Solid Electrolytes Based on NASICON-Structured Phosphates for Lithium Metal Batteries
Abstract
:1. Introduction
2. Ionic Conductivity of Solid Electrolytes and Ways to Increase It
3. Structure and Ionic Conductivity of Materials Based on LiB2(PO4)3 (B = Ti, Ge, Zr)
3.1. Materials Based on LiTi2(PO4)3
3.2. Materials Based on LiGe2(PO4)3
3.3. Materials Based on LiZr2(PO4)3
3.4. Effect of the Synthesis Method on the Ionic Conductivity of Phosphates with the NASICON Structure
3.5. Co-Doping of LATP and LAGP
4. Ways to Improve Performance of Lithium Metal Batteries with an Electrolyte Based on NASICON-Structured Phosphates
4.1. Coating
4.2. Addition of a Liquid Electrolyte
4.3. Creation of Composite Electrolytes Containing Polymer and Inorganic Phases
4.3.1. Composite Electrolytes Containing Nonconductive Polymers
4.3.2. Composite Electrolytes with Cation-Exchange Membranes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Kong, Z.; Liu, X.; Zheng, B.; Fan, Q.H.; Garratt, E.; Schuelke, T.; Wang, K.; Xu, H.; Jin, H. Strategies to Anode Protection in Lithium Metal Battery: A Review. InfoMat 2021, 3, 1333–1363. [Google Scholar] [CrossRef]
- Pang, M.-C.; Wei, Y.; Wang, H.; Marinescu, M.; Yan, Y.; Offer, G.J. Large-Format Bipolar and Parallel Solid-State Lithium-Metal Cell Stacks: A Thermally Coupled Model-Based Comparative Study. J. Electrochem. Soc. 2020, 167, 160555. [Google Scholar] [CrossRef]
- Cao, D.; Sun, X.; Wang, Y.; Zhu, H. Bipolar Stackings High Voltage and High Cell Level Energy Density Sulfide Based All-Solid-State Batteries. Energy Storage Mater. 2022, 48, 458–465. [Google Scholar] [CrossRef]
- Braga, M.H.; Subramaniyam, C.M.; Murchison, A.J.; Goodenough, J.B. Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life. J. Am. Chem. Soc. 2018, 140, 6343–6352. [Google Scholar] [CrossRef]
- Lee, N.; Oh, J.; Choi, J.W. Anode-Less All-Solid-State Batteries: Recent Advances and Future Outlook. Mater. Futures 2023, 2, 013502. [Google Scholar] [CrossRef]
- Wang, S.; Fang, R.; Li, Y.; Liu, Y.; Xin, C.; Richter, F.H.; Nan, C.-W. Interfacial Challenges for All-Solid-State Batteries Based on Sulfide Solid Electrolytes. J. Mater. 2021, 7, 209–218. [Google Scholar] [CrossRef]
- Subramanian, K.; Alexander, G.V.; Karthik, K.; Patra, S.; Indu, M.S.; Sreejith, O.V.; Viswanathan, R.; Narayanasamy, J.; Murugan, R. A Brief Review of Recent Advances in Garnet Structured Solid Electrolyte Based Lithium Metal Batteries. J. Energy Storage 2021, 33, 102157. [Google Scholar] [CrossRef]
- Kim, K.J.; Balaish, M.; Wadaguchi, M.; Kong, L.; Rupp, J.L.M. Solid-State Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces. Adv. Energy Mater. 2021, 11, 2002689. [Google Scholar] [CrossRef]
- Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X. All-Solid-State Lithium Batteries Enabled by Sulfide Electrolytes: From Fundamental Research to Practical Engineering Design. Energy Environ. Sci. 2021, 14, 2577–2619. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Gonçalves, R.; Costa, C.M.; Lanceros-Méndez, S. Toward Sustainable Solid Polymer Electrolytes for Lithium-Ion Batteries. ACS Omega 2022, 7, 14457–14464. [Google Scholar] [CrossRef]
- Yaroslavtsev, A.B.; Stenina, I.A. Complex Phosphates with the NASICON Structure (Mx A2(PO4)3). Russ. J. Inorg. Chem. 2006, 51, S97–S116. [Google Scholar] [CrossRef]
- Ivanov-Shitz, A.K.; Murin, I.V. Ionics of Solid State; St. Petersburg University Press: Saint Petersburg, Russia, 2000. (In Russian) [Google Scholar]
- Robertson, A.; West, A.; Ritchie, A. A Review of Crystalline Lithium-Ion Conductors Suitable for High Temperature Battery Applications. Solid State Ionics 1997, 104, 1–11. [Google Scholar] [CrossRef]
- Stenina, I.A.; Yaroslavtsev, A.B. Nanomaterials for Lithium-Ion Batteries and Hydrogen Energy. Pure Appl. Chem. 2017, 89, 1185–1194. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in Electrolytes for Rechargeable Li-Based Batteries and Beyond. Green Energy Environ. 2016, 1, 18–42. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Dias, J.A.; Santagneli, S.H.; Messaddeq, Y. Methods for Lithium Ion NASICON Preparation: From Solid-State Synthesis to Highly Conductive Glass-Ceramics. J. Phys. Chem. C 2020, 124, 26518–26539. [Google Scholar] [CrossRef]
- Hou, M.; Liang, F.; Chen, K.; Dai, Y.; Xue, D. Challenges and Perspectives of NASICON-Type Solid Electrolytes for All-Solid-State Lithium Batteries. Nanotechnology 2020, 31, 132003. [Google Scholar] [CrossRef]
- Yaroslavtsev, A. Modification of Solid State Proton Conductors. Solid State Ionics 2005, 176, 2935–2940. [Google Scholar] [CrossRef]
- Stenina, I.A.; Pinus, I.Y.; Yaroslavtsev, A.B.; Kislitsyn, M.N.; Arkhangel’skij, I.V.; Zhuravlev, N.A. Phase Transformations and Cation Mobility in NASICON Lithium Zirconium Double Phosphates Li1±xZr2-XMx(PO4)3 (M = Sc, Y, In, Nb, Ta). Russ. J. Inorg. Chem. 2005, 50, 906–911. [Google Scholar]
- Pinus, I.Y.; Khoroshilov, A.V.; Gavrichev, K.S.; Tarasov, V.P.; Yaroslavtsev, A.B. On Cationic Mobility in Nasicon Phosphates LiTi2(PO4)3 and Li0.9Ti1.9Nb0.1(PO4)3. Solid State Ionics 2012, 212, 112–116. [Google Scholar] [CrossRef]
- Lang, B.; Ziebarth, B.; Elsässer, C. Lithium Ion Conduction in LiTi2(PO4)3 and Related Compounds Based on the NASICON Structure: A First-Principles Study. Chem. Mater. 2015, 27, 5040–5048. [Google Scholar] [CrossRef]
- Mutter, D.; Urban, D.F.; Elsässer, C. Computational Analysis of Composition-Structure-Property-Relationships in NZP-Type Materials for Li-Ion Batteries. J. Appl. Phys. 2019, 125, 215115. [Google Scholar] [CrossRef]
- Yaroslavtsev, A.B. Ion Conductivity of Composite Materials on the Base of Solid Electrolytes and Ion-Exchange Membranes. Inorg. Mater. 2012, 48, 1193–1209. [Google Scholar] [CrossRef]
- Svitan’ko, A.I.; Novikova, S.A.; Stenina, I.A.; Skopets, V.A.; Yaroslavtsev, A.B. Microstructure and Ion Transport in Li1+xTi2 −xMx(PO4)3 (M = Cr, Fe, Al) NASICON-Type Materials. Inorg. Mater. 2014, 50, 273–279. [Google Scholar] [CrossRef]
- Schmalzried, H.F.A. Kröger: The Chemistry of Imperfect Crystals, North-Holland Publishing Company-Amsterdam 1964. 1039 Seiten. Preis: Hfl. 110,-. Ber. Bunsenges.Phys. Chem. 1964, 68, 608. [Google Scholar] [CrossRef]
- Lu, X.; Wang, S.; Xiao, R.; Shi, S.; Li, H.; Chen, L. First-Principles Insight into the Structural Fundamental of Super Ionic Conducting in NASICON MTi2(PO4)3 (M = Li, Na) Materials for Rechargeable Batteries. Nano Energy 2017, 41, 626–633. [Google Scholar] [CrossRef]
- Maier, J. Point-Defect Thermodynamics and Size Effects. Solid State Ionics 2000, 131, 13–22. [Google Scholar] [CrossRef]
- Uvarov, N.F.; Hairetdinov, E.F. Unusual Transport and Structural Properties of Mechanically Treated Polycrystalline Silver Iodide. Solid State Ionics 1997, 96, 219–225. [Google Scholar] [CrossRef]
- Yaroslavtsev, A.B. Ion Transport in Heterogeneous Solid Systems. Russ. J. Inorg. Chem. 2000, 45, S249–S267. [Google Scholar]
- Jamnik, J.; Habermeier, H.-U.; Maier, J. Information of Ionic Boundary Effects by a Novel Penetration Impedance Technique. Phys. B Condens. Matter 1995, 204, 57–64. [Google Scholar] [CrossRef]
