A Nickel-Based Coordination Compound with Tunable Morphology for High-Performance Anode and the Lithium Storage Mechanism
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Synthesis of Ni-PP-x Products
2.3. Material Characterizations
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, E.; Xiao, D.; Wu, T.; Wang, B.; Wang, Y.; Wu, L.; Zhang, X.; Yu, H. Stabilizing oxygen by high-valance element doping for high-performance Li-rich layered oxides. Battery Energy 2023, 2, 20220030. [Google Scholar] [CrossRef]
- Cui, X.; Chen, J.; Sun, Z.; Wang, L.; Peng, Q.; Xiao, B.; Zhao, L.; Zheng, H.; Wang, Y.; Wang, J.; et al. A General Route for Encapsulating Monodispersed Transition Metal Phosphides into Carbon Multi-Chambers toward High-Efficient Lithium-Ion Storage with Underlying Mechanism Exploration. Adv. Funct. Mater. 2023, 33, 2212100. [Google Scholar] [CrossRef]
- Azam, M.A.; Safie, N.E.; Ahmad, A.S.; Yuza, N.A.; Zulkifli, N.S.A. Recent advances of silicon, carbon composites and tin oxide as new anode materials for lithium-ion battery: A comprehensive review. J. Energy Storage 2021, 33, 102096. [Google Scholar] [CrossRef]
- Paul, S.; Rahman, M.A.; Islam, M.S.; Islam, M.R.; Siddiqui, S.E.T. Nanostructured anatase TiO2 as anode of high-performance lithium-ion batteries. Battery Energy 2022, 1, 20220018. [Google Scholar] [CrossRef]
- Tian, W.; Sun, H.; Chen, L.; Wangyang, P.; Chen, X.; Xiong, J.; Li, L. Low-dimensional nanomaterial/Si heterostructure-based photodetectors. InfoMat 2019, 1, 140–161. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, Z.; Farha, O.K.; Chapman, K.W. Mechanistic insights into nanoparticle formation from bimetallic metal-organic frameworks. J. Am. Chem. Soc. 2021, 143, 8976–8980. [Google Scholar] [CrossRef]
- Jiang, Q.; Xiong, P.; Liu, J.; Xie, Z.; Wang, Q.; Yang, X.Q.; Hu, E.; Cao, Y.; Sun, J.; Xu, Y.; et al. A redox-active 2D metal-organic framework for efficient lithium storage with extraordinary high capacity. Angew. Chem. Int. Ed. 2020, 59, 5273–5277. [Google Scholar] [CrossRef]
- Li, C.; Hu, X.; Tong, W.; Yan, W.; Lou, X.; Shen, M.; Hu, B. Ultrathin manganese-based metal-organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities. ACS Appl. Mater. Interfaces 2017, 9, 29829–29838. [Google Scholar] [CrossRef]
- Hu, H.; Lou, X.; Li, C.; Hu, X.; Li, T.; Chen, Q.; Shen, M.; Hu, B. A thermally activated manganese 1,4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries. New J. Chem. 2016, 40, 9746–9752. [Google Scholar] [CrossRef]
- Li, X.; Cheng, F.; Zhang, S.; Chen, J. Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2. J. Power Sources 2006, 160, 542–547. [Google Scholar] [CrossRef]
- Saravanan, K.; Nagarathinam, M.; Balaya, P.; Vittal, J.J. Lithium storage in a metal organic framework with diamondoid topology—A case study on metal formates. J. Mater. Chem. 2010, 20, 8329–8335. [Google Scholar] [CrossRef]
- Hu, L.; Lin, X.M.; Mo, J.T.; Lin, J.; Gan, H.L.; Yang, X.L.; Cai, Y.P. Lead-Based Metal-Organic Framework with Stable Lithium Anodic Performance. Inorg. Chem. 2017, 56, 4289–4295. [Google Scholar] [CrossRef]
- Maiti, S.; Pramanik, A.; Manju, U.; Mahanty, S. Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance. ACS Appl. Mater. Interfaces 2015, 7, 16357–16363. [Google Scholar] [CrossRef]
