Band-Gap Engineering: Lithium Effect on the Electronic Properties of Hydrogenated 3C-SiC (1 1 0) Surfaces
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, Z.; Wang, C.; Wan, C.; Wang, R.; Dai, X.; Wei, J.; Xia, H.; Li, W.; Zhang, W.; Cao, S.; et al. Strain-Driven Auto-Detachable Patterning of Flexible Electrodes. Adv. Mater. 2022, 34, 2202877. [Google Scholar] [CrossRef]
- Miao, L.; Wang, R.; Di, S.; Qian, Z.; Zhang, L.; Xin, W.; Liu, M.; Zhu, Z.; Chu, S.; Du, Y.; et al. Aqueous Electrolytes with Hydrophobic Organic Cosolvents for Stabilizing Zinc Metal Anodes. ACS Nano 2022, 16, 9667–9678. [Google Scholar] [CrossRef]
- Yang, K.; Liu, D.; Qian, Z.; Jiang, D.; Wang, R. Computational auxiliary for the progress of sodium-ion solid-state electrolytes. ACS Nano 2021, 15, 17232–17246. [Google Scholar] [CrossRef] [PubMed]
- Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem. 2017, 21, 1939. [Google Scholar] [CrossRef]
- Zheng, F.; Yang, Y.; Chen, Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, T.; Niaei, A.H.F.; Searles, D.J.; Hankel, M. Three-Dimensional Silicon Carbide from Siligraphene as a High Capacity Lithium Ion Battery Anode Material. J. Phys. Chem. C 2019, 123, 45. [Google Scholar] [CrossRef]
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2017, 164, A5019. [Google Scholar] [CrossRef] [Green Version]
- Edge, J.S.; O’Kane, S.; Prosser, R.; Kirkaldy, N.D.; Patel, A.N.; Hales, A.; Ghosh, A.; Ai, W.; Chen, J.; Yang, J.; et al. Lithium ion battery degradation: What you need to know. Phys. Chem. Chem. Phys. 2021, 23, 8200. [Google Scholar] [CrossRef]
- Pender, J.P.; Jha, G.; Youn, D.H.; Ziegler, J.M.; Andoni, I.; Choi, E.J.; Heller, A.; Dunn, B.S.; Weiss, P.S.; Penner, R.M.; et al. Electrode Degradation in Lithium-Ion Batteries. ACS Nano 2020, 14, 1243. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Chroneos, A.; Schwingenschlögl, U. Silicene/germanene on MgX2(X = Cl, Br, and I) for Li-ion battery applications. Nanoscale 2017, 8, 7272. [Google Scholar] [CrossRef]
- Akinwande, D.; Brennan, C.J.; Bunch, J.S.; Egberts, P.; Felts, J.R.; Gao, H.; Huang, R.; Kim, J.-S.; Li, T.; Li, Y.; et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extrem. Mech. Lett. 2017, 13, 42. [Google Scholar] [CrossRef] [Green Version]
- Vishnoi, P.; Pramoda, K.; Rao, C.N.R. 2D Elemental Nanomaterials Beyond Graphene. ChemNanoMat 2019, 5, 1062–1091. [Google Scholar] [CrossRef]
- Calabretta, C.; Scuderi, V.; Anzalone, R.; Mauceri, M.; Crippa, D.; Cannizzaro, A.; Boninelli, S.; Via, F.L. Effect of Nitrogen and Aluminum Doping on 3C-SiC Heteroepitaxial Layers Grown on 4° Off-Axis Si (100). Materials 2021, 14, 440. [Google Scholar] [CrossRef]
- Huczko, A.; Dąbrowska, A.; Savchyn, V.; Popov, A.I.; Karbovnyk, I. Silicon carbide nanowires: Synthesis and cathodoluminescence. Phys. Status Solidi B 2009, 246, 2806–2808. [Google Scholar] [CrossRef]
- Khan, A.A.; Ahmad, R.; Ahmad, I. Silicon carbide and III-Nitrides nanosheets: Promising anodes for Mg-ion batteries. Mater. Chem. Phys. 2021, 257, 123785. [Google Scholar] [CrossRef]