- Tan, Y.T. Model for Surface Diffusion in AgBr. J. Appl. Phys. 1975, 46, 469–470. [Google Scholar] [CrossRef]
- Christmann, K. Introduction to Surface Physical Chemistry; Topics in Physical Chemistry; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9783662080092. [Google Scholar]
- Mariappan, C.R. AC Conductivity Scaling Behavior in Grain and Grain Boundary Response Regime of Fast Lithium Ionic Conductors. Appl. Phys. A 2014, 117, 847–852. [Google Scholar] [CrossRef]
- Kunshina, G.B.; Bocharova, I.V.; Ivanenko, V.I. Preparation of the Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte with High Ionic Conductivity. Inorg. Mater. Appl. Res. 2017, 8, 238–244. [Google Scholar] [CrossRef]
- Illbeigi, M.; Fazlali, A.; Kazazi, M.; Mohammadi, A.H. Effect of Simultaneous Addition of Aluminum and Chromium on the Lithium Ionic Conductivity of LiGe2(PO4)3 NASICON-Type Glass–Ceramics. Solid State Ionics 2016, 289, 180–187. [Google Scholar] [CrossRef]
- Gan, H.; Zhu, W.; Zhang, L.; Jia, Y. Zr Doped NASICON-Type LATP Glass-Ceramic as a Super-Thin Coating onto Deoxidized Carbon Wrapped CNT-S Cathode for Lithium-Sulphur Battery. Electrochim. Acta 2022, 423, 140567. [Google Scholar] [CrossRef]
- Kothari, D.H.; Kanchan, D.K. Inter-Grain Li+ Conduction in Sc and Y Doped LATP Compounds. Phys. B Condens. Matter 2022, 627, 413599. [Google Scholar] [CrossRef]
- Nakano, K.; Tanibata, N.; Takeda, H.; Kobayashi, R.; Nakayama, M.; Watanabe, N. Molecular Dynamics Simulation of Li-Ion Conduction at Grain Boundaries in NASICON-Type LiZr2(PO4)3 Solid Electrolytes. J. Phys. Chem. C 2021, 125, 23604–23612. [Google Scholar] [CrossRef]
- Arbi, K.; Hoelzel, M.; Kuhn, A.; García-Alvarado, F.; Sanz, J. Structural Factors That Enhance Lithium Mobility in Fast-Ion Li1+ xTi2– xAlx(PO4)3 (0 ≤ x ≤ 0.4) Conductors Investigated by Neutron Diffraction in the Temperature Range 100–500 K. Inorg. Chem. 2013, 52, 9290–9296. [Google Scholar] [CrossRef] [Green Version]
- Fergus, J.W. Ceramic and Polymeric Solid Electrolytes for Lithium-Ion Batteries. J. Power Sources 2010, 195, 4554–4569. [Google Scholar] [CrossRef]
- Svitan’ko, A.I.; Novikova, S.A.; Safronov, D.V.; Yaroslavtsev, A.B. Cation Mobility in Li1+xTi2 −xCrx(PO4)3 NASICON-Type Phosphates. Inorg. Mater. 2011, 47, 1391–1395. [Google Scholar] [CrossRef]
- Venkateswara Rao, A.; Veeraiah, V.; Prasada Rao, A.V.; Kishore Babu, B.; Kumar, K.V. Influence of Zr4+ Doping on Structural, Spectroscopic and Conductivity Studies of Lithium Titanium Phosphate. Ceram. Int. 2014, 40, 13911–13916. [Google Scholar] [CrossRef]
- Arbi, K.; Rojo, J.M.; Sanz, J. Lithium Mobility in Titanium Based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−xZrx(PO4)3 Materials Followed by NMR and Impedance Spectroscopy. J. Eur. Ceram. Soc. 2007, 27, 4215–4218. [Google Scholar] [CrossRef]
- Kurzina, E.A.; Stenina, I.A.; Dalvi, A.; Yaroslavtsev, A.B. Synthesis and Ionic Conductivity of Lithium Titanium Phosphate-Based Solid Electrolytes. Inorg. Mater. 2021, 57, 1035–1042. [Google Scholar] [CrossRef]
- DeWees, R.; Wang, H. Synthesis and Properties of NaSICON-type LATP and LAGP Solid Electrolytes. ChemSusChem 2019, 12, 3713–3725. [Google Scholar] [CrossRef]
- Kunshina, G.B.; Shichalin, O.O.; Belov, A.A.; Papynov, E.K.; Bocharova, I.V.; Shcherbina, O.B. Properties of Li1.3Al0.3Ti1.7(PO4)3 Lithium-Conducting Ceramics Synthesized by Spark Plasma Sintering. Russ. J. Electrochem. 2023, 59, 173–181. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, J.; Fan, L.; Zhang, J.; Li, X. Recent Advances in Li1+xAlxTi2−x(PO4)3 Solid-State Electrolyte for Safe Lithium Batteries. Energy Storage Mater. 2019, 19, 379–400. [Google Scholar] [CrossRef]
- Yang, K.; Chen, L.; Ma, J.; He, Y.; Kang, F. Progress and Perspective of Li1+xAlxTi2 -x(PO4)3 Ceramic Electrolyte in Lithium Batteries. InfoMat 2021, 3, 1195–1217. [Google Scholar] [CrossRef]
- Wu, P.; Zhou, W.; Su, X.; Li, J.; Su, M.; Zhou, X.; Sheldon, B.W.; Lu, W. Recent Advances in Conduction Mechanisms, Synthesis Methods, and Improvement Strategies for Li1+ xAlxTi2− x(PO4)3 Solid Electrolyte for All-Solid-State Lithium Batteries. Adv. Energy Mater. 2023, 13, 2203440. [Google Scholar] [CrossRef]
- Tolganbek, N.; Mentbayeva, A.; Uzakbaiuly, B.; Kanamura, K.; Bakenov, Z. Li1+xAlxTi2−x(PO4)3, NASICON-Type Solid Electrolyte Fabrication with Different Methods. Mater. Today Proc. 2020, 25, 97–100. [Google Scholar] [CrossRef]
- Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. J. Electrochem. Soc. 1990, 137, 1023–1027. [Google Scholar] [CrossRef]
- Yen, P.-Y.; Lee, M.-L.; Gregory, D.H.; Liu, W.-R. Optimization of Sintering Process on Li1+xAlxTi2-x(PO4)3 Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. Ceram. Int. 2020, 46, 20529–20536. [Google Scholar] [CrossRef]
- Kim, K.M.; Shin, D.O.; Lee, Y.-G. Effects of Preparation Conditions on the Ionic Conductivity of Hydrothermally Synthesized Li1+xAlxTi2-x(PO4)3 Solid Electrolytes. Electrochim. Acta 2015, 176, 1364–1373. [Google Scholar] [CrossRef]
- Kothari, D.H.; Kanchan, D.K. Effect of Adding Li2O and MgO on Li-Conductivity in NASICON Material. Phys. B Condens. Matter 2021, 600, 412489. [Google Scholar] [CrossRef]
- Kwatek, K.; Ślubowska, W.; Ruiz, C.; Sobrados, I.; Sanz, J.; Garbarczyk, J.E.; Nowiński, J.L. The Mechanism of Enhanced Ionic Conductivity in Li1.3Al0.3Ti1.7(PO4)3–(0.75Li2O·0.25B2O3) Composites. J. Alloys Compd. 2020, 838, 155623. [Google Scholar] [CrossRef]
- Kang, J.; Guo, X.; Gu, R.; Tang, Y.; Hao, H.; Lan, Y.; Jin, L.; Wei, X. Effect of Boron-Based Glass Additives on the Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte. J. Alloys Compd. 2023, 941, 168857. [Google Scholar] [CrossRef]
- Luo, Y.; Gao, H.; Zhao, X. Insights into the Sinterability and Electrical Properties of Li1.3Al0.3Ti1.7(PO4)3-(Li2CO3·Bi2O3) Composite Electrolytes. Ceram. Int. 2022, 48, 8387–8394. [Google Scholar] [CrossRef]
- Bai, H.; Hu, J.; Li, X.; Duan, Y.; Shao, F.; Kozawa, T.; Naito, M.; Zhang, J. Influence of LiBO2 Addition on the Microstructure and Lithium-Ion Conductivity of Li1+xAlxTi2−x(PO4)3(x = 0.3) Ceramic Electrolyte. Ceram. Int. 2018, 44, 6558–6563. [Google Scholar] [CrossRef]
- Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. Electrical Property and Sinterability of LiTi2(PO4)3 Mixed with Lithium Salt (Li3PO4 or Li3BO3). Solid State Ionics 1991, 47, 257–264. [Google Scholar] [CrossRef]
- Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. Electrical Properties and Sinterability for Lithium Germanium Phosphate Li1+ xMxGe2− x(PO4)3, M = Al, Cr, Ga, Fe, Sc, and In Systems. Bull. Chem. Soc. Jpn. 1992, 65, 2200–2204. [Google Scholar] [CrossRef]
- Moshareva, M.A.; Novikova, S.A. Synthesis and Conductivity Study of Solid Electrolytes Li1+xAlxGe2–x(PO4)3 (x = 0–0.65). Russ. J. Inorg. Chem. 2018, 63, 319–323. [Google Scholar] [CrossRef]
