Effects of an Inertization System on Waste Plastic Pyrolysis in a Fixed Bed Reactor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Statistical Testing
2.2. Study of Temperature Diagram
3. Materials and Methods
3.1. Experimental Setup
3.2. Experimental Design and Mathematical/Statistical Processing of the Results
- Level 1 (bottom inertization)—nitrogen enters the reactor at the bottom part, and
- Level 2 (top inertization)—nitrogen enters the reactor at the top part (Figure 4).
- F test conducted on the model or analysis of variance (ANOVA) of the hypothetical factorial model of influence using the Fisher’s statistical test (F test),
- Fisher’s LSD tests.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maafa, I.M. Pyrolysis of Polystyrene Waste: A Review. Polymers 2021, 13, 225. [Google Scholar] [CrossRef] [PubMed]
- Sprenkels, K. Plastic Recycling and Valorisation via Dedicated Pyrolysis Approaches. Thesis (Integration Project), University of Groningen, Groningen, The Netherlands, 10 July 2018. Available online: https://fse.studenttheses.ub.rug.nl/id/eprint/17679 (accessed on 27 December 2024).
- Xue, Y.; Johnston, P.; Bai, X. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics. Energy Convers. Manag. 2017, 142, 441–451. [Google Scholar] [CrossRef]
- Fulgencio-Medrano, L.; García-Fernández, S.; Asueta, A.; Lopez-Urionabarrenechea, A.; Perez-Martinez, B.B.; Arandes, J.M. Oil Production by Pyrolysis of Real Plastic Waste. Polymers 2022, 14, 553. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Bhoi, P.R.; Menezes, P.L. Pyrolysis of waste plastics into fuels and chemicals: A review. Rene. Sustain. Energy Rev. 2023, 188, 113799. [Google Scholar] [CrossRef]
- Panda, A.K.; Singh, R.K.; Mishra, D.K. Thermolysis of waste plastics to liquid fuel A suitable method for plastic waste management and manufacture of value added products—A world prospective. Rene. Sustain. Energy Rev. 2010, 14, 233–248. [Google Scholar] [CrossRef]
- Tsuchimoto, I.; Kajikawa, Y. Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis. Sustainability 2022, 14, 16340. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Sebastian, J. Pyrolysis Process to Produce Fuel from Different Types of Plastic—A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 396, 012062. [Google Scholar] [CrossRef]
- Muhammad, C.; Onwudili, J.A.; Williams, P.T. Thermal Degradation of Real-World Waste Plastics and Simulated Mixed Plastics in a Two-Stage Pyrolysis–Catalysis Reactor for Fuel Production. Energy Fuels 2015, 29, 2601–2609. [Google Scholar] [CrossRef]
- Papari, S.; Bamdad, H.; Berruti, F. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Materials 2021, 14, 2586. [Google Scholar] [CrossRef]
- Pandey, U.; Stormyr, J.A.; Hassani, A.; Jaiswal, R.; Haugen, H.H.; Moldestad, B.M.E. Pyrolysis of plastic waste to environmentally friendly products. WIT Trans. Ecol. Environ. 2020, 246, 61–74. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrolysis 2020, 152, 104804. [Google Scholar] [CrossRef]
- Antelava, A.; Damilos, S.; Hafeez, S.; Manos, G.; Al-Salem, S.M.; Sharma, B.K.; Kohli, K.; Constantinou, A. Plastic SolidWaste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management. Environ. Manag. 2019, 64, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Mirkarimi, S.M.R.; Bensaid, S.; Chiaramonti, D. Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review. Appl. Energy 2022, 327, 120040. [Google Scholar] [CrossRef]
