng, Y.Q.; Yang, J. Safety Performance of Lithium-Ion Battery. Prog. Chem. 2011, 23, 401–409. [Google Scholar]
- Xu, D.; Li, Q.; Qiao, Q.; Xiao, W.; Yan, J.; Li, Y. Research progress of high-safety lithium-ion battery separators. New Chem. Mater. 2023, 51, 40–44. [Google Scholar]
- Li, C.; Tang, X.; Wei, Z. Thermal runaway and prevention of lithium-ion batteries. Sci. Technol. Rev. 2024, 42, 178–192. [Google Scholar]
- Hu, G.; Liao, C.; Zhang, W. A review on thermal runaway of lithium-ion batteries for electric vehicle. Adv. Technol. Electr. Eng. Energy 2021, 40, 66–80. [Google Scholar]
- Patel, J.R.; Rathod, M.K. Recent developments in the passive and hybrid thermal management techniques of lithium -ion batteries. J. Power Sources 2020, 480, 27. [Google Scholar] [CrossRef]
- Yang, C.Y.; Xi, H.; Wang, M.W. Structure optimization of air cooling battery thermal management system based on lithium-ion battery. J. Energy Storage 2023, 59, 22. [Google Scholar] [CrossRef]
- Lu, M.Y.; Zhang, X.L.; Ji, J.; Xu, X.F.; Zhang, Y.Y.C. Research progress on power battery cooling technology for electric vehicles. J. Energy Storage 2020, 27, 16. [Google Scholar] [CrossRef]
- Cai, S.W.; Zhang, X.L.; Ji, J. Recent advances in phase change materials-based battery thermal management systems for electric vehicles. J. Energy Storage 2023, 72, 27. [Google Scholar] [CrossRef]
- Chen, J.W.; Kang, S.Y.; Jiaqiang, E.; Huang, Z.H.; Wei, K.X.; Zhang, B.; Zhu, H.; Deng, Y.W.; Zhang, F.; Liao, G.L. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review. J. Power Sources 2019, 442, 18. [Google Scholar] [CrossRef]
- Sahan, N.; Fois, M.; Paksoy, H. The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material. Int. J. Energy Res. 2016, 40, 198–206. [Google Scholar] [CrossRef]
- Yu, J.; Kong, L.; Wang, H.Q.; Zhu, H.J.; Zhu, Q.S.; Su, J.W. A Novel Structure for Heat Transfer Enhancement in Phase Change Composite: Rolled Graphene Film Embedded in Graphene Foam. ACS Appl. Energy Mater. 2019, 2, 1192–1198. [Google Scholar] [CrossRef]
- Yan, D.; Cai, W.; Yin, G.; Tang, B.; Zhang, S. Preparation and properties of PEG/APS-SiO_2/O-CNTs phase change materials with enhanced thermal conductivity. Fine Chem. 2021, 38, 729–735. [Google Scholar]
- Jin, A.; Ju, Y.; Sun, H.; Li, H.; Zhang, Z. Mechanical properties of filling materials containing composite phase change materials. J. Cent. S. Univ. Sci. Technol. 2021, 52, 3153–3163. [Google Scholar]
- Lin, S.C.; Al-Kayiem, H.H. Evaluation of copper nanoparticles—Paraffin wax compositions for solar thermal energy storage. Sol. Energy 2016, 132, 267–278. [Google Scholar] [CrossRef]
- Li, M.; Guo, Q.G.; Nutt, S. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Sol. Energy 2017, 146, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.C.; Zhang, Y.; Cao, F.; Yang, C.X.; Wang, X.; Zhang, S.F.; Tang, B.T. Poly(vinyl alcohol)-Based Composite Aerogel Phase-Change Material for Thermal Management. ACS Appl. Energy Mater. 2024, 7, 3009–3017. [Google Scholar] [CrossRef]
- Yuan, W.Z.; Yang, X.Q.; Zhang, G.Q.; Li, X.X. A thermal conductive composite phase change material with enhanced volume resistivity by introducing silicon carbide for battery thermal management. Appl. Therm. Eng. 2018, 144, 551–557. [Google Scholar] [CrossRef]
- Li, J.H.; Huang, J.H.; Liu, Z.Q.; Cao, M.; Chen, R.K.; Zhang, Y.F. Developing ternary composite phase change materials with two different phase change temperatures for battery thermal management. Appl. Therm. Eng. 2023, 227, 13. [Google Scholar] [CrossRef]
- Upadhyay, D.; Mujadia, V.; Daruwala, R.; Lakdawala, A.; Shah, D.V. Investigation on performance of composite phase change material based thermal management of electrical battery. Int. J. Interact. Des. Manuf. Ijidem 2024, 18, 4285–4294. [Google Scholar] [CrossRef]
- Li, J.H.; Huang, J.H.; Zhai, Q.; Zhen, Y.Q.; Liu, Z.Q.; Zhang, Y.F. A novel flexible composite phase change material applied to the thermal safety of lithium-ion batteries. J. Energy Storage 2024, 86, 14. [Google Scholar] [CrossRef]