- Kunshina, G.B.; Bocharova, I.V.; Lokshin, E.P. Synthesis and Conductivity Studies of Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte. Inorg. Mater. 2016, 52, 279–284. [Google Scholar] [CrossRef]
- Zhao, E.; Guo, Y.; Xin, Y.; Xu, G. Facile Synthesis and Performance of NASICON Li1+xAlxGe2-x(PO4)3 Electrolytes for All Solid State Lithium-Ion Battery. Solid State Ionics 2020, 356, 115454. [Google Scholar] [CrossRef]
- Pershina, S.V.; Il’ina, E.A.; Druzhinin, K.V.; Farlenkov, A.S. Effect of Li2O–Al2O3–GeO2–P2O5 Glass Crystallization on Stability versus Molten Lithium. J. Non-Cryst. Solids 2020, 527, 119708. [Google Scholar] [CrossRef]
- Tatsumisago, M.; Nagao, M.; Hayashi, A. Recent Development of Sulfide Solid Electrolytes and Interfacial Modification for All-Solid-State Rechargeable Lithium Batteries. J. Asian Ceram. Soc. 2013, 1, 17–25. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zu, C.; Wang, Y.; Han, B.; Yin, X.; Zhao, H.; Liu, Y.; Chen, J. Stability of Lithium Ion Conductor NASICON Structure Glass Ceramic in Acid and Alkaline Aqueous Solution. Solid State Ionics 2014, 254, 78–81. [Google Scholar] [CrossRef]
- Yan, B.; Zhu, Y.; Pan, F.; Liu, J.; Lu, L. Li1.5Al0.5Ge1.5(PO4)3 Li-Ion Conductor Prepared by Melt-Quench and Low Temperature Pressing. Solid State Ionics 2015, 278, 65–68. [Google Scholar] [CrossRef]
- Sudreau, F.; Petit, D.; Boilot, J.P. Dimorphism, Phase Transitions, and Transport Properties in LiZr2(PO4)3. J. Solid State Chem. 1989, 83, 78–90. [Google Scholar] [CrossRef]
- Stenina, I.A.; Kislitsyn, M.N.; Pinus, I.Y.; Haile, S.M.; Yaroslavtsev, A.B. Phase Transitions and Ion Conductivity in NASICON-Type Compounds Li1±XZr2-XMX(PO4)3, M = Ta, Nb, Y, Sc, In. Defect Diffus. Forum 2006, 249, 255–262. [Google Scholar] [CrossRef]
- Xie, H.; Goodenough, J.B.; Li, Y. Li1.2Zr1.9Ca0.1(PO4)3, a Room-Temperature Li-Ion Solid Electrolyte. J. Power Sources 2011, 196, 7760–7762. [Google Scholar] [CrossRef]
- Smith, S.; Thompson, T.; Sakamoto, J.; Allen, J.L.; Baker, D.R.; Wolfenstine, J. Electrical, Mechanical and Chemical Behavior of Li1.2Zr1.9Sr0.1(PO4)3. Solid State Ionics 2017, 300, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Harada, M.; Takeda, H.; Suzuki, S.; Nakano, K.; Tanibata, N.; Nakayama, M.; Karasuyama, M.; Takeuchi, I. Bayesian-Optimization-Guided Experimental Search of NASICON-Type Solid Electrolytes for All-Solid-State Li-Ion Batteries. J. Mater. Chem. A 2020, 8, 15103–15109. [Google Scholar] [CrossRef]
- Kumar, S.; Balaya, P. Improved Ionic Conductivity in NASICON-Type Sr2+ Doped LiZr2(PO4)3. Solid State Ionics 2016, 296, 1–6. [Google Scholar] [CrossRef]
- Lai, Y.; Sun, Z.; Jiang, L.; Hao, X.; Jia, M.; Wang, L.; Liu, F. Rapid Sintering of Ceramic Solid Electrolytes LiZr2(PO4)3 and Li1.2Ca0.1Zr1.9(PO4)3 Using a Microwave Sintering Process at Low Temperatures. Ceram. Int. 2019, 45, 11068–11072. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Xie, Z.; Qu, W.; Freschi, D.J.; Liu, J. Progress and Perspectives of Lithium Aluminum Germanium Phosphate-Based Solid Electrolytes for Lithium Batteries. Adv. Funct. Mater. 2023, 2300973. [Google Scholar] [CrossRef]
- Dias, J.A.; Santagneli, S.H.; Rodrigues, A.C.M.; Bôas, N.V.; Messaddeq, Y. Understanding the Evolution of the Structure and Electrical Properties during Crystallization of Li1.5Al0.5Ge1.5(PO4)3 and Li1.5Sc0.17Al0.33Ge1.5(PO4)3 NASICON -Type Glass Ceramics. J. Phys. Chem. C 2023, 127, 6207–6225. [Google Scholar] [CrossRef]
- Waetzig, K.; Rost, A.; Langklotz, U.; Matthey, B.; Schilm, J. An Explanation of the Microcrack Formation in Li1.3Al0.3Ti1.7(PO4)3 Ceramics. J. Eur. Ceram. Soc. 2016, 36, 1995–2001. [Google Scholar] [CrossRef]
- Davis, C.; Nino, J.C. Microwave Processing for Improved Ionic Conductivity in Li2O–Al2O3 –TiO2–P2O5 Glass-Ceramics. J. Am. Ceram. Soc. 2015, 98, 2422–2427. [Google Scholar] [CrossRef]
- Thokchom, J.S.; Kumar, B. The Effects of Crystallization Parameters on the Ionic Conductivity of a Lithium Aluminum Germanium Phosphate Glass–Ceramic. J. Power Sources 2010, 195, 2870–2876. [Google Scholar] [CrossRef]
- Waetzig, K.; Rost, A.; Heubner, C.; Coeler, M.; Nikolowski, K.; Wolter, M.; Schilm, J. Synthesis and Sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) Electrolyte for Ceramics with Improved Li+ Conductivity. J. Alloys Compd. 2020, 818, 153237. [Google Scholar] [CrossRef]
- Vizgalov, V.A.; Nestler, T.; Trusov, L.A.; Bobrikov, I.A.; Ivankov, O.I.; Avdeev, M.V.; Motylenko, M.; Brendler, E.; Vyalikh, A.; Meyer, D.C.; et al. Enhancing Lithium-Ion Conductivity in NASICON Glass-Ceramics by Adding Yttria. CrystEngComm 2018, 20, 1375–1382. [Google Scholar] [CrossRef]
- Jadhav, H.S.; Cho, M.-S.; Kalubarme, R.S.; Lee, J.-S.; Jung, K.-N.; Shin, K.-H.; Park, C.-J. Influence of B2O3 Addition on the Ionic Conductivity of Li1.5Al0.5Ge1.5(PO4)3 Glass Ceramics. J. Power Sources 2013, 241, 502–508. [Google Scholar] [CrossRef]
- Liu, Z.; Venkatachalam, S.; Kirchhain, H.; van Wüllen, L. Study of the Glass-to-Crystal Transformation of the NASICON-Type Solid Electrolyte Li1+xAlxGe2−x(PO4)3. Solid State Ionics 2016, 295, 32–40. [Google Scholar] [CrossRef]
- Yao, Z.; Zhu, K.; Zhang, J.; Li, X.; Chen, J.; Wang, J.; Yan, K.; Liu, J. Co-Precipitation Synthesis and Electrochemical Properties of NASICON-Type Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolytes. J. Mater. Sci. Mater. Electron. 2021, 32, 24834–24844. [Google Scholar] [CrossRef]
- Delaizir, G.; Viallet, V.; Aboulaich, A.; Bouchet, R.; Tortet, L.; Seznec, V.; Morcrette, M.; Tarascon, J.-M.; Rozier, P.; Dollé, M. The Stone Age Revisited: Building a Monolithic Inorganic Lithium-Ion Battery. Adv. Funct. Mater. 2012, 22, 2140–2147. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-M.; Lee, Y., II; Hong, S.-H.; Park, H.-M. Spark Plasma Sintering of LiTi2(PO4)3-Based Solid Electrolytes. J. Am. Ceram. Soc. 2005, 88, 1803–1807. [Google Scholar] [CrossRef]
- Hallopeau, L.; Bregiroux, D.; Rousse, G.; Portehault, D.; Stevens, P.; Toussaint, G.; Laberty-Robert, C. Microwave-Assisted Reactive Sintering and Lithium Ion Conductivity of Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte. J. Power Sources 2018, 378, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.; Cui, Y.; Rohde, M.; Ziebert, C.; Link, G.; Seifert, H. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte. Materials 2016, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Liu, L.; Lu, Y.; Shi, G.; Li, J.; Ma, L.; Zhao, J.; An, H. Preparation and Ionic Conduction of Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte Using Inorganic Germanium as Precursor. J. Eur. Ceram. Soc. 2019, 39, 402–408. [Google Scholar] [CrossRef]
- Ma, F.; Zhao, E.; Zhu, S.; Yan, W.; Sun, D.; Jin, Y.; Nan, C. Preparation and Evaluation of High Lithium Ion Conductivity Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte Obtained Using a New Solution Method. Solid State Ionics 2016, 295, 7–12. [Google Scholar] [CrossRef]
- Kotobuki, M.; Koishi, M.; Kato, Y. Preparation of Li1.5Al0.5Ti1.5(PO4)3 Solid Electrolyte via a Co-Precipitation Method. Ionics 2013, 19, 1945–1948. [Google Scholar] [CrossRef]