- Harussani, M.M.; Sapuan, S.M.; Abdan, K.; Ilyas, R.A.; Hazrol, M.D. Review on green technology pyrolysis for plastic wastes. In Proceedings of the 7th Postgraduate Seminar on Natural Fibre Reinforced Polymer Composites, Selangor, Malaysia, 17 November 2020. At Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia. [Google Scholar]
- Abnisa, F.; Alaba, P.A. Recovery of Liquid Fuel from Fossil-Based Solid Wastes via Pyrolysis Technique: A Review. J. Environ. Chem. Eng. 2021, 9, 106593. [Google Scholar] [CrossRef]
- Czajczyńska, D.; Anguilano, L.; Ghazal, H.; Krzyżyńska, R.; Reynolds, A.J.; Spencer, N.; Jouhara, H. Potential of Pyrolysis Processes in the Waste Management Sector. Therm. Sci. Eng. Prog. 2017, 3, 171–197. [Google Scholar] [CrossRef]
- Almeida, D.; Marques, M.d.F. Thermal and Catalytic Pyrolysis of Plastic Waste. Polímeros 2016, 26, 44–51. [Google Scholar] [CrossRef]
- Beccagutti, B.; Cafiero, L.; Pietrantonio, M.; Pucciarmati, S.; Tuffi, R.; Vecchio Ciprioti, S. Characterization of Some Real Mixed Plastics from WEEE: A Focus on Chlorine and Bromine Determination by Different Analytical Methods. Sustainability 2016, 8, 1107. [Google Scholar] [CrossRef]
- Charitopoulou, M.A.; Stefanidis, S.D.; Lappas, A.A.; Achilias, D.S. Catalytic pyrolysis of polymers with brominated flame-retardants originating in waste electric and electronic equipment (WEEE) using various catalysts. Sustain. Chem. Pharm. 2022, 26, 100612. [Google Scholar] [CrossRef]
- Siddiqui, M.Z.; Park, Y.K.; Kang, Y.; Watanabe, A.; Kim, S.; Kim, Y.M. Effective use of aluminum-plastic laminate as a feedstock for catalytic pyrolysis over micro and mesoporous catalysts. J. Clean. Prod. 2019, 229, 1093–1101. [Google Scholar] [CrossRef]
- Mark, L.O.; Cendejas, M.C.; Hermans, I. The Use of Heterogeneous Catalysis in the Chemical Valorization of Plastic Waste. ChemSusChem 2020, 13, 5808–5836. [Google Scholar] [CrossRef] [PubMed]
- Raveh-Amit, H.; Lemont, F.; Bar-Nes, G.; Klein-BenDavid, O.; Banano, N.; Gelfer, S.; Charvin, P.; Bin Rozaini, T.; Sedan, J.; Rousset, F. Catalytic Pyrolysis of High-Density Polyethylene: Decomposition Efficiency and Kinetics. Catalysts 2022, 12, 140. [Google Scholar] [CrossRef]
- Quadri, M.W.; Dohare, D. A Study to Optimise Plastic to Fuel Technology-A Review. Int. J. Eng. Res. Technol. 2020, 9, 190–222. Available online: https://www.ijert.org/research/a-study-to-optimize-plastic-to-fuel-pyrolysis-a-review-IJERTV9IS040137.pdf (accessed on 8 October 2024).
- Cafiero, L.; Castoldi, E.; Tuffi, R.; Vecchio Ciprioti, S. Identification and characterization of plastics from small appliances and kinetic analysis of their thermally activated pyrolysis. Polym. Degrad. Stab. 2014, 109, 307–318. [Google Scholar] [CrossRef]
- Santella, C.; Cafiero, L.; De Angelis, D.; La Marca, F.; Tuffi, R.; Vecchio Ciprioti, S. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE). Waste Manag. 2016, 54, 143–152. [Google Scholar] [CrossRef]
- Alali, S.A.S.; Aldaihani, M.K.M.B.J.; Alanezi, K.M. Plant Design for the Conversion of Plastic Waste into Valuable Chemicals (Alkyl Aromatics). Appl. Sci. 2023, 13, 9221. [Google Scholar] [CrossRef]
- Gracida-Alvarez, U.R.; Mitchell, M.K.; Sacramento-Rivero, J.C.; Shonnard, D.R. Effect of Temperature and Vapor Residence Time on the Micropyrolysis Products of Waste High Density Polyethylene. Int. Eng. Chem. Res. 2018, 57, 1912–1923. [Google Scholar] [CrossRef]
- Buekens, A. Introduction to Feedstock Recycling of Plastics. In Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels Chichester; Scheirs, J., Kaminsky, W., Eds.; John Wiley & Sons Ltd.: West Sussex, UK, 2006; pp. 4–41. [Google Scholar]