- Xiang, K.; Wang, X.; Chen, M.; Shen, Y.; Shu, H.; Yang, X. Industrial waste silica preparation of silicon carbide composites and their applications in lithium-ion battery anode. J. Alloys Compd. 2017, 695, 100–105. [Google Scholar] [CrossRef]
- Amy, F.; Chabal, Y.J. Interaction of H, O2, and H2O with 3C-SiC surfaces. J. Chem. Phys. 2003, 119, 6201. [Google Scholar] [CrossRef]
- Cicero, G.; Catellani, A. Towards SiC surface functionalization: An ab initio study. J. Chem. Phys. 2005, 122, 214716. [Google Scholar] [CrossRef] [Green Version]
- Coletti, C.; Frewin, C.L.; Saddow, S.E.; Hetzel, M.; Virojanadara, C.; Starke, U. Surface studies of hydrogen etched 3C-SiC (001) on Si(001). Appl. Phys. Lett. 2007, 91, 061914. [Google Scholar] [CrossRef]
- Catellani, A.; Galli, G. Theoretical studies of silicon carbide surfaces. Prog. Surf. Sci. 2002, 69, 101. [Google Scholar] [CrossRef]
- Catellani, A.; Calzolari, A. Functionalization of SiC(110) Surfaces via Porphyrin Adsorption: Ab Initio Results. J. Phys. Chem. C 2012, 116, 886. [Google Scholar] [CrossRef]
- Wenzien, B.; Käckell, P.K.; Bechstedt, F. Ab initio calculation of the atomic and electronic structure for the clean 3C-SiC(110) 1 × 1 surface. Surf. Sci. 1994, 307, 989. [Google Scholar] [CrossRef]
- Gavrilenko, V.I. Calculated differential reflectance of the (110) surface of cubic silicon carbide. Appl. Phys. Lett. 1995, 67, 16. [Google Scholar] [CrossRef]
- Park, T.; Park, C.; Jung, J.; Yun, G.J. Investigation of Silicon Carbide Oxidation Mechanism Using ReaxFF Molecular Dynamics Simulation. J. Spacecr. Rocket. 2020, 57, 1328–1334. [Google Scholar] [CrossRef]
- Trejo, A.; Cuevas, J.L.; Salazar, F.; Carvajal, E.; Cruz-Irisson, M. Ab-initio study of anisotropic and chemical surface modifications of β-SiC nanowires. J. Mol. Model. 2013, 19, 2043–2048. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 2002, 14, 2745. [Google Scholar] [CrossRef] [Green Version]
- Calvino, M.; Trejo, A.; Cuevas, J.; Carvajal, E.; Duchén, G.; Cruz-Irisson, M. A Density Functional Theory study of the chemical surface modification of β-SiC nanopores. Mater. Sci. Eng. B 2012, 177, 1482. [Google Scholar] [CrossRef]
- Cuevas, J.L.; de Santiago, F.; Ramírez, J.; Alejandro Trejo, A.M.; Pérez, L.A.; Cruz-Irisson, M. First principles band-gap engineering of [1 1 0] oriented 3C-SiC nanowires. Comput. Mater. Sci. 2018, 142, 268. [Google Scholar] [CrossRef]
- Dyall, K.G.; Taylor, P.R.; Faegri, K., Jr.; Partridge, H. All electron molecular Dirac Hartree Fock calculations: The group IV tetrahydrides CH4, SiH4, GeH4, SnH4, and PbH4. J. Chem. Phys. 1991, 95, 2583. [Google Scholar] [CrossRef]
- Wan, W.; Zhang, Q.; Cui, Y.; Wang, E. First principles study of lithium insertion in bulk silicon. J. Phys. Condens. Matter 2010, 22, 415501. [Google Scholar] [CrossRef]
- Obrovac, M.N.; Christensen, L. Structural Changes in Silicon Anodes during Lithium Insertion/Extraction. Electrochem. Solid-State Lett. 2004, 7, A93. [Google Scholar] [CrossRef]
- Sheehan, W.F., Jr.; Schomaker, V. The Si–C Bond Distance in Si(CH3)4. J. Am. Chem. Soc. 1952, 74, 3956. [Google Scholar] [CrossRef]
- Boyd, D.R.J. Infrared Spectrum of Trideuterosilane and the Structure of the Silane Molecule. J. Chem. Phys. 1955, 23, 922. [Google Scholar] [CrossRef]