- Mariappan, C.R.; Yada, C.; Rosciano, F.; Roling, B. Correlation between Micro-Structural Properties and Ionic Conductivity of Li1.5Al0.5Ge1.5(PO4)3 Ceramics. J. Power Sources 2011, 196, 6456–6464. [Google Scholar] [CrossRef]
- Ji, F.; Xiao, S.; Cheng, J.; Li, D.; Liao, J.; Guo, Y.; Zhang, H.; Zhang, S.; Wei, Y.; Liu, Y.; et al. Low-Cost and Facile Synthesis of LAGP Solid State Electrolyte via a Co-Precipitation Method. Appl. Phys. Lett. 2022, 121, 023904. [Google Scholar] [CrossRef]
- Jiménez, R.; del Campo, A.; Calzada, M.L.; Sanz, J.; Kobylianska, S.D.; Liniova, B.O.; Belous, A.G.; Ragulya, A.V. Improved Conductivity in Tape Casted Li-NASICON Supported Thick Films: Effect of Temperature Treatments and Lamination. J. Eur. Ceram. Soc. 2018, 38, 1679–1687. [Google Scholar] [CrossRef]
- Epp, V.; Ma, Q.; Hammer, E.-M.; Tietz, F.; Wilkening, M. Very Fast Bulk Li Ion Diffusivity in Crystalline Li1.5Al0.5Ti1.5(PO4)3 as Seen Using NMR Relaxometry. Phys. Chem. Chem. Phys. 2015, 17, 32115–32121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q.; Xu, Q.; Tsai, C.-L.; Tietz, F.; Guillon, O. A Novel Sol-Gel Method for Large-Scale Production of Nanopowders: Preparation of Li1.5Al0.5Ti1.5(PO4)3 as an Example. J. Am. Ceram. Soc. 2016, 99, 410–414. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, Z.; Cheng, J.; Yamamoto, O.; Imanishi, N.; Chi, B.; Pu, J.; Li, J. Solid State Lithium Ionic Conducting Thin Film Li1.4Al0.4Ge1.6(PO4)3 Prepared by Tape Casting. J. Alloys Compd. 2014, 590, 147–152. [Google Scholar] [CrossRef]
- Huang, L.; Wen, Z.; Wu, M.; Wu, X.; Liu, Y.; Wang, X. Electrochemical Properties of Li1.4Al0.4Ti1.6(PO4)3 Synthesized by a Co-Precipitation Method. J. Power Sources 2011, 196, 6943–6946. [Google Scholar] [CrossRef]
- Duluard, S.; Paillassa, A.; Lenormand, P.; Taberna, P.-L.; Simon, P.; Rozier, P.; Ansart, F. Dense on Porous Solid LATP Electrolyte System: Preparation and Conductivity Measurement. J. Am. Ceram. Soc. 2017, 100, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Kang, B. Increase in Grain Boundary Ionic Conductivity of Li1.5Al0.5Ge1.5(PO4)3 by Adding Excess Lithium. Solid State Ionics 2014, 263, 125–130. [Google Scholar] [CrossRef]
- Safanama, D.; Adams, S. High Efficiency Aqueous and Hybrid Lithium-Air Batteries Enabled by Li1.5Al0.5Ge1.5(PO4)3 Ceramic Anode-Protecting Membranes. J. Power Sources 2017, 340, 294–301. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Z.; Huang, B.; Zhou, J.; Xu, X. Influence of Phosphorus Sources on Lithium Ion Conducting Performance in the System of Li2O–Al2O3–GeO2–P2O5 Glass–Ceramics. Solid State Ionics 2015, 270, 61–65. [Google Scholar] [CrossRef]
- Cui, Y.; Mahmoud, M.M.; Rohde, M.; Ziebert, C.; Seifert, H.J. Thermal and Ionic Conductivity Studies of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte. Solid State Ionics 2016, 289, 125–132. [Google Scholar] [CrossRef]
- Kun, H.; Yanhang, W.; Chengkui, Z.; Huifeng, Z.; Yonghua, L.; Jiang, C.; Bin, H.; Juanrong, M. Influence of Al2O3 Additions on Crystallization Mechanism and Conductivity of Li2O–Ge2O–P2O5 Glass–Ceramics. Phys. B Condens. Matter 2011, 406, 3947–3950. [Google Scholar] [CrossRef]
- Berbano, S.S.; Guo, J.; Guo, H.; Lanagan, M.T.; Randall, C.A. Cold Sintering Process of Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte. J. Am. Ceram. Soc. 2017, 100, 2123–2135. [Google Scholar] [CrossRef]
- Kubanska, A.; Castro, L.; Tortet, L.; Schäf, O.; Dollé, M.; Bouchet, R. Elaboration of Controlled Size Li1.5Al0.5Ge1.5(PO4)3 Crystallites from Glass-Ceramics. Solid State Ionics 2014, 266, 44–50. [Google Scholar] [CrossRef]
- Fu, J. Fast Li+ Ion Conducting Glass-Ceramics in the System Li2O–Al2O3–GeO2–P2O5. Solid State Ionics 1997, 104, 191–194. [Google Scholar] [CrossRef]
- Cruz, A.M.; Ferreira, E.B.; Rodrigues, A.C.M. Controlled Crystallization and Ionic Conductivity of a Nanostructured LiAlGePO4 Glass–Ceramic. J. Non-Cryst. Solids 2009, 355, 2295–2301. [Google Scholar] [CrossRef]
- Xu, X.; Wen, Z.; Wu, X.; Yang, X.; Gu, Z. Lithium Ion-Conducting Glass-Ceramics of Li1.5Al0.5Ge1.5(PO4)3 -XLi2O (X = 0.0–0.20) with Good Electrical and Electrochemical Properties. J. Am. Ceram. Soc. 2007, 90, 2802–2806. [Google Scholar] [CrossRef]
- Borik, M.A.; Bredikhin, S.I.; Bublik, V.T.; Kulebyakin, A.V.; Kuritsyna, I.E.; Lomonova, E.E.; Milovich, P.O.; Myzina, V.A.; Osiko, V.V.; Ryabochkina, P.A.; et al. Structure and Conductivity of Yttria and Scandia-Doped Zirconia Crystals Grown by Skull Melting. J. Am. Ceram. Soc. 2017, 100, 5536–5547. [Google Scholar] [CrossRef]
- Arbi, K.; París, M.A.; Sanz, J. Lithium Exchange Processes in the Conduction Network of the Nasicon LiTi2-xZrx(PO4)3 Series (0 ≤ x ≤ 2). J. Phys. Chem. B 2006, 110, 6454–6457. [Google Scholar] [CrossRef]
- Zhang, P.; Matsui, M.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Water-Stable Lithium Ion Conducting Solid Electrolyte of the Li1.4Al0.4Ti1.6−xGex(PO4)3 System (X = 0–1.0) with NASICON-Type Structure. Solid State Ionics 2013, 253, 175–180. [Google Scholar] [CrossRef]
- Kyono, N.; Bai, F.; Nemori, H.; Minami, H.; Mori, D.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Lithium-Ion Conducting Solid Electrolytes of Li1.4Al0.4Ge0.2Ti1.4(PO4)3 and MOx (M = Al, Ti, and Zr) Composites. Solid State Ionics 2018, 324, 114–127. [Google Scholar] [CrossRef]
- Saffirio, S.; Falco, M.; Appetecchi, G.B.; Smeacetto, F.; Gerbaldi, C. Li1.4Al0.4Ge0.4Ti1.4(PO4)3 Promising NASICON-Structured Glass-Ceramic Electrolyte for All-Solid-State Li-Based Batteries: Unravelling the Effect of Diboron Trioxide. J. Eur. Ceram. Soc. 2022, 42, 1023–1032. [Google Scholar] [CrossRef]
- Salkus, T.; Dindune, A.; Kanepe, Z.; Ronis, J.; Urcinskas, A.; Kezionis, A.; Orliukas, A. Lithium Ion Conductors in the System Li1+yGe2−x−yTixAly(PO4)3 (X=0.1÷0.3, Y=0.07÷0.21). Solid State Ionics 2007, 178, 1282–1287. [Google Scholar] [CrossRef]
- Maldonado-Manso, P.; Losilla, E.R.; Martínez-Lara, M.; Aranda, M.A.G.; Bruque, S.; Mouahid, F.E.; Zahir, M. High Lithium Ionic Conductivity in the Li1+ xAlxGeyTi2-x-y(PO4)3 NASICON Series. Chem. Mater. 2003, 15, 1879–1885. [Google Scholar] [CrossRef]
- Hartmann, P.; Leichtweiss, T.; Busche, M.R.; Schneider, M.; Reich, M.; Sann, J.; Adelhelm, P.; Janek, J. Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. J. Phys. Chem. C 2013, 117, 21064–21074. [Google Scholar] [CrossRef]
- Nuernberg, R.B.; Basbus, J.F.; Lux, K.C.; Sainz, M.P.; Cuello, G.J.; Rodrigues, A.C.M.; Piarristeguy, A.A.; Ribes, M.; Pradel, A. Correlation between Structural Features and Ionic Transport in Lithium-Ion Conducting Glass–Ceramics from the Li1+xCrxGeTi1– x(PO4)3 System. J. Phys. Chem. C 2022, 126, 4584–4592. [Google Scholar] [CrossRef]
- Xu, A.; Wang, R.; Yao, M.; Cao, J.; Li, M.; Yang, C.; Liu, F.; Ma, J. Electrochemical Properties of an Sn-Doped LATP Ceramic Electrolyte and Its Derived Sandwich-Structured Composite Solid Electrolyte. Nanomaterials 2022, 12, 2082. [Google Scholar] [CrossRef]