- Sharuddin, S.D.A.; Abnisa, F.; Daud, W.M.A.W.; Arouna, M.K. Pyrolysis of wate plastic for liquid fuel production as prospective energy resource. IOP Conf. Ser. Mater. Sci. Eng. 2018, 334, 012001. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/334/1/012001 (accessed on 27 December 2024). [CrossRef]
- Kaminsky, W.; Zorriqueta, I.J.N. Catalytical and thermal pyrolysis of polyolefins. J. Anal. Appl. Pyrolysis 2007, 79, 368–374. [Google Scholar] [CrossRef]
- Murthy, K.; Shetty, R.J.; Shiva, K. Plastic Waste Conversion to Fuel: A Review on Pyrolysis Process and Influence of Operating Parameters. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 45, 11904–11924. [Google Scholar] [CrossRef]
- Soni, V.; Singh, G.; Vijayan, B.K.; Chopra, A.; Kapur, G.S.; Ramakumar, S.S.V. Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review. Energy Fuels 2021, 35, 12763–12808. [Google Scholar] [CrossRef]
- Esposito, L.; Cafiero, L.; De Angelis, D.; Tuffi, R.; Vecchio Ciprioti, S. Valorization of the plastic residue from a WEEE treatment plant by pyrolysis. Waste Manag. 2020, 112, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cocchi, M.; Angelis, D.D.; Mazzeo, L.; Nardozi, P.; Piemonte, V.; Tuffi, R.; Vecchio Ciprioti, S. Catalytic Pyrolysis of a Residual Plastic Waste Using Zeolites Produced by Coal Fly Ash. Catalysts 2020, 10, 1113. [Google Scholar] [CrossRef]
- Papuga, S.; Djurdjevic, M.; Ciccioli, A.; Vecchio Ciprioti, S. Catalytic Pyrolysis of Plastic Waste and Molecular Symmetry Effects: A Review. Symmetry 2023, 15, 38. [Google Scholar] [CrossRef]
- Hoang, A.T.; Ong, H.C.; Fattah, I.M.R.; Chong, C.T.; Cheng, C.K.; Sakthivel, R.; Yong, S.O. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process. Technol. 2021, 223, 106997. [Google Scholar] [CrossRef]
- Gebre, S.H.; Sendeku, M.G.; Bahri, M. Recent Trends in the Pyrolysis of Non-Degradable Waste Plastics. ChemistryOpen 2021, 10, 1202–1226. [Google Scholar] [CrossRef]
- Fadillah, G.; Fatimah, I.; Sahroni, I.; Musawwa, M.M.; Mahlia, T.M.I.; Muraza, O. Recent Progress in Low-Cost Catalysts for Pyrolysis of Plastic Waste to Fuels. Catalysts 2021, 11, 837. [Google Scholar] [CrossRef]
- Dewangga, P.B.; Rochmadi; Purnomo, C.W. Pyrolysis of polystyrene plastic waste using bentonite catalyst. IOP Conf. Ser. Earth Environ. Sci. 2019, 399, 012110. Available online: https://iopscience.iop.org/article/10.1088/1755-1315/399/1/012110 (accessed on 27 December 2024). [CrossRef]
- Papuga, S.; Savković, J.; Djurdjevic, M.; Vecchio Ciprioti, S. Effect of Feed Mass, Reactor Temperature, and Time on the Yield of Waste Polypropylene Pyrolysis Oil Produced via a Fixed-Bed Reactor. Polymers 2024, 16, 1302. [Google Scholar] [CrossRef]
- Djurdjevic, M.; Papuga, S.; Kolundzija, A. Analysis of the thermal behavior of a fixed bed reactor during the pyrolysis process. Hem. Ind. 2024, 78, 29–40. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 2017, 73, 346–368. [Google Scholar] [CrossRef]
- Al-Salem, S.M. Thermal pyrolysis of high density polyethylene (HDPE) in a novel fixed bed reactor system for the production of high value gasoline range hydrocarbons (HC). Process Saf. Environ. Prot. 2019, 127, 171–179. [Google Scholar] [CrossRef]
- Papuga, S.; Gvero, P.; Vukic, L. Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor. Therm. Sci. 2016, 20, 731–741. [Google Scholar] [CrossRef]
- Li, H.; Masek, O.; Harper, A.; Ocone, R. Kinetic study of pyrolysis of high-density polyethylene (HDPE) waste at different bed thickness in the fixed bed reactor. Can. J. Chem. Eng. 2021, 99, 1733–1744. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. J. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, R.K. Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Braz. J. Chem. Eng. 2011, 28, 659–667. [Google Scholar] [CrossRef]
