Bismuth Nano-Rods Wrapped with Graphene and N-Doped C as Anode Materials for Potassium- and Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterizations
2.3. Electrochemical Tests
2.4. Computational Methods
3. Results and Discussion
3.1. Morphology and Structure Analysis
3.2. Electrochemical Performances
3.3. Electrochemical Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhong, S.; Zhang, X.; Liu, J.; Sui, Y. Study on xLiVPO4F·yLi3V2(PO4)3/C composite for high-performance cathode material for lithium-ion batteries. Front. Chem. 2020, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Guo, S.; Wu, C.; Li, J.; Liu, C.; Chen, W. Intelligent monitoring for safety-enhanced lithium-ion/sodium-ion batteries. Adv. Energy Mater. 2023, 13, 2203903. [Google Scholar] [CrossRef]
- Lei, Y.J.; Liu, H.W.; Yang, Z.; Zhao, L.F.; Lai, W.H.; Chen, M.; Liu, H.; Dou, S.; Wang, Y.X. A review on the status and challenges of cathodes in room-temperature Na-S batteries. Adv. Funct. Mater. 2022, 33, 2212600. [Google Scholar] [CrossRef]
- Chang, C.-B.; Lu, Y.-R.; Tuan, H.-Y. High-entropy NaCl-type metal chalcogenides as K-ion storage materials: Role of the cocktail effect. Energy Storage Mater. 2023, 59, 102770. [Google Scholar] [CrossRef]
- Luo, P.; Zheng, C.; He, J.; Tu, X.; Sun, W.; Pan, H.; Zhou, Y.; Rui, X.; Zhang, B.; Huang, K. Structural engineering in graphite-based metal-ion batteries. Adv. Funct. Mater. 2021, 32, 2107277. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, X.; Yue, L.; Zhang, L.; Luo, Y.; Ren, Y.; Zhao, X.-E.; Li, N.; Tang, B.; Liu, Q.; et al. A gradient hexagonal-prism Fe3Se4@SiO2@C configuration as a highly reversible sodium conversion anode. J. Mater. Chem. A 2022, 10, 4087–4099. [Google Scholar] [CrossRef]
- Wu, X.; Leonard, D.P.; Ji, X. Emerging non-aqueous potassium-ion batteries: Challenges and opportunities. Chem. Mater. 2017, 29, 5031–5042. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, Y.; Fan, X.; Ji, G.; Ji, X.; Wang, H.; Hou, S.; Zachariah, M.R.; Wang, C. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615–623. [Google Scholar] [CrossRef]
- Chong, S.; Ma, M.; Yuan, L.; Qiao, S.; Dong, S.; Liu, H.; Dou, S. Hierarchical encapsulation and rich sp2N assist Sb2Se3-based conversion-alloying anode for long-life sodium- and potassium-ion storage. Energy Environ. Mater. 2023, 0, e12458. [Google Scholar] [CrossRef]
- Zhao, S.; Guo, Z.; Yan, K.; Guo, X.; Wan, S.; He, F.; Sun, B.; Wang, G. The rise of Prussian blue analogs: Challenges and opportunities for high-performance cathode materials in potassium-ion batteries. Small Struct. 2020, 2, 2000054. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, X.; Sun, G.; Yao, S.; Xie, Y.; Zhang, W.; Liu, C.; Wang, X.; Yang, R.; Jin, X.; et al. Hydration enables air-stable and high-performance layered cathode materials for both organic and aqueous potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2204318. [Google Scholar] [CrossRef]
- Hong, Y.; Hu, J.; Tang, W.; Wei, B.; Guo, M.; Jia, S.; Fan, C. A universal small-molecule organic cathode for high-performance Li/Na/K-ion batteries. Energy Storage Mater. 2022, 52, 61–68. [Google Scholar] [CrossRef]