- Stenina, I.; Pyrkova, A.; Yaroslavtsev, A. NASICON-Type Li1+xAlxZryTi2−x−y(PO4)3 Solid Electrolytes: Effect of Al, Zr Co-Doping and Synthesis Method. Batteries 2023, 9, 59. [Google Scholar] [CrossRef]
- Rai, K.; Kundu, S. Fabrication and Performances of High Lithium-Ion Conducting Solid Electrolytes Based on NASICON Li1.3Al0.3Ti1.7-XZrx(PO4)3 (0≤ X≤ 0.2). Ceram. Int. 2020, 46, 23695–23705. [Google Scholar] [CrossRef]
- Kothari, D.H.; Kanchan, D.K. Effect of Doping of Trivalent Cations Ga3+, Sc3+, Y3+ in Li1.3Al0.3Ti1.7(PO4)3 (LATP) System on Li + Ion Conductivity. Phys. B Condens. Matter 2016, 501, 90–94. [Google Scholar] [CrossRef]
- Zhang, P.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Water-Stable Lithium Ion Conducting Solid Electrolyte of Iron and Aluminum Doped NASICON-Type LiTi2(PO4)3. Solid State Ionics 2014, 263, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-F.; Shieh, D.; Ko, Y.-A.; Hsu, Y.-F.; Wu, M.-K. Structural and Electrical Studies of B3+-and-In3+-Ion Co-Doped Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolytes. Solid State Ionics 2023, 393, 116174. [Google Scholar] [CrossRef]
- Ioanniti, M.M.; Tenhaeff, W.E. Enhancing the Stability of Lithium Ion Li1+x+yAlxTi2−xSiyP3−yO12 Glass—Ceramic Conductors in Aqueous Electrolytes. J. Power Sources 2017, 371, 209–216. [Google Scholar] [CrossRef]
- Kundu, S.; Ein-Eli, Y. A Review on Design Considerations in Polymer and Polymer Composite Solid-State Electrolytes for Solid Li Batteries. J. Power Sources 2023, 553, 232267. [Google Scholar] [CrossRef]
- Mashekova, A.; Baltash, Y.; Yegamkulov, M.; Trussov, I.; Bakenov, Z.; Mukanova, A. Polycationic Doping of the LATP Ceramic Electrolyte for Li-Ion Batteries. RSC Adv. 2022, 12, 29595–29601. [Google Scholar] [CrossRef]
- Cui, C.; Zeng, C.; Huang, G.; Feng, X.; Zhang, Y.; Zhai, T.; Li, H. In Situ Visualizing the Interfacial Failure Mechanism and Modification Promotion of LAGP Solid Electrolyte toward Li Metal Anode. Adv. Energy Mater. 2022, 12, 2202250. [Google Scholar] [CrossRef]
- Han, F.; Westover, A.S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D.N.; Dudney, N.J.; Wang, H.; Wang, C. High Electronic Conductivity as the Origin of Lithium Dendrite Formation within Solid Electrolytes. Nat. Energy 2019, 4, 187–196. [Google Scholar] [CrossRef]
- Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L.A. Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries. Nat. Rev. Mater. 2020, 5, 229–252. [Google Scholar] [CrossRef]
- Aizat Razali, A.; Norazli, S.N.; Sum, W.S.; Yeo, S.Y.; Dolfi, A.; Srinivasan, G. State-of-the-Art of Solid-State Electrolytes on the Road Map of Solid-State Lithium Metal Batteries for E-Mobility. ACS Sustain. Chem. Eng. 2023, 11, 7927–7964. [Google Scholar] [CrossRef]
- Tolganbek, N.; Serikkazyyeva, A.; Kalybekkyzy, S.; Sarsembina, M.; Kanamura, K.; Bakenov, Z.; Mentbayeva, A. Interface Modification of NASICON-Type Li-Ion Conducting Ceramic Electrolytes: A Critical Evaluation. Mater. Adv. 2022, 3, 3055–3069. [Google Scholar] [CrossRef]
- Li, S.; Chen, Z.; Zhang, W.; Li, S.; Pan, F. High-Throughput Screening of Protective Layers to Stabilize the Electrolyte-Anode Interface in Solid-State Li-Metal Batteries. Nano Energy 2022, 102, 107640. [Google Scholar] [CrossRef]
- Hao, X.; Zhao, Q.; Su, S.; Zhang, S.; Ma, J.; Shen, L.; Yu, Q.; Zhao, L.; Liu, Y.; Kang, F.; et al. Constructing Multifunctional Interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li Metal by Magnetron Sputtering for Highly Stable Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2019, 9, 1901604. [Google Scholar] [CrossRef]
- Lei, M.; Fan, S.; Yu, Y.; Hu, J.; Chen, K.; Gu, Y.; Wu, C.; Zhang, Y.; Li, C. NASICON-Based Solid State Li-Fe-F Conversion Batteries Enabled by Multi-Interface-Compatible Sericin Protein Buffer Layer. Energy Storage Mater. 2022, 47, 551–560. [Google Scholar] [CrossRef]
- Liu, F.; Chuan, X.; Yang, Y.; Huang, D.; He, X. Stable Cycling of Solid-State Lithium Metal Batteries at Room Temperature via Reducing Electrode/Electrolyte Interfacial Resistance. J. Mater. Eng. Perform. 2021, 30, 4543–4551. [Google Scholar] [CrossRef]
- Chen, Z.; Kim, G.; Kim, J.; Zarrabeitia, M.; Kuenzel, M.; Liang, H.; Geiger, D.; Kaiser, U.; Passerini, S. Highly Stable Quasi-Solid-State Lithium Metal Batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li Interface by a Protection Interlayer. Adv. Energy Mater. 2021, 11, 2101339. [Google Scholar] [CrossRef]
- Pan, L.; Sun, S.; Yu, G.; Liu, X.X.; Feng, S.; Zhang, W.; Turgunov, M.; Wang, Y.; Sun, Z. Stabilizing Solid Electrolyte/Li Interface via Polymer-in-Salt Artificial Protection Layer for High-Rate and Stable Lithium Metal Batteries. Chem. Eng. J. 2022, 449, 137682. [Google Scholar] [CrossRef]
- Bai, H.; Hu, J.; Duan, Y.; Kozawa, T.; Naito, M.; Zhang, J.; Dong, S. Surface Modification of Li1.3Al0.3Ti1.7(PO4)3 Ceramic Electrolyte by Al2O3-Doped ZnO Coating to Enable Dendrites-Free All-Solid-State Lithium-Metal Batteries. Ceram. Int. 2019, 45, 14663–14668. [Google Scholar] [CrossRef]
- Li, C.-F.; Muruganantham, R.; Hsu, W.-C.; Ihrig, M.; Hsieh, C.-T.; Wang, C.-C.; Liu, W.-R. Atomic Layer Deposition of ZnO on Li1.3Al0.3Ti1.7(PO4)3 Enables Its Application in All Solid-State Lithium Batteries. J. Taiwan Inst. Chem. Eng. 2023, 144, 104681. [Google Scholar] [CrossRef]
- Ci, N.; Zhang, L.; Li, J.; Li, D.; Cheng, J.; Sun, Q.; Xi, Z.; Xu, Z.; Zhao, G.; Ci, L. In Situ Construction of a Flexible Interlayer for Durable Solid-State Lithium Metal Batteries. Carbon 2022, 187, 13–21. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Q.; Zhao, Y.; Wang, B.; Kaghazchi, P.; Adair, K.R.; Li, R.; Zhang, C.; Liu, J.; Kuo, L.-Y.; et al. Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2018, 10, 31240–31248. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liu, L.; Yang, B.; Li, Q.; Wu, B.; Zhao, J.; Ma, L.; Liu, Y.; An, H. Preparation and Ion Conduction of Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte Films Using Radio Frequency Sputtering. Solid State Ionics 2020, 346, 115224. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, A.; Li, N.; Li, S.; Zangiabadi, A.; Li, T.-D.; Huang, W.; Li, A.C.; Jin, T.; Song, Q.; et al. Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating. Joule 2019, 3, 1510–1522. [Google Scholar] [CrossRef]
- Liu, L.; Cui, X.; Jie, Z.; Lin, Y.; Zhang, C.; Song, J.; Wang, L.; Ma, J.; Ma, L. Improved Ion Conductivity and Interface Characteristics of the Te-Doped Solid NASICON Electrolyte Li1.5Al0.5Ge1.5(PO4)3 with Graphite Coating. J. Power Sources 2023, 575, 233137. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Q.; Jie, Z.; Ma, J.; Cui, X.; Xu, G.; Gu, C.; Ma, L.; Liu, Y. Stable Interface between Anode Materials and Li1.3Al0.3Ti1.7(PO4)3-Based Solid-State Electrolyte Facilitated by Graphene Coating. Electrochim. Acta 2022, 431, 141136. [Google Scholar] [CrossRef]
- Hao, X.; Chen, K.; Tang, Y.; Zhong, X.; Cai, K. 2-Dimensional g-C3N4 Nanosheets Modified LATP-Based “Polymer-in-Ceramic” Electrolyte for Solid-State Lithium Batteries. J. Alloys Compd. 2023, 942, 169064. [Google Scholar] [CrossRef]