- Butler, E.; Devlin, G.; McDonnell, K. Waste Polyolefins to Liquid Fuels via Pyrolysis: Review of Commercial State-of-the-Art and Recent Laboratory Research. Waste Biomass Valor. 2011, 2, 227–255. [Google Scholar] [CrossRef]
- Royuela, D.; Martínez, J.D.; Callén, M.S.; López, J.M.; García, T.; Murillo, R.; Veses, A. Pyrolysis of polystyrene using low-cost natural catalysts: Production and characterization of styrene-rich pyro-oils. J. Anal. Appl. Pyrolysis 2024, 182, 106690. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, S.; Zhou, Y.; Xie, X.; Deng, J. Study on the regeneration characteristics of Fe-Ni-Ca/Al2O3 catalyst in the reforming process of biomass pyrolysis volatiles. J. Anal. Appl. Pyrolysis 2023, 173, 106041. [Google Scholar] [CrossRef]
- Nguyen, L.T.T.; Poinern, G.E.J.; Le, H.T.; Nguyen, T.A.; Tran, C.M.; Jiang, Z. A LaFeO3 supported natural-clay-mineral catalyst for efficient pyrolysis of polypropylene plastic material. Asia-Pac. J. Chem. Eng. 2021, 16, 2695. [Google Scholar] [CrossRef]
- Zheng, Y.; Tao, L.; Yang, X.; Huang, Y.; Liu, C.; Zheng, Z. Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS. J. Anal. Appl. Pyrolysis 2018, 133, 185–197. [Google Scholar] [CrossRef]
- Brems, A.; Baeyens, J.; Beerlandt, J.; Dewil, R. Thermogravimetric pyrolysis of waste polyethylene-terephthalate and polystyrene: A critical assessment of kinetics modelling. Resour. Conserv. Recycl. 2011, 55, 772–781. [Google Scholar] [CrossRef]
- Sharuddin, S.D.A.; Abnisa, F.; Daud, W.M.A.; Aroun, M.K.A. Review on pyrolysis of waste plastics. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Al-Salem, S.M. Feedstock and Optimal Operation for Plastics to Fuel Conversion. In Plastics to Energy: Fuel, Chemicals, and Sustainability; Salem, A., Ed.; William Andrew Publishing: Norwich, New York, USA, 2019; pp. 117–146. [Google Scholar] [CrossRef]
- Mumbach, G.D.; Alves, J.L.F.; Da Silva, J.C.G.; De Sena, R.F.; Marangoni, C.; Machado, R.A.F.; Bolzan, A. Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: Determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean energy recovery. Energy Convers. Manag. 2019, 200, 112031. [Google Scholar] [CrossRef]
- Sharuddin, S.D.A.; Abnisa, F.; Daud, W.M.A.; Aroun, M.K.A. Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Convers. Manag. 2017, 148, 925–934. [Google Scholar] [CrossRef]
- Ratnasari, D.K.; Nahil, M.A.; Williams, P.T. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. J. Anal. Appl. Pyrolysis 2017, 124, 631–637. [Google Scholar] [CrossRef]
- Abdy, C.; Zhang, Y.; Wang, J.; Cheng, Y.; Artamendi, I.; Allen, B. Investigation of high-density polyethylene pyrolyzed wax for asphalt binder modification: Mechanism, thermal properties, and ageing performance. J. Clean. Prod. 2023, 405, 136960. [Google Scholar] [CrossRef]
- Abbas-Abadi, M.S.; Haghighi, M.N.; Yeganeh, H.; McDonald, A.G. Evaluation of pyrolysis process parameters on polypropylene degradation products. J. Anal. Appl. Pyrolysis 2014, 109, 272–277. [Google Scholar] [CrossRef]
- Kusenberg, M.; Eschenbacher, A.; Djokic, M.R.; Zayoud, A.; Ragaert, K.; De Meester, S.; Van Geem, K.M. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate? Waste Manag. 2022, 138, 83–115. [Google Scholar] [CrossRef]
- Tripodi, A.; Prada, I.; Tommasi, M.; Rossetti, I. Gasification of mixed plastic-biomass pellets in an updraft fixed bed reactor: A simplified dynamic model. Biomass Bioenergy 2024, 190, 107390. [Google Scholar] [CrossRef]
