Boosting the Power of Na0.44MnO2: Unlocking Its Potential for Aqueous Sodium-Ion Storage through Nanostructuring and Hybridization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrothermal Synthesis
2.2. Microstructure and Physical Characterization
2.3. Electrode Fabrication
2.4. Electrochemical Characterization
3. Results and Discussion
3.1. Hydrothermal Synthesis
3.1.1. NMO Nanowires
3.1.2. NMO Nanowire/CNF Hybrid
3.2. Electrochemical Study of H-NMO and NMO/CNF Electrodes
3.2.1. Cyclic Voltammetry
3.2.2. Galvanostatic Charge and Discharge Test
3.2.3. Electrochemical Impedance Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, H.; Hong, J.; Park, K.-Y.; Kim, H.; Kim, S.-W.; Kang, K. Aqueous Rechargeable Li and Na Ion Batteries. Chem. Rev. 2014, 114, 11788–11827. [Google Scholar] [CrossRef]
- Bin, D.; Wang, F.; Tamirat, A.G.; Suo, L.; Wang, Y.; Wang, C.; Xia, Y. Progress in Aqueous Rechargeable Sodium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1–31. [Google Scholar] [CrossRef]
- Yang, M.; Luo, J.; Guo, X.; Chen, J.; Cao, Y.; Chen, W. Review Aqueous Rechargeable Sodium-Ion Batteries: From Liquid to Hydrogel. Batteries 2022, 8, 180. [Google Scholar] [CrossRef]
- Boyd, S.; Augustyn, V. Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorg. Chem. Front. 2018, 5, 999–1015. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M. State-of-the-Art Electrode Materials for Sodium-Ion Batteries. Materials 2020, 13, 3453. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Hu, Z.; Chen, M.; Zou, C.; Jin, H.; Wang, S.; Chou, S.-L.; Liu, Y.; Dou, S.-X. The Cathode Choice for Commercialization of Sodium-Ion Batteries: Layered Transition Metal Oxides versus Prussian Blue Analogs. Adv. Funct. Mater. 2020, 30, 1909530. [Google Scholar] [CrossRef]
- Wei, W.; Cui, X.; Chen, W.; Ivey, D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yang, H.; Bai, Y.; Wu, C. Mn-based oxides for aqueous rechargeable metal ion batteries. J. Mater. Chem. A 2021, 9, 11472–11500. [Google Scholar] [CrossRef]
- Shin, J.; Seo, J.K.; Yaylian, R.; Huang, A.; Meng, Y.S. A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. Int. Mater. Rev. 2020, 65, 356–387. [Google Scholar] [CrossRef]
- Arias, N.P.; Becerra, M.E.; Giraldo, O. Structural and Electrical Studies for Birnessite-Type Materials Synthesized by Solid-State Reactions. Nanomaterials 2019, 9, 1156. [Google Scholar] [CrossRef]
- Siamionau, U.; Aniskevich, Y.; Mazanik, A.; Kokits, O.; Ragoisha, G.; Jo, J.H.; Myung, S.-T.; Streltsov, E. Rechargeable zinc-ion batteries with manganese dioxide cathode: How critical is choice of manganese dioxide polymorphs in aqueous solutions? J. Power Sources 2022, 523, 231023. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Sun, K.; Guo, J.; Yuan, K.; Fu, J.; Zhang, T.; Zhang, X.; Long, H.; Zhang, Z.; et al. Manganese-Based Materials for Rechargeable Batteries beyond Lithium-Ion. Adv. Energy Mater. 2021, 11, 2100867. [Google Scholar] [CrossRef]
- Chae, M.S.; Elias, Y.; Aurbach, D. Tunnel-type sodium manganese oxide cathodes for sodium-ion batteries. ChemElectroChem 2021, 8, 798–811. [Google Scholar] [CrossRef]
- Whitacre, J.F.; Tevar, A.; Sharma, S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun. 2010, 12, 463–466. [Google Scholar] [CrossRef]
- Soleimanzade, M.; Bahdanchyk, M.; Hashempour, M.; Bestetti, M.; Cernuschi, F.M.; Vicenzo, A. Charging processes of Na4Mn9O18 electrode in aqueous electrolyte. Electrochim. Acta 2022, 426, 140791. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.J.; Seo, D.H.; Yeom, M.S.; Kang, K.; Kim, D.K.; Jung, Y. Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem. Mater. 2012, 24, 1205–1211. [Google Scholar] [CrossRef]
