Statistical Characterization of the State-of-Health of Lithium-Ion Batteries with Weibull Distribution Function—A Consideration of Random Effect Model in Charge Capacity Decay Estimation
Abstract
:1. Introduction
2. Formulation of Charge Capacity Decay Model Considering Uncertainties
Estimation of Future Battery Charge Capacity
- Determine the maximum likelihood function value, L, of the battery charge capacity over time using the experimental data and apply Equation (9) that has , representing the probability density function of the nonlinear battery charge decay [34].
- Apply stochastic approximation, expectation, and maximization technique that uses Markov Chain Monte Carlo (MCMC) simulation and Metropolis-Hasting algorithm to estimate the known and unknown parameters of the model, ε.
- Simulation step: For kth iterative evaluation, determine the variable sk+1 such that the condition in Equation (11) is satisfied [37].
- Stochastic approximation step: Update the value of sk+1 as per Equation (12).
- Maximization step: Update εk so as to maximize its value based on the relationship in Equation (14).
- Determine the charge capacity of the batteries using the estimated parameters such that the charge capacity prediction (Qpred) is a function of the fixed effect parameters defined—P1, λ1, P2, λ2, and the random effects → ψ11, ψ22, ψ33, and ψ44, which are the random effects on P1, λ1, P2, and λ2, respectively.
- Estimate the residual (Res) of the random effect model estimated charge capacity from the measured charge capacity.
- Predict the charge capacity of the lithium-ion batteries by incorporating the noise to Qpred to obtain the random effect modelled charge capacity decay (Qrnd), as per Equation (15).
- Estimate the distribution of times of the battery discharge for a 70% End-of-Life (EOL) failure threshold, which is the time instant at which the battery retains 70% of the original charge capacity.
3. Results and Discussion
3.1. Battery Prognosis using Stochastic EM Algorithm
3.2. Validation of Estimation Modeling Technique
3.3. Weibull Distribution Function Estimation of the Battery State-of-Health (SOH)
4. Conclusions of the Study
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, D.; Wang, H.; Peng, Y.; Xie, W.; Liao, H. Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction. Energies 2013, 6, 3654–3668. [Google Scholar] [CrossRef]
- Hu, C.; Jain, G.; Tamirisa, P.; Gorka, T. Method for estimating capacity and predicting remaining useful life of lithium-ion battery. Appl. Energy 2014, 126, 182–189. [Google Scholar] [CrossRef]
- Xing, Y.; Ma, E.W.; Tsui, K.L.; Pecht, M. An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron. Reliab. 2013, 53, 811–820. [Google Scholar] [CrossRef]
- Mo, B.; Yu, J.; Tang, D.; Liu, H. A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter. In Proceedings of the 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), Ottawa, ON, Canada, 20–22 June 2016; pp. 1–5. [Google Scholar]
- He, W.; Williard, N.; Osterman, M.; Pecht, M. Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. J. Power Sources 2011, 196, 10314–10321. [Google Scholar] [CrossRef]
- Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688. [Google Scholar] [CrossRef]
- Wang, D.; Miao, Q.; Pecht, M. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. J. Power Sources 2013, 239, 253–264. [Google Scholar] [CrossRef]
- Liu, D.; Pang, J.; Zhou, J.; Peng, Y.; Pecht, M. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron. Reliab. 2013, 53, 832–839. [Google Scholar] [CrossRef]
- Orchard, M.E.; Hevia-Koch, P.; Zhang, B.; Tang, L. Risk measures for particle-filtering-based state-of-charge prognosis in lithium-ion batteries. IEEE Trans. Ind. Electron. 2013, 60, 5260–5269. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, J. A review on prognostics and health monitoring of Li-ion battery. J. Power Sources 2011, 196, 6007–6014. [Google Scholar] [CrossRef]
- Broussely, M.; Biensan, P.; Bonhomme, F.; Blanchard, P.; Herreyre, S.; Nechev, K.; Staniewicz, R.J. Main aging mechanisms in Li ion batteries. J. Power Sources 2005, 146, 90–96. [Google Scholar] [CrossRef]