- Vellaiyan, S. Optimization of pyrolysis process parameters for a higher yield of plastic oil with enhanced physicochemical properties derived from medical plastic wastes. Sustain. Chem. Pharm. 2023, 36, 101310. [Google Scholar] [CrossRef]
- Kiran, N.; Ekinci, E.; Snape, C.E. Resources, Recyling of plastic wastes via pyrolysis. Conserv. Recycl. 2000, 29, 273–283. [Google Scholar] [CrossRef]
- Artetxe, M.; Lopez, G.; Elordi, G.; Amutio, M.; Bilbao, J.; Olazar, M. Production of Light Olefins from Polyethylene in a Two-Step Process: Pyrolysis in a Conical Spouted Bed and Downstream High-Temperature Thermal Cracking. Ind. Eng. Chem. Res. 2012, 51, 13915–13923. [Google Scholar] [CrossRef]
- Mastral, J.F.; Berrueco, C.; Ceamanos, J. Modelling of the pyrolysis of high density polyethylene. J. Anal. Appl. Pyrolysis 2007, 79, 313–322. [Google Scholar] [CrossRef]
- Swamardika, I.B.A.; Winaya, I.N.S.; Hartati, R.S. Utilization plastic waste using pyrolysis fixed bed. IOP Conf. Ser. Mater. Sci. Eng. 2019, 539, 012021. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/539/1/012021/meta (accessed on 27 December 2024). [CrossRef]
- Yan, G.; Jing, X.; Wen, H.; Xiang, S. Thermal cracking of virgin and waste plastics of PP and LDPE in a semibatch reactor under atmospheric pressure. Energy Fuels 2015, 29, 2289–2298. [Google Scholar] [CrossRef]
- Adrados, A.; De Marco, I.; Caballero, B.M.; López, A.; Laresgoiti, M.F.; Torres, A. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. J. Waste Manag. 2012, 32, 826–832. [Google Scholar] [CrossRef]
- Demirbas, A. Pyrolysis of municipal plastic waste for recovery of gasoline-range hydrocarbons. J. Anal. Appl. Pyrolysis 2004, 72, 97–102. [Google Scholar] [CrossRef]
- Ofoma, I. Catalytic Pyrolysis of Polyolefins. Master’s Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2006. Available online: https://smartech.gatech.edu/bitstream/handle/1853/10439/Ofoma_Ifedinma_200605_mast.pdf (accessed on 8 October 2024).
- Lee, H.W.; Park, Y.-K. Catalytic Pyrolysis of Polyethylene and Polypropylene over Desilicated Beta and Al-MSU-F. Catalysts 2018, 8, 501. [Google Scholar] [CrossRef]
- Tekin, K.; Akalın, M.K.; Kadı, Ç.; Karagöz, S. Catalytic degradation of waste polypropylene by pyrolysis. J. Energy Inst. 2012, 85, 150–155. [Google Scholar] [CrossRef]
- Kremer, I.; Tomić, T.; Katančić, Z.; Erceg, M.; Papuga, S.; Parlov Vuković, J.; Schneider, D.R. Catalytic pyrolysis and kinetic study of real-world waste plastics: Multi-layered and mixed resin types of plastics. Clean Technol. Environ. Policy 2022, 24, 677–693. [Google Scholar] [CrossRef]
- Kremer, I.; Tomić, T.; Katančić, Z.; Erceg, M.; Papuga, S.; Parlov Vuković, J. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor. J. Environ. Manag. 2021, 265, 113145. [Google Scholar] [CrossRef] [PubMed]
- Papuga, S.; Djurdjevic, M.; Tomović, G.; Vecchio Ciprioti, S. Pyrolysis of Tyre Waste in a Fixed-Bed Reactor. Symmetry 2023, 15, 2146. [Google Scholar] [CrossRef]
- Herzog, M.H.; Francis, G.; Clarke, A. Experimental Design: Model Fits, Power, and Complex Designs. In Understanding Statistics and Experimental Design. Learning Materials in Biosciences; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Anderson, M.J.; Whitcomb, P.J. Employing Power to ‘Right-Size’ Design of Experiments. ITEA J. 2014, 35, 40–44. Available online: https://cdn.statease.com/media/public/documents/employing-power-and-precision-to-right-size-DOE.pdf (accessed on 27 December 2024).