- Li, H.; Xu, M.; Long, H.; Zheng, J.; Zhang, L.; Li, S.; Guan, C.; Lai, Y.; Zhang, Z. Stabilization of multicationic redox chemistry in polyanionic cathode by increasing entropy. Adv. Sci. 2022, 9, e2202082. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, H.; Chen, H.; Mei, Y.; Wang, B.; Fang, L.; Chen, M.; Chen, J.; Gao, J.; Ni, L.; et al. Cationic-potential tuned biphasic layered cathodes for stable desodiation/sodiation. Sci. Bull. 2022, 67, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kim, J.-B.; Zhang, J.; Lee, G.-H.; Chen, M.; Lau, V.W.-H.; Zhang, K.; Lee, S.; Chen, C.-L.; Jeon, T.-Y.; et al. Regulating pseudo-jahn-teller effect and superstructure in layered cathode materials for reversible alkali-ion intercalation. J. Am. Chem. Soc. 2022, 144, 7929–7938. [Google Scholar] [CrossRef] [PubMed]
- Sha, M.; Liu, L.; Zhao, H.; Lei, Y. Review on recent advances of cathode materials for potassium-ion batteries. Energy Environ. Mater. 2020, 3, 56–66. [Google Scholar] [CrossRef]
- Peng, B.; Wan, G.; Ahmad, N.; Yu, L.; Ma, X.; Zhang, G. Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries. Adv. Energy Mater. 2023, 13, 202300334. [Google Scholar] [CrossRef]
- Liu, X.; Cao, Y.; Sun, J. Defect engineering in Prussian blue analogs for high-performance sodium-ion batteries. Adv. Energy Mater. 2022, 12, 2202532. [Google Scholar] [CrossRef]
- Li, C.; Wang, S. Improving strategies for the molecular structure of organic anode/cathode materials in potassium-ion batteries. EcoMat 2022, 4, e12246. [Google Scholar] [CrossRef]
- Lei, H.; Li, J.; Zhang, X.; Ma, L.; Ji, Z.; Wang, Z.; Pan, L.; Tan, S.; Mai, W. A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries. InfoMat 2022, 4, e12272. [Google Scholar] [CrossRef]
- Hu, J.; Hong, Y.; Guo, M.; Hu, Y.; Tang, W.; Xu, S.; Jia, S.; Wei, B.; Liu, S.; Fan, C.; et al. Emerging organic electrodes for Na-ion and K-ion batteries. Energy Storage Mater. 2023, 56, 267–299. [Google Scholar] [CrossRef]
- Soltani, N.; Bahrami, A.; Giebeler, L.; Gemming, T.; Mikhailova, D. Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Prog. Energy Combust. 2021, 87, 100929. [Google Scholar] [CrossRef]
- Wang, X.; Tang, S.; Guo, W.; Fu, Y.; Manthiram, A. Advances in multimetallic alloy-based anodes for alkali-ion and alkali-metal batteries. Mater. Today 2021, 50, 259–275. [Google Scholar] [CrossRef]
- Lv, Z.; Xu, H.; Xu, W.; Peng, B.; Zhao, C.; Xie, M.; Lv, X.; Gao, Y.; Hu, K.; Fang, Y.; et al. Quasi-topological intercalation mechanism of Bi0.67NbS2 enabling 100 C fast-charging for sodium-ion batteries. Adv. Energy Mater. 2023, 13, 2300790. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, J.; Wang, X.; Yue, L.; Wang, W.; Wang, B.; Shen, D.; Li, Y. Boosting potassium storage kinetics, stability, and volumetric performance of honeycomb-like porous red phosphorus via in situ embedding self-growing conductive nano-metal networks. Adv. Funct. Mater. 2022, 33, 2209388. [Google Scholar] [CrossRef]
- Xiong, P.; Bai, P.; Li, A.; Li, B.; Cheng, M.; Chen, Y.; Huang, S.; Jiang, Q.; Bu, X.H.; Xu, Y. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv. Mater. 2019, 31, e1904771. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liu, Y.; Ye, W.; Zhang, J.; Wang, Y.; Lin, Y.; Hou, L.; Wang, M.S.; Yuan, C. Unveiling intrinsic potassium storage behaviors of hierarchical nano Bi@N-doped carbon nanocages framework via in situ characterizations. Angew. Chem. Int. Ed. 2021, 60, 7180–7187. [Google Scholar] [CrossRef] [PubMed]