- Xu, N.; Han, Q.; Zhu, L.; Xie, L.; Xu, J.; Zhang, W.; Yang, X.; Cao, X. Design and Synthesis of Heterometallic Ni–Co Organic Frameworks as Anode Materials for High-Performance Lithium Storage. J. Electrochem. Soc. 2022, 169, 030526. [Google Scholar] [CrossRef]
- Chakraborty, D.; Dam, T.; Modak, A.; Pant, K.K.; Chandra, B.K.; Majee, A.; Ghosh, A.; Bhaumik, A. A novel crystalline nanoporous iron phosphonate based metal-organic framework as an efficient anode material for lithium ion batteries. New J. Chem. 2021, 45, 15458–15468. [Google Scholar] [CrossRef]
- Cheng, Y.; Guo, X.; Xue, Y.; Pang, H. Controllable synthesis of a flower-like superstructure of nickel metal-organic phosphate and its derivatives for supercapacitors. Appl. Mater. Today 2021, 23, 101048. [Google Scholar] [CrossRef]
- Vasylyev, M.; Neumann, R. Preparation, characterizaton, and catalytic aerobic oxidation by a vanadium phosphonate mesoporous material constructed from a dendritic tetraphosphonate. Chem. Mater. 2006, 18, 2781–2783. [Google Scholar] [CrossRef]
- Chang, H.-L.; Bai, Y.-W.; Song, X.-Y.; Duan, Y.-F.; Sun, P.-P.; Tian, B.; Shi, G.; You, H.; Gao, J.; Shi, F.-N. Hydrothermal synthesis, structural elucidation and electrochemical properties of three nickel and cobalt based phosphonates as anode materials for lithium ion batteries. Electrochim. Acta 2019, 321, 134647. [Google Scholar] [CrossRef]
- Roland, A.; Fullenwarth, J.; Ledeuil, J.B.; Martinez, H.; Louvain, N.; Monconduit, L. How carbon coating or continuous carbon pitch matrix influence the silicon electrode/electrolyte interfaces and the performance in Li-ion batteries. Battery Energy 2022, 1, 20210009. [Google Scholar] [CrossRef]
- Jamil, S.; Fasehullah, M.; Jabar, B.; Liu, P.; Aslam, M.K.; Zhang, Y.; Bao, S.; Xu, M. Significantly fastened redox kinetics in single crystal layered oxide cathode by gradient doping. Nano Energy 2022, 94, 106961. [Google Scholar] [CrossRef]
- Jamil, S.; Wang, H.; Fasehullah, M.; Aslam, M.K.; Jabar, B.; Ud Din, M.A.; Zhang, Y.; Sun, W.; Bao, S.; Xu, M. N doped FeP nanospheres decorated carbon matrix as an efficient electrocatalyst for durable lithium-sulfur batteries. J. Colloid Interface Sci. 2023, 630, 70–80. [Google Scholar] [CrossRef]
- Hussain, N.; Li, M.; Tian, B.; Wang, H. Co3Se4 quantum dots as an ultrastable host material for potassium-ion intercalation. Adv. Mater. 2021, 33, 2102164. [Google Scholar] [CrossRef] [PubMed]
- Mei, P.; Lee, J.; Pramanik, M.; Alshehri, A.; Kim, J.; Henzie, J.; Kim, J.H.; Yamauchi, Y. Mesoporous manganese phosphonate nanorods as a prospective anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 19739–19745. [Google Scholar] [CrossRef]
- Xing, W.; Liu, C.; Li, T.; Zhang, T.; Han, J.; Wu, G. High-valence-state nickel-iron phosphonates with urchin-like hierarchical architecture for highly efficient oxygen evolution reaction. J. Alloys Compd. 2021, 861, 158614. [Google Scholar] [CrossRef]
- Liu, X.; Zhuo, M.; Zhang, W.; Gao, M.; Liu, X.H.; Sun, B.; Wu, J. One-step ultrasonic synthesis of Co/Ni-catecholates for improved performance in oxygen reduction reaction. Ultrason. Sonochem. 2020, 67, 105179. [Google Scholar] [CrossRef]