- Sauvage, F.; Baudrin, E.; Tarascon, J.M. Study of the potentiometric response towards sodium ions of Na0.44−xMnO2 for the development of selective sodium ion sensors. Sens. Actuators B 2007, 120, 638–644. [Google Scholar] [CrossRef]
- Clément, R.J.; Bruce, P.G.; Grey, C.P. Review—Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials. J. Electrochem. Soc. 2015, 162, A2589. [Google Scholar] [CrossRef]
- Zuo, W.; Innocenti, A.; Zarrabeitia, M.; Bresser, D.; Yang, Y.; Passerini, S. Layered Oxide Cathodes for Sodium-Ion Batteries: Storage Mechanism, Electrochemistry, and Techno-economics. Acc. Chem. Res. 2023, 56, 284–296. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Li, H.; Hasa, I.; Passerini, S. Challenges and Strategies for High-Energy Aqueous Electrolyte Rechargeable Batteries. Angew. Chem. Int. Ed. 2021, 60, 598–616. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.W.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. Symmetric Sodium-Ion Capacitor Based on Na0.44MnO2 Nanorods for Low-Cost and High-Performance Energy Storage. ACS Appl. Mater. Interfaces 2018, 10, 11689–11698. [Google Scholar] [CrossRef]
- Parant, J.P.; Olazcuaga, R.; Devalette, M.; Fouassier, C.; Hagenmuller, P. Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1). J. Solid State Chem. 1971, 3, 1–11. [Google Scholar] [CrossRef]
- Sauvage, F.; Laffont, L.; Tarascon, J.M.; Baudrin, E. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem. 2007, 46, 3289–3294. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan, M.C.; Liu, H.; Gallash, T.; et al. Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries. Nano Energy 2016, 27, 602–610. [Google Scholar] [CrossRef]
- Caballero, A.; Hernán, L.; Morales, J.; Sánchez, L.; Santos Peña, J.; Aranda, M.A.G. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J. Mater. Chem. 2002, 12, 1142–1147. [Google Scholar] [CrossRef]
- Zuo, W.; Yang, Y. Synthesis, Structure, Electrochemical Mechanisms, and Atmospheric Stability of Mn-Based Layered Oxide Cathodes for Sodium Ion Batteries. Acc. Mater. Res. 2022, 3, 709–720. [Google Scholar] [CrossRef]
- Kim, D.J.; Ponraj, R.; Kannan, A.G.; Lee, H.W.; Fathi, R.; Ruffo, R.; Mari, C.M.; Kim, D.K. Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J. Power Sources. 2013, 244, 758–763. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Bruce, P.G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946. [Google Scholar] [CrossRef]
- Fang, Y.; Yu, X.-Y.; Lou, X.W.D. Nanostructured Electrode Materials for Advanced Sodium-Ion Batteries. Matter 2019, 1, 90–114. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, A.; Chen, Z.; Cao, Y. Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: A mini review. Electrochem. Commun. 2021, 122, 106897. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y. Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets. Nano Res. 2009, 2, 54–60. [Google Scholar] [CrossRef]
- Park, Y.; Woo Lee, S.; Kim, K.H.; Min, B.K.; Kumar Nayak, A.; Pradhan, D.; Sohn, Y. Understanding hydrothermal transformation from Mn2O3 particles to Na0.55Mn2O4·1.5H2O nanosheets, nanobelts, and single crystalline ultra-long Na4Mn9O18 nanowires. Sci. Rep. 2015, 5, 18275. [Google Scholar] [CrossRef] [PubMed]
- Hosono, E.; Matsuda, H.; Honma, I.; Fujihara, S.; Ichihara, M.; Zhou, H. Synthesis of single crystalline electro-conductive Na0.44MnO2 nanowires with high aspect ratio for the fast charge–discharge Li ion battery. J. Power Sources 2008, 182, 349–352. [Google Scholar] [CrossRef]
- Cao, Y.L.; Xiao, L.F.; Wang, W.; Choi, D.W.; Nie, Z.M.; Yu, J.G.; Saraf, L.V.; Yang, Z.G.; Liu, J. Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life. Adv. Mater. 2011, 23, 3155–3160. [Google Scholar] [CrossRef]
- Kim, J.; Choi, M.S.; Shin, K.H.; Kota, M.; Kang, Y.; Lee, S.; Lee, J.Y.; Park, H.S. Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture. Adv. Mater. 2019, 31, 1803444. [Google Scholar] [CrossRef]