- Scrosati, B.; Hassoun, J.; Sun, Y.K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295. [Google Scholar] [CrossRef]
- Hu, C.; Youn, B.D.; Chung, J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Appl. Energy 2012, 92, 694–704. [Google Scholar] [CrossRef]
- Wolfinger, R.D.; Lin, X. Two Taylor-series approximation methods for nonlinear mixed models. Comput. Stat. Data Anal. 1997, 25, 465–490. [Google Scholar] [CrossRef]
- Davidian, M. Nonlinear mixed effects models. In International Encyclopedia of Statistical Science; Springer: Berlin, Germany, 2011; pp. 947–950. [Google Scholar]
- Sun, F.; Hu, X.; Zou, Y.; Li, S. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 2011, 36, 3531–3540. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Zhang, X.; Sun, F.; Fan, J. State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved Thevenin model. IEEE Trans. Veh. Technol. 2011, 60, 1461–1469. [Google Scholar]
- Saha, B.; Goebel, K. Modeling Li-ion battery capacity depletion in a particle filtering framework. In Proceedings of the Annual Conference of the Prognostics and Health Management Society, San Diego, CA, 27 September–1 October 2009; pp. 2909–2924. [Google Scholar]
- Dalal, M.; Ma, J.; He, D. Lithium-ion battery life prognostic health management system using particle filtering framework. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2011, 225, 81–90. [Google Scholar] [CrossRef]
- Miao, Q.; Xie, L.; Cui, H.; Liang, W.; Pecht, M. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron. Reliab. 2013, 53, 805–810. [Google Scholar] [CrossRef]
- Liu, J.; Saxena, A.; Goebel, K.; Saha, B.; Wang, W. An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries; National Aeronautics and Space Administration Moffett Field CA Ames Research Center: Mountain View, CA, USA, 2010.
- Hu, X.; Li, S.E.; Yang, Y. Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles. IEEE Trans. Transp. Electr. 2016, 2, 140–149. [Google Scholar] [CrossRef]
- Tang, S.; Yu, C.; Wang, X.; Guo, X.; Si, X. Remaining useful life prediction of lithium-ion batteries based on the wiener process with measurement error. Energies 2014, 7, 520–547. [Google Scholar] [CrossRef]
- Ng, S.S.; Xing, Y.; Tsui, K.L. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl. Energy 2014, 118, 114–123. [Google Scholar] [CrossRef]
- Shim, J.; Kostecki, R.; Richardson, T.; Song, X.; Striebel, K.A. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J. Power Sources 2002, 112, 222–230. [Google Scholar] [CrossRef]
- Harris, S.J.; Harris, D.J.; Li, C. Failure statistics for commercial lithium ion batteries: A study of 24 pouch cells. J. Power Sources 2017, 342, 589–597. [Google Scholar] [CrossRef]
- Andre, D.; Appel, C.; Soczka-Guth, T.; Sauer, D.U. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J. Power Sources 2013, 224, 20–27. [Google Scholar] [CrossRef]
- Xing, Y.; He, W.; Pecht, M.; Tsui, K.L. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl. Energy 2014, 113, 106–115. [Google Scholar] [CrossRef]
- Rufus, F.; Lee, S.; Thakker, A. Health monitoring algorithms for space application batteries. In Proceedings of the International Conference on Prognostics and Health Management (PHM 2008), Denver, CO, USA, 6–9 October 2008; pp. 1–8. [Google Scholar]
- Syracuse, K.C.; Clark, W.D. A statistical approach to domain performance modeling for oxyhalide primary lithium batteries. In Proceedings of the Twelfth Annual Battery Conference on Applications and Advances, Long Beach, CA, USA, 14–17 January 1997; pp. 163–170. [Google Scholar]
- Schuster, S.F.; Brand, M.J.; Berg, P.; Gleissenberger, M.; Jossen, A. Lithium-ion cell-to-cell variation during battery electric vehicle operation. J. Power Sources 2015, 297, 242–251. [Google Scholar] [CrossRef]
- Saha, B.; Goebel, K. Battery Data Set, NASA Ames Prognostics Data Repository; NASA Ames Research Center: Moffett Field, CA, USA, 2007. Available online: http://ti.arc.nasa.gov/project/prognostic-data-repository (accessed on 16 July 2017).