- Wang, P.; Lou, X.; Li, C.; Hu, X.; Yang, Q.; Hu, B. One-pot synthesis of Co-based coordination polymer nanowire for Li-ion batteries with great capacity and stable cycling stability. Nano-Micro Lett. 2018, 10, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, G.-X.; Zhang, Y.-H.; Sun, P.-P.; Yu, X.; Gao, J.; Shi, F.-N. A brand-new bimetallic copper-lithium HEDP complex of fast ion migration as a promising anode for lithium ion batteries. J. Mol. Struct. 2020, 1214, 128223. [Google Scholar] [CrossRef]
- Mei, P.; Pramanik, M.; Young, C.; Huang, Z.; Hossain, M.S.A.; Sugahara, Y.; Yamauchi, Y. Synthesis of mesostructured manganese phosphonate and its promising energy storage application. J. Mater. Chem. A 2017, 5, 23259–23266. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Xie, L.; Zhu, L.; Cao, X. An enabling strategy for ultra-fast lithium storage derived from micro-flower-structured NiX (X = O, S, Se). Electrochim. Acta 2020, 343, 136138. [Google Scholar] [CrossRef]
- Zheng, F.; Yang, Y.; Chen, Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Yuan, L.; Peng, Q.; Qi, S.; Wang, L.; Chen, J.; Wang, Y.; Lv, L.-P.; Sun, W.; Wang, Y.; et al. A kind of Co-based coordination compounds with tunable morphologies and its Li-storage mechanism. Electrochim. Acta 2022, 422, 140565. [Google Scholar] [CrossRef]
- An, T.; Wang, Y.; Tang, J.; Wang, Y.; Zhang, L.; Zheng, G. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage. J. Colloid Interface Sci. 2015, 445, 320–325. [Google Scholar] [CrossRef]
- Guo, L.; Sun, J.; Sun, X.; Zhang, J.; Hou, L.; Yuan, C. Construction of 1D conductive Ni-MOF nanorods with fast Li+ kinetic diffusion and stable high-rate capacities as an anode for lithium ion batteries. Nanoscale Adv. 2019, 1, 4688–4691. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Zheng, Y.; Huang, S.-Z.; Sun, P.-P.; Srikanth, N.; Kong, L.B.; Yan, Q.; Zhou, K. Directly anchoring 2D NiCo metal-organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries. J. Mater. Chem. A 2019, 7, 783–790. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, W.; Cao, X.; Wei, L.; Ye, C.; Meng, C.; Yuan, A.; Pang, H.; Yu, C. Synthesis of tostadas-shaped metal-organic frameworks for remitting capacity fading of Li-ion batteries. Adv. Funct. Mater 2022, 32, 1209927. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, G.; Guo, X.; Jing, Q.; Pang, H.; Zhang, Y. Three-dimensional MXene-encapsulated porous Ni-NDC nanosheets as anodes for enhanced lithium-ion batteries. Nano Res. 2022, 16, 2528–2535. [Google Scholar] [CrossRef]
- Dong, C.; Xu, L. Cobalt- and cadmium-based metal-organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 7160–7168. [Google Scholar] [CrossRef]
- Zheng, J.; Engelhard, M.H.; Mei, D.; Jiao, S.; Polzin, B.J.; Zhang, J.-G.; Xu, W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2017, 2, 17012. [Google Scholar] [CrossRef]
- Li, G.; Yang, H.; Li, F.; Cheng, F.; Shi, W.; Chen, J.; Cheng, P. A coordination chemistry approach for lithium-ion batteries: The coexistence of metal and ligand redox activities in a one-dimensional metal-organic Material. Inorg. Chem. 2016, 55, 4935–4940. [Google Scholar] [CrossRef]
- Chen, L.; Yang, W.; Wang, J.; Chen, C.; Wei, M. Hierarchical cobalt-based metal-organic framework for high-performance lithium-Ion batteries. Chem. Eur. J. 2018, 24, 13362–13367. [Google Scholar] [CrossRef]
