Li-Ion Mobility and Solvation Structures in Concentrated Poly(ethylene carbonate) Electrolytes: A Molecular Dynamics Simulation Study
Abstract
:1. Introduction
2. Computational Details
2.1. Modeling and Structure Optimization
2.2. Computational Methods
2.3. Mean-Square Displacement
2.4. Coordination Number
2.5. Solvation Free Energy
3. Results and Discussion
3.1. Mobility of Li Cations
3.2. Contribution of Faster Group
3.3. Solvation Structures
4. Conclusions
- After categorizing Li cations into faster and slower groups based on the mean-square displacement data, their ionic mobility and related characteristics were further analyzed. The results indicated that the faster group has approximately 10 times higher conductivity than the slower group. Consequently, even though the relative quantity of faster Li cations decreases with increasing salt concentration, these ions still contribute around 70% of the cation transport. This suggests that free ions are prevalent among the faster Li cations.
- By studying the coordination numbers and solvation free energy of the two groups of Li cations, we found that slower Li cations tend to form more coordination structures with oxygen atoms in their environment, while faster Li cations experience less coordination influence. This effect is particularly pronounced at high salt concentrations, at which the coordinating effects from both PEC and TFSI anions weaken due to the formation of aggregated ions, ultimately leading to the emergence of more free ions.
- Although we are not yet able to establish an exact standard for determining whether a specific Li cation is acting as a free ion during ion transport, the findings of this study have successfully narrowed the range in which Li cations are likely to be free ions. Furthermore, three possible solvation structures for faster Li cations across different salt concentration ranges are proposed, all of which align with the behaviors observed in this study.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Mater. Sustain. Energy 2011, 414, 171–179. [Google Scholar]
- Jim, M. Technology: A solid future. Nature 2015, 526, S96–S97. [Google Scholar]
- Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5, 753–785. [Google Scholar] [CrossRef]
- Zhao, Q.; Stalin, S.; Zhao, C.Z.; Archer, L.A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252. [Google Scholar] [CrossRef]
- Fergus, J.W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 2010, 195, 4554–4569. [Google Scholar] [CrossRef]
- Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G.X. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem 2019, 5, 2326–2352. [Google Scholar] [CrossRef]
- Wright, P.V. Electrical conductivity in ionic complexes of poly (ethylene oxide). Br. Polym. J. 1975, 7, 319. [Google Scholar] [CrossRef]
- Shao, Y.Q.; Gudla, H.; Mindemark, J.; Brandell, D.; Zhang, C. Ion transport in polymer electrolytes: Building new bridges between experiment and molecular simulation. Acc. Chem. Res. 2024, 57, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, H.M.; Zhu, J.K.; Wu, J.F.; Yang, H.; Wei, L.; Guo, X. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites. ACS Appl. Mater. Interfaces 2018, 11, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, A.; Ratner, M.A. Conduction in polymers: Dynamic disorder transport. J. Phys. Chem. 1994, 98, 1765–1775. [Google Scholar] [CrossRef]
- Maitra, A.; Heuer, A. Cation transport in polymer electrolytes: A microscopic approach. Phys. Rev. Lett. 2007, 98, 227802. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.W.; Wang, X.D.; Zhou, A.A.; Yang, Z.L. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Mater. 2021, 35, 70–87. [Google Scholar] [CrossRef]
- Li, Z.; Fu, J.L.; Zhou, X.Y.; Gui, S.W.; Wei, L.; Yang, H.; Li, H.; Guo, X. Ionic conduction in polymer-based solid electrolytes. Macromolecules 2015, 48, 2773–2786. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Tominaga, Y. Understanding electrochemical stability and lithium ion-dominant transport in concentrated poly (ethylene carbonate) electrolyte. ChemElectroChem 2018, 5, 4008. [Google Scholar] [CrossRef]
- Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L. All Solid-State Polymer Electrolytes for High-Performance Lithium Ion Batteries. Energy Storage Mater. 2016, 5, 139. [Google Scholar] [CrossRef]
- Sugimoto, H.; Inoue, S. Recent Progress in the Synthesis of Polymers Based on Carbon Dioxide. Pure Appl. Chem. 2006, 78, 1823. [Google Scholar] [CrossRef]
- Klaus, S.; Lehenmeier, M.W.; Anderson, C.E.; Rieger, B. Recent advances in CO2/epoxide copolymerization—New strategies and cooperative mechanisms. Coord. Chem. Rev. 2011, 255, 1460. [Google Scholar] [CrossRef]
- Duan, H.; Yin, Y.X.; Zeng, X.X.; Li, J.Y.; Shi, J.L.; Shi, Y.; Wen, R.; Guo, Y.G.; Wan, L.J. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 2018, 10, 85–91. [Google Scholar] [CrossRef]
- Fong, K.D.; Self, J.; McCloskey, B.D.; Persson, K.A. Ion correlations and their impact on transport in polymer-based electrolytes. Macromolecules 2021, 54, 2575–2591. [Google Scholar] [CrossRef]
- Vargas-Barbosa, N.M.; Roling, B. Dynamic ion correlations in solid and liquid electrolytes: How do they affect charge and mass transport? ChemElectroChem 2020, 7, 367–385. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Wheatle, B.K.; Krajniak, J.; Keith, J.R.; Ganesan, V. Ion mobilities, transference numbers, and inverse Haven ratios of polymeric ionic liquids. ACS Macro Lett. 2020, 9, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Tominaga, Y. Modeling analysis of ionic solvation structure in concentrated poly (ethylene carbonate) electrolytes. Electrochim. Acta 2023, 464, 142875. [Google Scholar] [CrossRef]
- Andersson, R.; Hernández, G.; Mindemark, J. Quantifying the ion coordination strength in polymer electrolytes. Phys. Chem. Chem. Phys. 2022, 24, 16343. [Google Scholar] [CrossRef] [PubMed]
- Motomatsu, J.; Kodama, H.; Furukawa, T.; Tominaga, Y. Dielectric Relaxation Behavior of a Poly (ethylene carbonate)-Lithium Bis-(trifluoromethanesulfonyl) Imide Electrolyte. Macromol. Chem. Phys. 2015, 216, 1660. [Google Scholar] [CrossRef]
- Tan, V.B.C.; Zeng, X.S.; Deng, M.; Lim, K.M.; Tay, T.E. Multiscale modeling of polymers–The Pseudo Amorphous Cell. Comput. Methods Appl. Mech. Eng. 2008, 197–198, 536–554. [Google Scholar] [CrossRef]
- BIOVIA Materials Studio, 7.0; Dassault Systèmes: San Diego, CA, USA, 2014. Available online: https://www.3ds.com/products/biovia/materials-studio (accessed on 19 November 2024).