- Zhao, L.; Ni, J.; Wang, H.; Gao, L. Na0.44MnO2–CNT electrodes for non-aqueous sodium batteries. RSC Adv. 2013, 3, 6650. [Google Scholar] [CrossRef]
- Li, Z.; Young, D.; Xiang, K.; Carter, W.C.; Chiang, Y.M. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 2013, 3, 290–294. [Google Scholar] [CrossRef]
- Gu, F.; Sun, T.; Yao, X.; Shui, M.; Shu, J. Studies on the improved electrochemical performance and the sodium ion migration mechanism of Na0.44MnO2-CNT electrodes for aqueous sodium batteries. J. Phys. Chem. Solids 2021, 149, 109771. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety. Chem 2017, 3, 348–362. [Google Scholar] [CrossRef]
- Yin, F.; Liu, Z.; Yang, S.; Shan, Z.; Zhao, Y.; Feng, Y.; Zhang, C.; Bakenov, Z. Na4Mn9O18/Carbon Nanotube Composite as a High Electrochemical Performance Material for Aqueous Sodium-Ion Batteries. Nanoscale Res. Lett. 2017, 12, 569. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Yao, Z.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Wu, J.; Tu, J. Polypyrrole-Coated Sodium Manganate Hollow Microspheres as a Superior Cathode for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 15630–15637. [Google Scholar] [CrossRef]
- Lu, D.; Yao, Z.J.; Li, Y.Q.; Zhong, Y.; Wang, X.L.; Xie, D.; Xia, X.H.; Gu, C.D.; Tu, J.P. Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries. J. Colloid Interface Sci. 2020, 565, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, J.; Hayakawa, H.; Kijima, N.; Awaka, J.; Funabiki, F. Single-crystal synthesis and structure refinement of Na0.44MnO2. Solid State Phenom. 2011, 170, 198–202. [Google Scholar]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Toby, B. R factors in Rietveld analysis: How good is good enough? Powder Diffr. 2006, 21, 67–70. [Google Scholar] [CrossRef]
- Mohseni-Salehi, M.S.; Taheri-Nassaj, E.; Babaei, A.; Soleimanzade, M. Effect of different precursors on the formation and physical properties of V2AlC MAX phase. J. Alloys Compd. 2022, 918, 165588. [Google Scholar] [CrossRef]
- Hashempour, M.; Vicenzo, A.; Bahdanchyk, M.; Bestetti, M. Parameters influencing the capacitive behavior of carbon composite electrodes: Composition, morphology, electrical conductivity, and surface chemistry. J. Solid State Electrochem. 2018, 22, 3895–3911. [Google Scholar] [CrossRef]
- Bahdanchyk, M.; Hashempour, M.; Vicenzo, A. Evaluation of the operating potential window of electrochemical capacitors. Electrochim. Acta 2020, 332, 135503. [Google Scholar] [CrossRef]
- Boukamp, B.A. A Linear Kronig-Kramers Transform Test for Immittance Data Validation. J. Electrochem. Soc. 1995, 142, 1885–1894. [Google Scholar] [CrossRef]
- Soleimanzade, M. Sodium Manganese Oxide Cathode towards the Development of Aqueous Sodium Ion Storage Devices. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 2021. [Google Scholar]
- Chu, Q.; Wang, X.; Li, Q.; Liu, X. The tunnel manganese oxide Na4.32Mn9O18: A new Na+ site discovered by single-crystal X-ray diffraction. Acta Crystallogr. Sect. C 2011, 67, i10–i12. [Google Scholar] [CrossRef] [PubMed]
- Davies, G. Some aspects of the chemistry of manganese(III) in aqueous solution. Coord. Chem. Rev. 1969, 4, 199–224. [Google Scholar] [CrossRef]
- Liu, L.; Feng, Q.; Yanagisawa, K.; Wang, Y. Characterization of birnessite-type sodium manganese oxides prepared by hydrothermal reaction process. J. Mater. Sci. Lett. 2000, 19, 2047–2050. [Google Scholar] [CrossRef]
- Xia, G.-G.; Tong, W.; Tolentino, E.N.; Duan, N.-G.; Brock, S.L.; Wang, J.-Y.; Suib, S.L.; Ressler, T. Synthesis and characterization of nanofibrous sodium manganese oxide with a 2 × 4 tunnel structure. Chem. Mater. 2001, 13, 1585–1592. [Google Scholar] [CrossRef]