- Ledolter, J.; Kardon, R.H. Focus on Data: Statistical Design of Experiments and Sample Size Selection Using Power Analysis. Investig. Ophthalmol. Vis. Sci. 2020, 61, 11. [Google Scholar] [CrossRef]
Factor A Inertization Mode | Response R1 Oil Yield (%) | Response R2 Gas Yield (%) | Response R3 Solid Yield (%) |
---|---|---|---|
Bottom inertization | 52.11 | 45.86 | 2.03 |
Bottom inertization | 51.55 | 46.52 | 1.93 |
Bottom inertization | 51.27 | 46.74 | 1.99 |
Arithmetic mean | 51.64 | 46.37 | 1.98 |
Standard error | 0.3594 | 0.3962 | 0.0447 |
Top inertization | 52.45 | 45.52 | 2.03 |
Top inertization | 53.58 | 44.33 | 2.09 |
Top inertization | 53.92 | 43.86 | 2.22 |
Arithmetic mean | 53.32 | 44.57 | 2.11 |
Standard error | 0.3594 | 0.3962 | 0.0447 |
Factor A | Response R1 | Response R2 | Response R3 |
---|---|---|---|
Sum of squares | 4.20 | 4.88 | 0.0253 |
Pure error | 1.55 | 1.88 | 0.0239 |
Corrected total sum of squares | 5.75 | 6.76 | 0.0493 |
Model F-Value | 10.84 | 10.36 | 4.24 |
p-value | 0.0302 | 0.0323 | 0.1087 |
Significant | significant | not significant |
Responses | Units | Diff. to Detect 1 Delta (“Signal”) | Est. Std. Dev. 2 Sigma (“Noise”) | Delta/Sigma 3 (Signal/Noise Ratio) | Power 4 for Factor A |
---|---|---|---|---|---|
Oil yield (R1) | % | 1.5 | 0.48 | 3.13 | 81.3% |
Gas yield (R2) | % | 1.5 | 0.46 | 3.26 | 84.2% |
Solid yield (R3) | % | 0.5 | 0.12 | 4.17 | 96.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papuga, S.; Vecchio Ciprioti, S.; Djurdjevic, M.; Kolundzija, A. Effects of an Inertization System on Waste Plastic Pyrolysis in a Fixed Bed Reactor. Recycling 2025, 10, 2. https://doi.org/10.3390/recycling10010002
Papuga S, Vecchio Ciprioti S, Djurdjevic M, Kolundzija A. Effects of an Inertization System on Waste Plastic Pyrolysis in a Fixed Bed Reactor. Recycling. 2025; 10(1):2. https://doi.org/10.3390/recycling10010002
Chicago/Turabian StylePapuga, Saša, Stefano Vecchio Ciprioti, Milica Djurdjevic, and Aleksandra Kolundzija. 2025. "Effects of an Inertization System on Waste Plastic Pyrolysis in a Fixed Bed Reactor" Recycling 10, no. 1: 2. https://doi.org/10.3390/recycling10010002
APA StylePapuga, S., Vecchio Ciprioti, S., Djurdjevic, M., & Kolundzija, A. (2025). Effects of an Inertization System on Waste Plastic Pyrolysis in a Fixed Bed Reactor. Recycling, 10(1), 2. https://doi.org/10.3390/recycling10010002