- Lindstrom, M.J.; Bates, D.M. Nonlinear mixed effects models for repeated measures data. Biometrics 1990, 46, 673–687. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Gu, M.; Peterson, B. Maximum likelihood from spatial random effects models via the stochastic approximation expectation maximization algorithm. Stat. Comput. 2007, 17, 163–177. [Google Scholar] [CrossRef]
- Harter, H.L.; Moore, A.H. Maximum likelihood estimation of the parameters of Gamma and Weibull populations from complete and from censored samples. Technometrics 1965, 7, 639–643. [Google Scholar] [CrossRef]
- Cohen, A.C. Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics 1965, 7, 579–588. [Google Scholar] [CrossRef]
- Kuhn, E.; Lavielle, M. Maximum likelihood estimation in nonlinear mixed effects models. Comput. Stat. Data Anal. 2005, 49, 1020–1038. [Google Scholar] [CrossRef]
- Arora, P.; White, R.E.; Doyle, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 1998, 145, 3647–3667. [Google Scholar] [CrossRef]
- Daigle, M.; Kulkarni, C.S. End-of-discharge and End-of-life Prediction in Lithium-ion Batteries with Electrochemistry-based Aging Models. In Proceedings of the AIAA Infotech@ Aerospace, San Diego, CA, USA, 4–8 January 2016; p. 2132. [Google Scholar]
Parameters | B0029 | B0030 | B0031 | B0032 |
---|---|---|---|---|
P1 | 1.8445 | 1.7729 | 1.8232 | 1.8812 |
λ1 | −6.6079 | −6.6265 | −7.0221 | −6.5622 |
P2 | −2.4236 | −2.4666 | −2.4418 | −2.4521 |
λ2 | 0.3542 | 0.4402 | 0.3330 | 0.2969 |
Error Measure Technique | Mean Absolute Error (MAE) | Mean Absolute Percentage Error (MAPE) | ||||
---|---|---|---|---|---|---|
Lithium ion battery | Mean value | Lower value | Upper value | Mean value | Lower value | Upper value |
95% Confidence Interval | ||||||
B0029 | 0.0138 | 0.0246 | 0.0204 | 0.8035 | 1.4242 | 1.1832 |
B0030 | 0.0168 | 0.0200 | 0.0237 | 1.0116 | 1.1933 | 1.4323 |
B0031 | 0.0124 | 0.0168 | 0.0173 | 0.7096 | 0.9593 | 0.9915 |
B0032 | 0.0166 | 0.0248 | 0.0254 | 0.9440 | 1.4105 | 1.4524 |
99% confidence interval | ||||||
B0029 | 0.0121 | 0.0253 | 0.0271 | 0.7044 | 1.4601 | 1.5751 |
B0030 | 0.0148 | 0.0253 | 0.0276 | 0.8893 | 1.5211 | 1.6652 |
B0031 | 0.0124 | 0.0191 | 0.0202 | 0.7094 | 1.0874 | 1.1638 |
B0032 | 0.0160 | 0.0298 | 0.0288 | 0.9066 | 1.6909 | 1.6473 |
Battery | B0029 | B0030 | B0031 | B0032 |
---|---|---|---|---|
95% | 0.9196 | 0.8900 | 0.8731 | 0.8948 |
99% | 0.9394 | 0.9044 | 0.8848 | 0.9069 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ossai, C.I.; Raghavan, N. Statistical Characterization of the State-of-Health of Lithium-Ion Batteries with Weibull Distribution Function—A Consideration of Random Effect Model in Charge Capacity Decay Estimation. Batteries 2017, 3, 32. https://doi.org/10.3390/batteries3040032
Ossai CI, Raghavan N. Statistical Characterization of the State-of-Health of Lithium-Ion Batteries with Weibull Distribution Function—A Consideration of Random Effect Model in Charge Capacity Decay Estimation. Batteries. 2017; 3(4):32. https://doi.org/10.3390/batteries3040032
Chicago/Turabian StyleOssai, Chinedu I., and Nagarajan Raghavan. 2017. "Statistical Characterization of the State-of-Health of Lithium-Ion Batteries with Weibull Distribution Function—A Consideration of Random Effect Model in Charge Capacity Decay Estimation" Batteries 3, no. 4: 32. https://doi.org/10.3390/batteries3040032
APA StyleOssai, C. I., & Raghavan, N. (2017). Statistical Characterization of the State-of-Health of Lithium-Ion Batteries with Weibull Distribution Function—A Consideration of Random Effect Model in Charge Capacity Decay Estimation. Batteries, 3(4), 32. https://doi.org/10.3390/batteries3040032