- Lee, S.; Jung, S.; Yang, S.; Lee, J.-H.; Shin, H.; Kim, J.; Park, S. Revisiting the LiPON/Li Thin Film as a Bifunctional Interlayer for NASICON Solid Electrolyte-Based Lithium Metal Batteries. Appl. Surf. Sci. 2022, 586, 152790. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Q.; Hu, X.; Wang, S.; Wu, J.; Liang, B.; Han, C.; Kang, F.; Li, B. Smart Construction of Multifunctional Li1.5Al0.5Ge1.5(PO4)3|Li Intermediate Interfaces for Solid-State Batteries. Energy Storage Mater. 2022, 46, 68–75. [Google Scholar] [CrossRef]
- Zha, W.; Ruan, Y.; Wen, Z. A Janus Li1.5Al0.5Ge1.5(PO4)3 with High Critical Current Density for High-Voltage Lithium Batteries. Chem. Eng. J. 2022, 429, 132506. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; Tian, C.; Chen, C.; Huang, T.; Zeng, L.; Yu, A. Double-Protected Layers with Solid–Liquid Hybrid Electrolytes for Long-Cycle-Life Lithium Batteries. ACS Appl. Mater. Interfaces 2022, 14, 4170–4178. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; Tian, C.; Huang, T.; Zeng, L.; Yu, A. Comparative Performance of LiFePO4 and LiNi0.6Co0.2Mn0.2O2 Cathode Materials for Lithium Batteries with Solid–Liquid Hybrid Electrolytes. J. Power Sources 2021, 515, 230639. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, C.-Z.; Yuan, H.; Lu, Y.; Hu, J.-K.; Huang, J.-Q.; Zhang, Q. Multiscale Understanding of High-Energy Cathodes in Solid-State Batteries: From Atomic Scale to Macroscopic Scale. Mater. Futures 2022, 1, 012101. [Google Scholar] [CrossRef]
- Paolella, A.; Zhu, W.; Campanella, D.; Kaboli, S.; Feng, Z.; Vijh, A. NASICON Lithium Ions Conductors: Materials, Composites, and Batteries. Curr. Opin. Electrochem. 2022, 36, 101108. [Google Scholar] [CrossRef]
- Zheng, F.; Song, Z.; Li, H.; Zheng, Y.-Z.; Tao, X. Distinct Functional Janus Interfaces for Dendrite-Free Li1.3Al0.3Ti1.7(PO4)3-Based Lithium Metal Batteries. Electrochim. Acta 2022, 436, 141395. [Google Scholar] [CrossRef]
- Overhoff, G.M.; Ali, M.Y.; Brinkmann, J.-P.; Lennartz, P.; Orthner, H.; Hammad, M.; Wiggers, H.; Winter, M.; Brunklaus, G. Ceramic-in-Polymer Hybrid Electrolytes with Enhanced Electrochemical Performance. ACS Appl. Mater. Interfaces 2022, 14, 53636–53647. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Xu, Q.; Lu, X.; Liu, Z.; Windmüller, A.; Tsai, C.-L.; Buchheit, A.; Tempel, H.; Kungl, H.; Wiemhöfer, H.-D.; et al. Single-Ion-Conducting “Polymer-in-Ceramic” Hybrid Electrolyte with an Intertwined NASICON-Type Nanofiber Skeleton. ACS Appl. Mater. Interfaces 2021, 13, 61067–61077. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Ma, N.; Wu, Y.; Lu, Y.; Xiao, Q.; Li, Z.; Lei, G. Fabrication and Electrochemical Properties of LATP/PVDF Composite Electrolytes for Rechargeable Lithium-Ion Battery. Solid State Ionics 2018, 325, 112–119. [Google Scholar] [CrossRef]
- Zhang, K.; Mu, S.; Liu, W.; Zhu, D.; Ding, Z.; Chen, Y. A Flexible NASICON-Type Composite Electrolyte for Lithium-Oxygen/Air Battery. Ionics 2019, 25, 25–33. [Google Scholar] [CrossRef]
- Panneerselvam, T.; Rajamani, A.; Janani, N.; Murugan, R.; Sivaprakasam, S. Electrospun Composite Polymer Electrolyte for High-Performance Quasi Solid-State Lithium Metal Batteries. Ionics 2023, 29, 1395–1406. [Google Scholar] [CrossRef]
- Wang, C.; Sun, Q.; Liu, Y.; Zhao, Y.; Li, X.; Lin, X.; Banis, M.N.; Li, M.; Li, W.; Adair, K.R.; et al. Boosting the Performance of Lithium Batteries with Solid-Liquid Hybrid Electrolytes: Interfacial Properties and Effects of Liquid Electrolytes. Nano Energy 2018, 48, 35–43. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; You, L.; Chen, X.; Huang, T.; Zhou, L.; Geng, Z.; Yu, A. Effect of Organic Electrolyte on the Performance of Solid Electrolyte for Solid–Liquid Hybrid Lithium Batteries. ACS Appl. Mater. Interfaces 2021, 13, 2685–2693. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cisneros, C.S.; Pandit, B.; Antonelli, C.; Sanchez, J.Y.; Levenfeld, B.; Varez, A. Development of Sodium Hybrid Quasi-Solid Electrolytes Based on Porous NASICON and Ionic Liquids. J. Eur. Ceram. Soc. 2021, 41, 7723–7733. [Google Scholar] [CrossRef]
- Lei, W.; Zhang, C.; Qiao, R.; Ravivarma, M.; Chen, H.; Ajdari, F.B.; Salavati-Niasari, M.; Song, J. Stable Li|LAGP Interface Enabled by Confining Solvate Ionic Liquid in a Hyperbranched Polyanionic Copolymer for NASICON-Based Solid-State Batteries. ACS Appl. Energy Mater. 2023, 6, 4363–4371. [Google Scholar] [CrossRef]
- Il’ina, E.; Druzhinin, K.; Lyalin, E.; Talankin, I. In Situ Li-In Anode Formation on the Li7La3Zr2O12 Solid Electrolyte in All-Solid-State Battery. Batteries 2022, 8, 226. [Google Scholar] [CrossRef]
- He, M.; Cui, Z.; Chen, C.; Li, Y.; Guo, X. Formation of Self-Limited, Stable and Conductive Interfaces between Garnet Electrolytes and Lithium Anodes for Reversible Lithium Cycling in Solid-State Batteries. J. Mater. Chem. A 2018, 6, 11463–11470. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Roddatis, V.; Chandran, C.V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O. Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. ACS Appl. Mater. Interfaces 2016, 8, 10617–10626. [Google Scholar] [CrossRef]
- El-Shinawi, H.; Regoutz, A.; Payne, D.J.; Cussen, E.J.; Corr, S.A. NASICON LiM2(PO4)3 Electrolyte (M = Zr) and Electrode (M = Ti) Materials for All Solid-State Li-Ion Batteries with High Total Conductivity and Low Interfacial Resistance. J. Mater. Chem. A 2018, 6, 5296–5303. [Google Scholar] [CrossRef] [Green Version]
- Kee, Y.; Dimov, N.; Kobayashi, E.; Kitajou, A.; Okada, S. Structural and Electrochemical Properties of Fe- and Al-Doped Li3V2(PO4)3 for All-Solid-State Symmetric Lithium Ion Batteries Prepared by Spray-Drying-Assisted Carbothermal Method. Solid State Ionics 2015, 272, 138–143. [Google Scholar] [CrossRef]
- Bates, A.M.; Preger, Y.; Torres-Castro, L.; Harrison, K.L.; Harris, S.J.; Hewson, J. Are Solid-State Batteries Safer than Lithium-Ion Batteries? Joule 2022, 6, 742–755. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, X.; Zeng, X.; Yan, M.; Yin, Y.; Xin, S.; Wang, W.; Wu, X.; Shi, J.; Wan, L.; et al. Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium-Metal Batteries. Angew. Chem. 2020, 132, 6647–6651. [Google Scholar] [CrossRef]
- Wu, D.; Wu, F. Toward Better Batteries: Solid-State Battery Roadmap 2035+. eTransportation 2023, 16, 100224. [Google Scholar] [CrossRef]
- Schmaltz, T.; Wicke, T.; Weymann, L.; Voß, P.; Neef, C.; Thielmann, A. Solid-State Battery Roadmap 2035+; Fraunhofer ISI: Karlsruhe, Germany, 2022; 112p. [Google Scholar]
- Alloina, F.; Iojoiu, C. 4—Composite Polymer Electrolytes for Electrochemical Devices. In Polymer Electrolytes; Sequeira, C., Santos, D., Eds.; Woodhead Publishing: Shaxton, UK, 2010; pp. 129–175. ISBN 978-1-84569-772-3. [Google Scholar]
- Liang, C.C. Conduction Characteristics of the Lithium Iodide-Aluminum Oxide Solid Electrolytes. J. Electrochem. Soc. 1973, 120, 1289. [Google Scholar] [CrossRef]
- Maier, J. Ionic Conduction in Space Charge Regions. Prog. Solid State Chem. 1995, 23, 171–263. [Google Scholar] [CrossRef]