- Lanson, B.; Drits, V.A.; Feng, Q.; Manceau, A. Structure of synthetic Na-birnessite: Evidence for a triclinic one-layer unit cell. Am. Mineral. 2002, 87, 1662–1671. [Google Scholar] [CrossRef]
- Huynh, L.T.; Vu, T.P.; Nguyen, V.H.; Phung Le, M.L.; Tran, V.M. Li-insertion into sol-gel Na0.44MnO2 cathode material for higher structure and electrochemical performance of batteries. Energy Storage 2020, 2, e121. [Google Scholar] [CrossRef]
- Julien, C.; Massot, M.; Rangan, S.; Lemal, M.; Guyomard, D. Study of structural defects in γ-MnO2 by Raman spectroscopy. J. Raman Spectrosc. 2002, 33, 223–228. [Google Scholar] [CrossRef]
- Hardwick, L.J.; Saint, J.A.; Lucas, I.T.; Doeff, M.M.; Kostecki, R. FTIR and Raman Study of the LixTiyMn1−yO2 (y = 0, 0.11) Cathodes in Methylpropyl Pyrrolidinium Bis(fluoro-sulfonyl)imide, LiTFSI Electrolyte. J. Electrochem. Soc. 2009, 156, A120. [Google Scholar] [CrossRef]
- Xing, F.; Bi, Z.; Su, F.; Liu, F.; Wu, Z.-S. Unraveling the Design Principles of Battery-Supercapacitor Hybrid Devices: From Fundamental Mechanisms to Microstructure Engineering and Challenging Perspectives. Adv. Energy Mater. 2022, 12, 2200594. [Google Scholar] [CrossRef]
- Bisquert, J.; Compte, A. Theory of the electrochemical impedance of anomalous diffusion. J. Electroanal. Chem. 2001, 499, 112–120. [Google Scholar] [CrossRef]
- Ho, C.; Raistrick, I.D.; Huggins, R.A. Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films. J. Electrochem. Soc. 1980, 127, 343–350. [Google Scholar] [CrossRef]
- Mohseni-Salehi, M.S.; Taheri-Nassaj, E.; Babaei, A.; Ghazvini, A.S.; Soleimanzade, M. Effect of temperature and atmosphere on V2AlC etching for V2CTx MXenes synthesis used as anode for Li-ion storage systems. J. Energy Storage 2023, 66, 107462. [Google Scholar] [CrossRef]
Test/Sample | Precursor | Time (Day) | Quantitative Analysis (wt%) | |||
---|---|---|---|---|---|---|
Mn3O4 | Birnessite | NMO | C | |||
HT#1 | 1 | 57 | 22 | 21 | - | |
HT#2 | (*) | 1 | 11 | 16 | 73 | - |
HT#3/H-NMO | (*) | 1 | - | 1.5 | 98.5 | - |
-/NMO/CNF | 1 | - | 2.8 | 77.9 | 19.3 |
H-NMO | NMO/CNF | ||||
---|---|---|---|---|---|
Element | Value | Standard error | Value | Standard error | |
RU (Ω) | 3.345 | 0.006 | 1.976 | 0.0053 | |
Rct (Ω) | 5.412 | 0.036 | 0.566 | 0.0167 | |
CPEdl (F) | 0.769 × 10−3 | 6.088 × 10−6 | 1.9 × 10−3 | 8.6 × 10−5 | |
n1 | 0.75 | - | 0.75 | - | |
Rpol (Ω) | 2.246 | 0.040 | 0.1776 | 0.0146 | |
CPEpc (F) | 0.004 | 2.003 × 10−4 | 0.008 | 0.0014 | |
n2 | 0.9 | - | 0.9 | - | |
WR (Ω) | 6.893 | 0.265 | 2.608 | 0.0628 | |
WT (s) | 22.263 | 1.398 | 5.227 | 0.1844 | |
p | 0.372 | 0.0049 | 0.405 | 0.0019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soleimanzade, M.; Radaelli, M.; Manidi, J.; Bahdanchyk, M.; Vicenzo, A. Boosting the Power of Na0.44MnO2: Unlocking Its Potential for Aqueous Sodium-Ion Storage through Nanostructuring and Hybridization. Batteries 2023, 9, 428. https://doi.org/10.3390/batteries9080428
Soleimanzade M, Radaelli M, Manidi J, Bahdanchyk M, Vicenzo A. Boosting the Power of Na0.44MnO2: Unlocking Its Potential for Aqueous Sodium-Ion Storage through Nanostructuring and Hybridization. Batteries. 2023; 9(8):428. https://doi.org/10.3390/batteries9080428
Chicago/Turabian StyleSoleimanzade, Mehdi, Mariano Radaelli, Jacopo Manidi, Maksim Bahdanchyk, and Antonello Vicenzo. 2023. "Boosting the Power of Na0.44MnO2: Unlocking Its Potential for Aqueous Sodium-Ion Storage through Nanostructuring and Hybridization" Batteries 9, no. 8: 428. https://doi.org/10.3390/batteries9080428
APA StyleSoleimanzade, M., Radaelli, M., Manidi, J., Bahdanchyk, M., & Vicenzo, A. (2023). Boosting the Power of Na0.44MnO2: Unlocking Its Potential for Aqueous Sodium-Ion Storage through Nanostructuring and Hybridization. Batteries, 9(8), 428. https://doi.org/10.3390/batteries9080428