- Ling, Z.; Chen, J.; Fang, X.; Zhang, Z.; Xu, T.; Gao, X.; Wang, S. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Appl. Energy 2014, 121, 104–113. [Google Scholar] [CrossRef]
- He, R.; Fang, M.; Zhou, J.; Fei, H.; Yang, K. Enhancement of battery thermal management effect by a novel MOF based composite phase change material. Appl. Therm. Eng. 2024, 257, 124257. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Li, W. Thermal management of lithium-ion batteries based on PA/OBC/EG composite phase change materials. New Chem. Mater. 2022, 50, 141. [Google Scholar]
- Geng, Y.; Li, J.; Zhang, Y. Simulation study on the effect of flexible composite phase change materials for thermal management of lithium-ion batteries. New Chem. Mater. 2024, 52, 187–192. [Google Scholar]
- Huang, Q.Q.; Li, X.X.; Zhang, G.Q.; Kan, Y.C.; Li, C.B.; Deng, J.; Wang, C.H. Flexible composite phase change material with anti-leakage and anti-vibration properties for battery thermal management. Appl. Energy 2022, 309, 15. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, H.; Zuo, H.Y.; Zuo, Q.S.; He, X.X.; Chen, W.; Wei, R.R. EG@Bi-MOF derived porous carbon/lauric acid composite phase change materials for thermal management of batteries. Energy 2023, 272, 10. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, G.; Chen, K.; Dou, B. Temperature Control Performance of Soft-Coated Lithium-Ion Battery Based on Paraffin/Lauric Acid/Expanded Graphite. Adv. New Renew. Energy 2023, 11, 457–463. [Google Scholar]
- Mei, J.; Shi, G.Q.; Liu, H.; Wang, Z. Organic and Inorganic Hybrid Composite Phase Change Material for Inhibiting the Thermal Runaway of Lithium-Ion Batteries. Batteries 2023, 9, 14. [Google Scholar] [CrossRef]
- Cao, J.H.; Ling, Z.Y.; Lin, X.M.; Wu, Y.; Fang, X.M.; Zhang, Z.G. Flexible composite phase change material with enhanced thermophysical, dielectric, and mechanical properties for battery thermal management. J. Energy Storage 2022, 52, 13. [Google Scholar] [CrossRef]
- Kang, W.; Zhao, Y.Q.; Jia, X.H.; Hao, L.; Dang, L.P.; Wei, H.Y. Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System. Trans. Tianjin Univ. 2021, 27, 55–63. [Google Scholar] [CrossRef]
- Yang, K.X.; Ling, Z.Y.; Fang, X.M.; Zhang, Z.G. Introducing a flexible insulation network to the expanded graphite-based composite phase change material to enhance dielectric and mechanical properties for battery thermal management. J. Energy Storage 2023, 66, 11. [Google Scholar] [CrossRef]
- Deng, Q.; Liu, Q.; Nian, Y.L.; Zhao, R.; Cheng, W.L. A novel flexible composite phase change material with enhanced toughness and shape stability for battery thermal management. J. Energy Storage 2023, 72, 14. [Google Scholar] [CrossRef]
- Yang, W.S.; Li, X.X.; Li, C.B.; Deng, J.; Du, Y.X.; Zhang, G.Q. High Antileakage and Thermal Conductivity Composite Phase-Change Material with Anisotropy Expanded Graphite for Battery Thermal Management. ACS Appl. Energy Mater. 2023, 6, 9698–9708. [Google Scholar] [CrossRef]
- Fu, L.Y.; Wu, Z.X.; Wu, K.Y.; Chen, W.D.; Zhang, M.M.; Huang, X.; Ma, C.; Shao, Y.L.; Ran, J.Y.; Chua, K.J. A thermally induced flexible composite phase change material with boron nitride nanosheets/carbon nanotubes modified skeleton for battery thermal management. Appl. Energy 2024, 373, 13. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, J.; Chen, Y.; Ouyang, D.; Chen, M. Application of Polyethylene Glycol-Based Flame-Retardant Phase Change Materials in the Thermal Management of Lithium-Ion Batteries. Polymers 2023, 15, 4450. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, H.-q.; Fang, Z.-p. Flame Retardancy of Ramie Fabrics Treated by Layer-by-layer Assembly Technique of Tri-component PEI/PAA/APP. Acta Polym. Sin. 2017, 982–989. [Google Scholar] [CrossRef]
- Qiu, H.; Zhang, Z.; Ling, Z.; Fang, X. Developing a flame-retardant flexible composite phase change material to realize both temperature control and thermal runaway prevention for lithium-ion battery pack. Appl. Therm. Eng. 2024, 248, 123301. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, Q.; Zhao, R.; Cheng, W.-L.; Wang, Y.-D. A novel flexible flame-retardant phase change materials with battery thermal management test. J. Energy Storage 2023, 70, 108077. [Google Scholar] [CrossRef]