- Hirahara, T.; Nagao, T.; Matsuda, I.; Bihlmayer, G.; Chulkov, E.V.; Koroteev, Y.M.; Hasegawa, S. Quantum well states in ultrathin Bi films: Angle-resolved photoemission spectroscopy and first-principles calculations study. Phys. Rev. B 2007, 75, 035422. [Google Scholar] [CrossRef]
- Liang, Y.; Song, N.; Zhang, Z.; Chen, W.; Feng, J.; Xi, B.; Xiong, S. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv. Mater. 2022, 34, e2202673. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.W.; He, F.; Zhang, J.; Feng, Y.; Zhao, L.; Wang, B.; He, L.; Zhang, Q.; Yu, Y. Optimizing the void size of yolk-shell Bi@void@C nanospheres for high-power-density sodium-ion batteries. Nano Lett. 2020, 20, 758–767. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, X.; Wang, B.; Wang, G.; Wang, H. Bi@C nanospheres with the unique petaloid core-shell structure anchored on porous graphene nanosheets as an anode for stable sodium- and potassium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 59867–59881. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Zhou, Q.; Ma, M.; Liu, H.K.; Dou, S.X.; Chong, S. Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 2023, 17, 11220–11252. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Chong, S.; Yao, K.; Liu, H.K.; Dou, S.X.; Huang, W. Advanced anode materials for potassium batteries: Sorting out opportunities and challenges by potassium storage mechanisms. Matter 2023, 6, 1–54. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, L.; Wang, T.; Xia, H.; Liu, H.K.; Dou, S.X.; Chou, S. Nitrogen as an anionic center/dopant for next-generation high-performance lithium/sodium-ion battery electrodes: Key scientific issues, challenges and perspectives. Adv. Funct. Mater. 2023, 33, 2214786. [Google Scholar] [CrossRef]
- Su, D.; Dou, S.; Wang, G. Bismuth: A new anode for the Na-ion battery. Nano Energy 2015, 12, 88–95. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, J.; Pang, W.K.; Zheng, T.; Sencadas, V.; Chen, Y.; Liu, Y.; Guo, Z. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288. [Google Scholar] [CrossRef]
- Cai, S.; Yan, F.; Zhao, Y.; Li, M.; Chen, Y.; He, X.; Wang, C. Hierarchical micro-composite assembled from Bi spheres and expanded graphite flakes as anodes for sodium-ion half/full cells with excellent comprehensive electrochemical performance. Chem. Eng. J. 2022, 430, 132938. [Google Scholar] [CrossRef]
- Wang, A.; Hong, W.; Yang, L.; Tian, Y.; Qiu, X.; Zou, G.; Hou, H.; Ji, X. Bi-based electrode materials for alkali metal-ion batteries. Small 2020, 16, 2004022. [Google Scholar] [CrossRef]
- Ngaloy, R.T.; Fontanilla, A.M.; Soriano, M.S.R.; Pascua, C.S.; Matsushita, Y.; Agulo, I.J.A. Highly efficient photocatalysis by zinc oxide-reduced graphene oxide (ZnO-rGO) composite synthesized via one-pot room-temperature chemical deposition method. J. Nanotechnol. 2019, 2019, 1895043. [Google Scholar] [CrossRef]
- Hong, W.; Wang, A.; Li, L.; Qiu, T.; Li, J.; Jiang, Y.; Zou, G.; Peng, H.; Hou, H.; Ji, X. Bi dots confined by functional carbon as high-performance anode for lithium ion batteries. Adv. Funct. Mater. 2020, 31, 2000756. [Google Scholar] [CrossRef]
- Cen, Y.; Dong, J.; Zhu, T.; Cai, X.; Wang, X.; Hu, B.; Xu, C.; Yu, D.; Liu, Y.; Chen, C. Bi nanorods anchored in N-doped carbon shell as anode for high-performance magnesium ion batteries. Electrochim. Acta 2021, 397, 139260. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, J.; Wang, X.; Li, Y.; Xia, W.; Liu, Q.; Hu, J.; Wei, T.; Ling, Y.; Liu, B.; et al. In-situ synthesis of Bi nanospheres anchored in 3D interconnected cellulose nanocrystal derived carbon aerogel as anode for high-performance Mg-ion batteries. Chem. Eng. J. 2023, 451, 138824. [Google Scholar] [CrossRef]