- Voropaeva, D.Y.; Novikova, S.A.; Yaroslavtsev, A.B. Polymer Electrolytes for Metal-Ion Batteries. Russ. Chem. Rev. 2020, 89, 1132–1155. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Li, X.; Zhao, J.; Liu, G.; Yu, W.; Dong, X.; Wang, J. Review on Composite Solid Electrolytes for Solid-State Lithium-Ion Batteries. Mater. Today Sustain. 2023, 21, 100316. [Google Scholar] [CrossRef]
- Li, D.; Qin, D.; Nie, F.; Wen, L.; Xue, L. Enhancement of Electrochemical Performance of Lithium-Ion Battery by Single-Ion Conducting Polymer Addition in Ceramic-Coated Separator. J. Mater. Sci. 2018, 53, 11038–11049. [Google Scholar] [CrossRef]
- Hanemann, T.; Szabó, D.V. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials 2010, 3, 3468–3517. [Google Scholar] [CrossRef]
- Koizumi, Y.; Mori, D.; Taminato, S.; Yamamoto, O.; Takeda, Y.; Imanishi, N. Lithium-Stable NASICON-Type Lithium-Ion Conducting Solid Electrolyte Film Coated with a Polymer Electrolyte. Solid State Ionics 2019, 337, 101–106. [Google Scholar] [CrossRef]
- Bonizzoni, S.; Ferrara, C.; Berbenni, V.; Anselmi-Tamburini, U.; Mustarelli, P.; Tealdi, C. NASICON-Type Polymer-in-Ceramic Composite Electrolytes for Lithium Batteries. Phys. Chem. Chem. Phys. 2019, 21, 6142–6149. [Google Scholar] [CrossRef]
- Zhai, H.; Xu, P.; Ning, M.; Cheng, Q.; Mandal, J.; Yang, Y. A Flexible Solid Composite Electrolyte with Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries. Nano Lett. 2017, 17, 3182–3187. [Google Scholar] [CrossRef]
- Han, S.; Liu, S.; Gao, J.; Zhai, M.; Wu, Y.; Tong, J.; Zhang, H.; Tang, W. A Novel Composite Polymer Electrolyte Containing the Lithium-Ion Conductor Li3Zr2Si2PO12 Synthesized by Cationic-Exchange Method for Solid Lithium Metal Batteries. Electrochim. Acta 2023, 441, 141795. [Google Scholar] [CrossRef]
- Freitag, A.; Langklotz, U.; Rost, A.; Stamm, M.; Ionov, L. Ionically Conductive Polymer/Ceramic Separator for Lithium-Sulfur Batteries. Energy Storage Mater. 2017, 9, 105–111. [Google Scholar] [CrossRef]
- Maurya, D.K.; Dhanusuraman, R.; Guo, Z.; Angaiah, S. Composite Polymer Electrolytes: Progress, Challenges, and Future Outlook for Sodium-Ion Batteries. Adv. Compos. Hybrid Mater. 2022, 5, 2651–2674. [Google Scholar] [CrossRef]
- Deiner, L.J.; Gothard, N.W.; Buckley, J.; Clarkson, D.; Greenbaum, S.; Rubin, I.; Noga, M.; McGinn, C.; Hsieh, E.; Kymissis, I.; et al. Mechanochemical Synthesis of LAGP/PEG Hybrid Solid Electrolyte: Investigation of Surface Structure and Chemistry. Solid State Ionics 2023, 394, 116191. [Google Scholar] [CrossRef]
- Cheng, J.; Hou, G.; Sun, Q.; Liang, Z.; Xu, X.; Guo, J.; Dai, L.; Li, D.; Nie, X.; Zeng, Z.; et al. Cold-Pressing PEO/LAGP Composite Electrolyte for Integrated All-Solid-State Lithium Metal Battery. Solid State Ionics 2020, 345, 115156. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Huang, B.; Huang, C.; Pei, D.; Liu, Z.; Yuan, S.; Hou, S.; Cao, G.; Jin, H. A High Power Density Solid Electrolyte Based on Polycaprolactone for High-Performance All-Solid-State Flexible Lithium Batteries. Electrochim. Acta 2022, 424, 140624. [Google Scholar] [CrossRef]
- Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 2019, 5, 2326–2352. [Google Scholar] [CrossRef]
- Jadhao, S.R.; Joat, R.V. The Effect of Nanofiller on Electrical Conductivity of PVA Based Solid Polymer Electrolyte. Mater. Today Proc. 2019, 15, 581–585. [Google Scholar] [CrossRef]
- Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X. Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Front. Chem. 2019, 7, 522. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, S.N.F.; Yusof, S.Z.; Kufian, M.Z.; Teo, L.P. Preparation and Electrical Characterization of Polymer Electrolytes: A Review. Mater. Today Proc. 2019, 17, 446–458. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M.; Paolella, A.; Armand, M.; Zaghib, K. Building Better Batteries in the Solid State: A Review. Materials 2019, 12, 3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, P.; Zhu, J.; Zang, J.; Chen, C.; Lu, Y.; Jiang, M.; Yan, C.; Dirican, M.; Kalai Selvan, R.; Zhang, X. A Novel Bi-Functional Double-Layer RGO–PVDF/PVDF Composite Nanofiber Membrane Separator with Enhanced Thermal Stability and Effective Polysulfide Inhibition for High-Performance Lithium–Sulfur Batteries. J. Mater. Chem. A 2017, 5, 15096–15104. [Google Scholar] [CrossRef]
- Tang, C.; Hackenberg, K.; Fu, Q.; Ajayan, P.M.; Ardebili, H. High Ion Conducting Polymer Nanocomposite Electrolytes Using Hybrid Nanofillers. Nano Lett. 2012, 12, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Varzi, A.; Thanner, K.; Scipioni, R.; Di Lecce, D.; Hassoun, J.; Dörfler, S.; Altheus, H.; Kaskel, S.; Prehal, C.; Freunberger, S.A. Current Status and Future Perspectives of Lithium Metal Batteries. J. Power Sources 2020, 480, 228803. [Google Scholar] [CrossRef]
- Zheng, J.; Hu, Y.-Y. New Insights into the Compositional Dependence of Li-Ion Transport in Polymer–Ceramic Composite Electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 4113–4120. [Google Scholar] [CrossRef]
- Yang, T.; Zheng, J.; Cheng, Q.; Hu, Y.-Y.; Chan, C.K. Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology. ACS Appl. Mater. Interfaces 2017, 9, 21773–21780. [Google Scholar] [CrossRef]
- Zhao, C.-Z.; Zhang, X.-Q.; Cheng, X.-B.; Zhang, R.; Xu, R.; Chen, P.-Y.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q. An Anion-Immobilized Composite Electrolyte for Dendrite-Free Lithium Metal Anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 11069–11074. [Google Scholar] [CrossRef]
- Zheng, J.; Tang, M.; Hu, Y. Lithium Ion Pathway within Li7La3Zr2O12-Polyethylene Oxide Composite Electrolytes. Angew. Chem. 2016, 128, 12726–12730. [Google Scholar] [CrossRef]
- Popovic, J.; Brandell, D.; Ohno, S.; Hatzell, K.B.; Zheng, J.; Hu, Y.-Y. Polymer-Based Hybrid Battery Electrolytes: Theoretical Insights, Recent Advances and Challenges. J. Mater. Chem. A 2021, 9, 6050–6069. [Google Scholar] [CrossRef]
- Li, M.; Kolek, M.; Frerichs, J.E.; Sun, W.; Hou, X.; Hansen, M.R.; Winter, M.; Bieker, P. Investigation of Polymer/Ceramic Composite Solid Electrolyte System: The Case of PEO/LGPS Composite Electrolytes. ACS Sustain. Chem. Eng. 2021, 9, 11314–11322. [Google Scholar] [CrossRef]
- Bain, A.D. Chemical Exchange in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2003, 43, 63–103. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, P.; Liu, H.; Hu, Y.-Y. Interface-Enabled Ion Conduction in Li10GeP2S12 –Poly(Ethylene Oxide) Hybrid Electrolytes. ACS Appl. Energy Mater. 2019, 2, 1452–1459. [Google Scholar] [CrossRef]
- Fu, J.; Li, Z.; Zhou, X.; Guo, X. Ion Transport in Composite Polymer Electrolytes. Mater. Adv. 2022, 3, 3809–3819. [Google Scholar] [CrossRef]