- Zhang, F.; Du, M.; Miao, Z.; Li, H.; Dong, W.; Sang, Y.; Jiang, H.; Li, W.; Liu, H.; Wang, S. Oxygen vacancies and N-doping in organic-inorganic pre-intercalated vanadium oxide for high-performance aqueous zinc-ion batteries. InfoMat 2022, 4, e12346. [Google Scholar] [CrossRef]
- Qi, X.-R.; Liu, Y.; Ma, L.-L.; Hou, B.-X.; Zhang, H.-W.; Li, X.-H.; Wang, Y.-S.; Hui, Y.-Q.; Wang, R.-X.; Bai, C.-Y.; et al. Delicate synthesis of quasi-inverse opal structural Na3V2(PO4)3/N-C and Na4MnV(PO4)3/N-C as cathode for high-rate sodium-ion batteries. Rare Met. 2022, 41, 1637–1646. [Google Scholar] [CrossRef]
- Shan, L.; Wang, Y.; Liang, S.; Tang, B.; Yang, Y.; Wang, Z.; Lu, B.; Zhou, J. Interfacial adsorption–insertion mechanism induced by phase boundary toward better aqueous Zn-ion battery. InfoMat 2021, 3, 1028–1036. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, P.; Huang, J.; Liu, H.; Zao, Y.; Hu, Z.; Zhang, Q. High performance columnar-like Fe2O3@carbon composite anode via yolk@ shell structural design. J. Energy Chem. 2020, 41, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Zou, G.; Hou, H.; Cao, X.; Ge, P.; Zhao, G.; Yin, D.; Ji, X. 3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. J. Mater. Chem. A 2017, 5, 23550–23558. [Google Scholar] [CrossRef]
- Jiang, Y.; Zou, G.; Hong, W.; Zhang, Y.; Zhang, Y.; Shuai, H.; Xu, W.; Hou, H.; Ji, X. N-rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. Nanoscale 2018, 10, 18786–18794. [Google Scholar] [CrossRef]
- Guo, C.; Yang, J.; Cui, Z.; Qi, S.; Peng, Q.; Sun, W.; Lv, L.-P.; Xu, Y.; Wang, Y.; Chen, S. In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries. J. Energy Chem. 2022, 65, 514–523. [Google Scholar] [CrossRef]
- Nagmani; Kumar, A.; Puravankara, S. Optimizing ultramicroporous hard carbon spheres in carbonate ester-based electrolytes for enhanced sodium storage in half-/full-cell sodium-ion batteries. Battery Energy 2022, 1, 514–523. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, G.; Zheng, Q.; Ren, X.; Yang, Q.; Yuan, S.; Bao, X.; Shu, C.; Zhang, Y.; Li, L.; et al. Ultrafast Charge-Discharge Capable and Long-Life Na3.9Mn0.95Zr0.05V(PO4)3/C Cathode Material for Advanced Sodium-Ion Batteries. Small 2023, 19, e2206987. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wang, L.; Lou, Z.; Wang, L.; Zhao, Y.; Sun, W.; Lv, L.; Wang, Y.; Chen, S. A Nickel-Based Coordination Compound with Tunable Morphology for High-Performance Anode and the Lithium Storage Mechanism. Batteries 2023, 9, 313. https://doi.org/10.3390/batteries9060313
Lu Y, Wang L, Lou Z, Wang L, Zhao Y, Sun W, Lv L, Wang Y, Chen S. A Nickel-Based Coordination Compound with Tunable Morphology for High-Performance Anode and the Lithium Storage Mechanism. Batteries. 2023; 9(6):313. https://doi.org/10.3390/batteries9060313
Chicago/Turabian StyleLu, Yifei, Lei Wang, Zhenzhu Lou, Leilei Wang, Yi Zhao, Weiwei Sun, Liping Lv, Yong Wang, and Shuangqiang Chen. 2023. "A Nickel-Based Coordination Compound with Tunable Morphology for High-Performance Anode and the Lithium Storage Mechanism" Batteries 9, no. 6: 313. https://doi.org/10.3390/batteries9060313
APA StyleLu, Y., Wang, L., Lou, Z., Wang, L., Zhao, Y., Sun, W., Lv, L., Wang, Y., & Chen, S. (2023). A Nickel-Based Coordination Compound with Tunable Morphology for High-Performance Anode and the Lithium Storage Mechanism. Batteries, 9(6), 313. https://doi.org/10.3390/batteries9060313