- Kim, H.; Chou, C.Y.; Ekerdt, J.G.; Hwang, G.S. Structure and Properties of Li-Si Alloys: A First-Principles Study. J. Phys. Chem. C 2011, 115, 2514–2521. [Google Scholar] [CrossRef]
- Bravo-Zhivotovskii, D.; Yuzefovich, M.; Sigal, N.; Korogodsky, G.; Klinkhammer, K.; Tumanskii, B.; Shames, A.; Apeloig, Y. The Synthesis of the First Compound with Li-Si-Hg Bonding: [{Li(iPr3Si)2Si}2Hg]—A Source for the [Li(iPr3Si)2Si] Radical. Angew. Chem. Int. 2002, 41, 649–651. [Google Scholar] [CrossRef]
- McKean, D.C.; Boggs, J.E.; Schäfer, L. CH bond length variations due to the intramolecular environment: A comparison of the results obtained by the method of isolated CH stretching frequencies and by ab initio gradient calculations. J. Mol. Struct. 1984, 116, 313. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, M.; Liu, H. Predicted two-dimensional electrides: Lithium-carbon monolayer sheet. Phys. Lett. A 2015, 379, 2511. [Google Scholar] [CrossRef]
Parameter | Value in Calculation |
---|---|
Exchange and correlation energy | GGA-RPBE |
Cutoff energy | 350 eV |
k-point mesh | 8 × 8 × 1 |
Force tolerance | 0.001 eV/Å |
Basis set | DZP |
DM tolerance | 0.0001 |
SCF iterations | 1000 |
Geometry optimization | cg |
Passivation Scheme | Angles () | Bond Length (Å) | Experimental Value (Å) |
---|---|---|---|
Pristine | = 113.74 = 113.7 = 89.72 | Si–C = 1.91 | |
Full-H | = 109.4 = 109.4 = 109.7 | Si–C = 1.89 Si–H = 1.52 C–H = 1.11 | |
Full-Li | = 109.6 = 109.6 = 108.9 | Si–C = 1.89 Si–Li = 1.58 C–Li = 1.19 | |
CH+SiLi | = 106.11 = 109.34 = 107.46 | Si–C = 1.95 Si–Li = 2.56 C–H = 1.12 | |
CLi+SiH | = 109.6 = 109.6 = 109.1 | Si–C = 1.8, 1.9 Si–H = 1.65 C–Li = 2.07 | Si–C = 1.93 [32] Si–H = 1.89 [33] Si–Li = 2.57–3.09 [34,35] C–H = 1.08–1.10 [32,36] C–Li = 2.02 [37] |
H+1LiC | = 109.9 = 110.9 = 104.11 | Si–C = 1.92 Si–H = 1.56 C–H = 1.11 C–Li = 2.1 | |
H+1LiSi | = 109.1 = 109.1 = 108.3 | Si–C = 1.89 Si–H = 1.54 Si–Li = 2.54 C–H = 1.11 | |
H+Li | = 108.1 = 111.9 = 108.3 | Si–C = 1.96 Si–H = 1.51 C–H = 1.11 C–Li = 1.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuevas, J.L.; Martinez, M.O.; Thirumuruganandham, S.P. Band-Gap Engineering: Lithium Effect on the Electronic Properties of Hydrogenated 3C-SiC (1 1 0) Surfaces. Batteries 2022, 8, 247. https://doi.org/10.3390/batteries8110247
Cuevas JL, Martinez MO, Thirumuruganandham SP. Band-Gap Engineering: Lithium Effect on the Electronic Properties of Hydrogenated 3C-SiC (1 1 0) Surfaces. Batteries. 2022; 8(11):247. https://doi.org/10.3390/batteries8110247
Chicago/Turabian StyleCuevas, Jose Luis, Miguel Ojeda Martinez, and Saravana Prakash Thirumuruganandham. 2022. "Band-Gap Engineering: Lithium Effect on the Electronic Properties of Hydrogenated 3C-SiC (1 1 0) Surfaces" Batteries 8, no. 11: 247. https://doi.org/10.3390/batteries8110247
APA StyleCuevas, J. L., Martinez, M. O., & Thirumuruganandham, S. P. (2022). Band-Gap Engineering: Lithium Effect on the Electronic Properties of Hydrogenated 3C-SiC (1 1 0) Surfaces. Batteries, 8(11), 247. https://doi.org/10.3390/batteries8110247