- Chong, S.; Qiao, S.; Wei, X.; Li, T.; Yuan, L.; Dong, S.; Huang, W. Sb2S3-based conversion-alloying dual mechanism anode for potassium-ion batteries. iScience 2021, 24, 103494. [Google Scholar] [CrossRef] [PubMed]
- Topçu, E.; Dağcı Kıranşan, K. Flexible gold nanoparticles/rGO and thin film/rGO papers: Novel electrocatalysts for hydrogen evolution reaction. J. Chem. Technol. Biotechnol. 2019, 94, 3895–3904. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Shen, Y.; Zhu, S. Pyridinic N: A special group for enhancing direct decomposition reaction of NO over N-doped porous carbon. Micropor. Mesopor. Mat. 2018, 265, 98–103. [Google Scholar] [CrossRef]
- Pan, Y.; Cheng, X.; Gao, M.; Fu, Y.; Feng, J.; Gong, L.; Ahmed, H.; Zhang, H.; Battaglia, V.S. Cagelike CoSe2@N-doped carbon aerogels with pseudocapacitive properties as advanced materials for sodium-ion batteries with excellent rate performance and cyclic stability. ACS Appl. Mater. Interfaces 2020, 12, 33621–33630. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Wang, N.; Fang, Z.; Lu, Z.; Xu, X.; Wang, L.; Du, Y.; Ren, X.; Bai, Z.; Dou, S.; et al. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Lett. 2019, 19, 1998–2004. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.J.; Mahapatra, O.; Mccarthy, D.N.; Kozlowski, W.; Klusek, Z.; Brown, S.A. STM and XPS investigations of bismuth islands on HOPG. Surf. Sci. 2011, 605, 659–667. [Google Scholar] [CrossRef]
- Liu, H.; He, Y.; Cao, K.; Wang, S.; Jiang, Y.; Liu, X.; Huang, K.J.; Jing, Q.S.; Jiao, L. Potassium-ion batteries: Stimulating the reversibility of Sb2S3 anode for high-performance potassium-ion batteries. Small 2021, 17, 2170044. [Google Scholar] [CrossRef]
- Zhou, Q.; Yuan, L.; Li, T.; Qiao, S.; Ma, M.; Wang, Y.; Chong, S. Boosting cobalt ditelluride quantum-rods anode materials for excellent potassium-ion storage via hierarchical physicochemical encapsulation. J. Colloid. Interface Sci. 2023, 646, 493–502. [Google Scholar] [CrossRef]
a = b = 4.56128, c = 11.90056, α = β = 90°, γ = 120° | ||||
X | Y | Z | Occupation | |
Bi | 0.66667 (0) | 0.33333 (0) | 0.56724 (0) | 1 |
Rp = 4.43%, Rwp = 5.76% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, S.; Liu, Y.; Wang, K.; Chong, S. Bismuth Nano-Rods Wrapped with Graphene and N-Doped C as Anode Materials for Potassium- and Sodium-Ion Batteries. Batteries 2023, 9, 505. https://doi.org/10.3390/batteries9100505
Qiao S, Liu Y, Wang K, Chong S. Bismuth Nano-Rods Wrapped with Graphene and N-Doped C as Anode Materials for Potassium- and Sodium-Ion Batteries. Batteries. 2023; 9(10):505. https://doi.org/10.3390/batteries9100505
Chicago/Turabian StyleQiao, Shuangyan, Yongning Liu, Kai Wang, and Shaokun Chong. 2023. "Bismuth Nano-Rods Wrapped with Graphene and N-Doped C as Anode Materials for Potassium- and Sodium-Ion Batteries" Batteries 9, no. 10: 505. https://doi.org/10.3390/batteries9100505
APA StyleQiao, S., Liu, Y., Wang, K., & Chong, S. (2023). Bismuth Nano-Rods Wrapped with Graphene and N-Doped C as Anode Materials for Potassium- and Sodium-Ion Batteries. Batteries, 9(10), 505. https://doi.org/10.3390/batteries9100505