- Yan, Y.; Ju, J.; Dong, S.; Wang, Y.; Huang, L.; Cui, L.; Jiang, F.; Wang, Q.; Zhang, Y.; Cui, G. In Situ Polymerization Permeated Three-Dimensional Li+ -Percolated Porous Oxide Ceramic Framework Boosting All Solid-State Lithium Metal Battery. Adv. Sci. 2021, 8, 2003887. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Liang, W.-H.; Cao, J.-H.; Wu, D.-Y. PI-LATP-PEO Electrolyte with High Safety Performance in Solid-State Lithium Metal Batteries. ACS Appl. Energy Mater. 2022, 5, 5277–5286. [Google Scholar] [CrossRef]
- Patil, B.H.; Howell, B.R.; Gallaway, J.W. A Multiscale Hollow Spherical LATP Active Filler Improves Conductivity and Mechanical Strength in Composite Solid Electrolytes for Li Batteries. J. Phys. Chem. C 2022, 126, 15104–15117. [Google Scholar] [CrossRef]
- Wang, C.; Huang, D.; Li, S.; Yu, J.; Zhu, M.; Liu, N.; Lu, Z. Three-Dimensional-Percolated Ceramic Nanoparticles along Natural-Cellulose-Derived Hierarchical Networks for High Li + Conductivity and Mechanical Strength. Nano Lett. 2020, 20, 7397–7404. [Google Scholar] [CrossRef]
- Lee, J.; Howell, T.; Rottmayer, M.; Boeckl, J.; Huang, H. Free-Standing PEO/LiTFSI/LAGP Composite Electrolyte Membranes for Applications to Flexible Solid-State Lithium-Based Batteries. J. Electrochem. Soc. 2019, 166, A416–A422. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Pareek, T.; Dwivedi, S.; Badole, M.; Kumar, S. LiSn2(PO4)3-Based Polymer-in-Ceramic Composite Electrolyte with High Ionic Conductivity for All-Solid-State Lithium Batteries. J. Solid State Electrochem. 2020, 24, 2407–2417. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J.B. PEO/Garnet Composite Electrolytes for Solid-State Lithium Batteries: From “Ceramic-in-Polymer” to “Polymer-in-Ceramic”. Nano Energy 2018, 46, 176–184. [Google Scholar] [CrossRef]
- Bushkova, O.V.; Sanginov, E.A.; Chernyuk, S.D.; Kayumov, R.R.; Shmygleva, L.V.; Dobrovolsky, Y.A.; Yaroslavtsev, A.B. Polymer Electrolytes Based on the Lithium Form of Nafion Sulfonic Cation-Exchange Membranes: Current State of Research and Prospects for Use in Electrochemical Power Sources. Membr. Membr. Technol. 2022, 4, 433–454. [Google Scholar] [CrossRef]
- Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. Single-Ion Conducting Gel Polymer Electrolytes: Design, Preparation and Application. J. Mater. Chem. A 2020, 8, 1557–1577. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A.S.; Belharouak, I.; Cao, P. Single-Ion Conducting Polymer Electrolytes for Solid-State Lithium–Metal Batteries: Design, Performance, and Challenges. Adv. Energy Mater. 2021, 11, 2003836. [Google Scholar] [CrossRef]
- Voropaeva, D.; Golubenko, D.; Merkel, A.; Yaroslavtsev, A. Membranes with Novel Highly-Delocalized Sulfonylimide Anions for Lithium-Ion Batteries. J. Membr. Sci. 2020, 601, 117918. [Google Scholar] [CrossRef]
- Liu, J.; Pickett, P.D.; Park, B.; Upadhyay, S.P.; Orski, S.V.; Schaefer, J.L. Non-Solvating, Side-Chain Polymer Electrolytes as Lithium Single-Ion Conductors: Synthesis and Ion Transport Characterization. Polym. Chem. 2020, 11, 461–471. [Google Scholar] [CrossRef]
- Ahmed, F.; Choi, I.; Rahman, M.M.; Jang, H.; Ryu, T.; Yoon, S.; Jin, L.; Jin, Y.; Kim, W. Remarkable Conductivity of a Self-Healing Single-Ion Conducting Polymer Electrolyte, Poly(Ethylene- Co -Acrylic Lithium (Fluoro Sulfonyl)Imide), for All-Solid-State Li-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 34930–34938. [Google Scholar] [CrossRef]
- Rohan, R.; Sun, Y.; Cai, W.; Zhang, Y.; Pareek, K.; Xu, G.; Cheng, H. Functionalized Polystyrene Based Single Ion Conducting Gel Polymer Electrolyte for Lithium Batteries. Solid State Ionics 2014, 268, 294–299. [Google Scholar] [CrossRef]
- Feng, S.; Shi, D.; Liu, F.; Zheng, L.; Nie, J.; Feng, W.; Huang, X.; Armand, M.; Zhou, Z. Single Lithium-Ion Conducting Polymer Electrolytes Based on Poly[(4-Styrenesulfonyl)(Trifluoromethanesulfonyl)Imide] Anions. Electrochim. Acta 2013, 93, 254–263. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, H.; Zhou, C.; Zheng, L.; Cheng, P.; Nie, J.; Feng, W.; Hu, Y.S.; Li, H.; Huang, X.; et al. Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. Angew. Chem. Int. Ed. Engl. 2016, 55, 2521–2525. [Google Scholar] [CrossRef]
- Voropaeva, D.; Novikova, S.; Trofimenko, N.; Yaroslavtsev, A. Polystyrene-Based Single-Ion Conducting Polymer Electrolyte for Lithium Metal Batteries. Processes 2022, 10, 2509. [Google Scholar] [CrossRef]
- Xu, R.; Xiao, Y.; Zhang, R.; Cheng, X.; Zhao, C.; Zhang, X.; Yan, C.; Zhang, Q.; Huang, J. Dual-Phase Single-Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries. Adv. Mater. 2019, 31, 1808392. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Guo, F.; Liu, J.; Song, S.; Jiang, N.; Cheng, B. Optimization of Na3Zr2Si2PO12 Ceramic Electrolyte and Interface for High Performance Solid-State Sodium Battery. Ceram. Int. 2019, 45, 1770–1776. [Google Scholar] [CrossRef]
Electrolyte | Protective Layer | Ionic Conductivity and Activation Energy | Resistance of the Electrode/Electrolyte | Ref. |
---|---|---|---|---|
LAGP Li1.5Al0.5Ge1.5(PO4)3 | LiPON layer on the lithium anode | 0.16 S/cm, Ea = 0.266 eV | Surface resistance decreased from 617 to 289 Ohm | [149] |
LAGP Li1.5Al0.5Ge0.5(PO4)3 | Reduced graphene oxide layer with ZnO at the boundary between LAGP electrolyte and metallic Li | 0.32 S/cm | Surface resistance decreased from 1840 to 32 Ohm | [142] |
LAGP Li1.5Al0.5Ge1.5(PO4)3 | Introduction of a LiF@Li-Zn layer at the LAGP/Li interface | 2.5 × 10−4 S/cm, Ea = 0.24 eV | Surface resistance was 420 Ohm/cm2 | [150] |
LAGP Li1.5Al0.5Ge1.5(PO4)3 | Polymer coatings containing GDLA-UAG layer and fluoroethylene carbonate, LiTFSI, and PEGMEMA | 4.8 × 10−4 S/cm, Ea = 0.31 eV | Surface resistance decreased from 20 kOhm to 190 Ohm | [151] |
LATP Li1.3Al0.3Ti1.7(PO4)3 | Addition of a liquid electrolyte to LATP electrolyte and a layer containing PVDF and LiTFSI | — | Surface resistance decreased from 1000 to 125 Ohm. | [152] |
LATP Li1.3Al0.3Ti1.7(PO4)3 | Addition of 15% liquid electrolyte | — | Surface resistance decreased from ~5000 Ohm to ~100 Ohm (after 25 h of contact with lithium metal) | [153] |
LATP Li1.3Al0.3Ti1.7(PO4)3 | ZnO layer deposition using ALD method | 1.7 × 10−4 S/cm | The total resistance of the Li|Li cell decreased from 20 kOhm to 2.7 kOhm | [141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stenina, I.; Novikova, S.; Voropaeva, D.; Yaroslavtsev, A. Solid Electrolytes Based on NASICON-Structured Phosphates for Lithium Metal Batteries. Batteries 2023, 9, 407. https://doi.org/10.3390/batteries9080407
Stenina I, Novikova S, Voropaeva D, Yaroslavtsev A. Solid Electrolytes Based on NASICON-Structured Phosphates for Lithium Metal Batteries. Batteries. 2023; 9(8):407. https://doi.org/10.3390/batteries9080407
Chicago/Turabian StyleStenina, Irina, Svetlana Novikova, Daria Voropaeva, and Andrey Yaroslavtsev. 2023. "Solid Electrolytes Based on NASICON-Structured Phosphates for Lithium Metal Batteries" Batteries 9, no. 8: 407. https://doi.org/10.3390/batteries9080407
APA StyleStenina, I., Novikova, S., Voropaeva, D., & Yaroslavtsev, A. (2023). Solid Electrolytes Based on NASICON-Structured Phosphates for Lithium Metal Batteries. Batteries, 9(8), 407. https://doi.org/10.3390/batteries9080407