- Sun, H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications–Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Sun, H.; Jin, Z.; Yang, C.W.; Akkermans, R.L.C.; Robertson, S.H.; Spenley, N.A.; Miller, S.; Todd, S.M. COMPASS II: Extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 2016, 22, 47. [Google Scholar] [CrossRef]
- Fried, J.R.; Sadat-Akhavi, M.; Mark, J.E. Molecular simulation of gas permeability: Poly(2,6-dimethyl-1,4-phenylene oxide). J. Membrane Sci. 1998, 149, 115–126. [Google Scholar] [CrossRef]
- López-Chávez, E.; Martínez-Magadán, J.M.; Oviedo-Roa, R.; Guzmán, J.; Ramírez-Salgado, J.; Marín-Cruz, J. Molecular modeling and simulation of ion-conductivity in chitosan membranes. Polymer 2005, 46, 7519–7527. [Google Scholar] [CrossRef]
- Darve, E. Thermodynamic integration using constrained and unconstrained dynamics. In Free Energy Calculations: Theory and Applications in Chemistry and Biology; Springer: Berlin/Heidelberg, Germany, 2007; pp. 119–170. [Google Scholar]
- Bennett, C.H. Efficient estimation of free energy differences from Monte Carlo data. J. Comput. Phys. 1976, 22, 245–268. [Google Scholar] [CrossRef]
- Kimura, K.; Motomatsu, J.; Tominaga, Y. Correlation between solvation structure and ion-conductive behavior of concentrated poly (ethylene carbonate)-based electrolytes. J. Phys. Chem. C 2016, 120, 12385. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.Q.; Yao, N.; Yao, Y.X.; Hou, L.P.; Chen, X.; Zhou, M.Y.; Huang, J.Q.; Zhang, Q. Stable anion-derived solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 2021, 60, 22683–22687. [Google Scholar] [CrossRef]
- Feng, G.; Chen, M.; Bi, S.; Goodwin, Z.A.H.; Postnikov, E.B.; Brilliantov, N.; Urbakh, M.; Kornyshev, A.A. Free and bound states of ions in ionic liquids, conductivity, and underscreening paradox. Phys. Rev. X 2019, 9, 021024. [Google Scholar] [CrossRef]
- Li, S.; Cao, Z.; Peng, Y.X.; Liu, L.; Wang, Y.L.; Wang, S.; Wang, J.Q.; Yan, T.Y.; Gao, X.P.; Song, D.Y.; et al. Molecular dynamics simulation of LiTFSI-acetamide electrolytes: Structural properties. J. Phys. Chem. B 2008, 112, 6398–6410. [Google Scholar] [CrossRef] [PubMed]
- Lassègues, J.C.; Grondin, J.; Aupetit, C.; Johansson, P. Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids. J. Phys. Chem. A 2009, 113, 305–314. [Google Scholar] [CrossRef] [PubMed]
- He, Z.J.; Fan, L.Z. Poly(ethylene carbonate)-based electrolytes with high concentration Li salt for all-solid-state lithium batteries. Rare Met. 2018, 37, 488–496. [Google Scholar] [CrossRef]
- Tominaga, Y. Ion-conductive polymer electrolytes based on poly (ethylene carbonate) and its derivatives. Polym. J. 2017, 49, 291. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, W.; Kimura, K.; Tominaga, Y. Li-Ion Mobility and Solvation Structures in Concentrated Poly(ethylene carbonate) Electrolytes: A Molecular Dynamics Simulation Study. Batteries 2025, 11, 52. https://doi.org/10.3390/batteries11020052
Tan W, Kimura K, Tominaga Y. Li-Ion Mobility and Solvation Structures in Concentrated Poly(ethylene carbonate) Electrolytes: A Molecular Dynamics Simulation Study. Batteries. 2025; 11(2):52. https://doi.org/10.3390/batteries11020052
Chicago/Turabian StyleTan, Wei, Kento Kimura, and Yoichi Tominaga. 2025. "Li-Ion Mobility and Solvation Structures in Concentrated Poly(ethylene carbonate) Electrolytes: A Molecular Dynamics Simulation Study" Batteries 11, no. 2: 52. https://doi.org/10.3390/batteries11020052
APA StyleTan, W., Kimura, K., & Tominaga, Y. (2025). Li-Ion Mobility and Solvation Structures in Concentrated Poly(ethylene carbonate) Electrolytes: A Molecular Dynamics Simulation Study. Batteries, 11(2), 52. https://doi.org/10.3390/batteries11020052