- Niu, J.; Deng, S.; Gao, X.; Niu, H.; Fang, Y.; Zhang, Z. Experimental study on low thermal conductive and flame retardant phase change composite material for mitigating battery thermal runaway propagation. J. Energy Storage 2022, 47, 103557. [Google Scholar] [CrossRef]
- Liu, M.; Qiao, J.; Zhang, X.; Guo, Z.; Liu, X.; Lin, F.; Yang, M.; Fan, J.; Wu, X.; Huang, Z. Flame Retardant Strategies and Applications of Organic Phase Change Materials: A Review. Adv. Funct. Mater. 2025, 35, 2412492. [Google Scholar] [CrossRef]
- Pielichowska, K.; Paprota, N.; Pielichowski, K. Fire Retardant Phase Change Materials—Recent Developments and Future Perspectives. Materials 2023, 16, 4391. [Google Scholar] [CrossRef] [PubMed]
Basis Material | Thermally Conductive Additives | Effects | Reference |
---|---|---|---|
Paraffin (PA) | Multi-walled carbon nanotube (MWCNT) and activated carbon | 39.1% and 34.1% increase in thermal conductivity | Sahan et al. [12] |
PA | Graphene films | Enhanced the thermal conductivity to 11.594 W/m K | Yu et al. [13] |
PEG | Carbon nanotubes (CNTs) | 28.1% increase in thermal conductivity | Yan et al. [14] |
PA | Expanded graphite (EG) | Thermal conductivity and latent heat reached 1.827 W/m K and 147.2 J/g | Zeng et al. [15] |
PA | Copper nanoparticles | 46.3% increase in thermal conductivity | Lin et al. [16] |
PA | Organically modified montmorillonite (OMMT) and MWCNT | 65% increase in thermal conductivity | Li et al. [17] |
N-octadecane | Aerogel and borax cross-links | Thermal conductivity of 0.146 W/m K | Li et al. [18] |
PA | Silicon carbide (SiC)/EG | Thermal conductivity is increased from 1.1 to 2.0 W/m K | Yuan et al. [19] |
Myristic acid (MA), PA | Short carbon fibers (SCFs) and carbon black (CB) | Thermal conductivity of 8.7 W/m K | Li et al. [20] |
PA | Graphite and coconut oil | Increased thermal conductivity from 0.2 W/m K to 15 W/m K | Wu et al. [21] |
PA | EG and flaked copper powder | Thermal conductivity of 3.357 W/m K and latent heat of 137 J/g | Li et al. [22] |
PA | EG | Thermal conductivity from 5.3 to 11.2 W/m K | Ling et al. [23] |
PA | EG and MWCNT | Thermal conductivity of 2.23 W/m K | He et al. [24] |
Sample | Mass Content (wt%) | ||
---|---|---|---|
PA | EG | APP/CS/AHP | |
M1 | 95 | 5 | 0 |
M2 | 86 | 5 | 9 |
M3 | 83 | 5 | 12 |
M4 | 80 | 5 | 15 |
M5 | 77 | 5 | 18 |
M6 | 74 | 5 | 21 |
Process Settings | Battery Status |
---|---|
Standby | Ten mins |
Constant current discharging | Discharge cut-off voltage at 2.75 V, currents of 6.4 A (2C) and 9.6 A (3C) |
Standby | Ten mins |
Constant current and pressure charging | 4.2 V and 3.2 A |
Cycling numbers | Two |
Samples | Peak Phase Change Temperature (°C) | Latent Heat of Phase Change ∆H (J/g) |
---|---|---|
PA | 45.34 | 227.45 |
M1 | 45.27 | 192.61 |
M2 | 45.33 | 179.78 |
M3 | 44.91 | 165.87 |
M4 | 44.26 | 149.40 |
M5 | 44.30 | 163.75 |
M6 | 44.67 | 133.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhao, J.; Chen, Y.; Chen, M. Thermal Safety Research of Lithium-Ion Batteries Based on Flame-Retardant Phase Change Materials. Batteries 2025, 11, 50. https://doi.org/10.3390/batteries11020050
Zhang J, Zhao J, Chen Y, Chen M. Thermal Safety Research of Lithium-Ion Batteries Based on Flame-Retardant Phase Change Materials. Batteries. 2025; 11(2):50. https://doi.org/10.3390/batteries11020050
Chicago/Turabian StyleZhang, Jiaxin, Jiajun Zhao, Yin Chen, and Mingyi Chen. 2025. "Thermal Safety Research of Lithium-Ion Batteries Based on Flame-Retardant Phase Change Materials" Batteries 11, no. 2: 50. https://doi.org/10.3390/batteries11020050
APA StyleZhang, J., Zhao, J., Chen, Y., & Chen, M. (2025). Thermal Safety Research of Lithium-Ion Batteries Based on Flame-Retardant Phase Change Materials. Batteries, 11(2), 50. https://doi.org/10.3390/batteries11020050