Low-Transition Temperature Mixtures (LTTMs) Made of Bioorganic Molecules: Enhanced Extraction of Antioxidant Phenolics from Industrial Cereal Solid Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. LTTM Synthesis
2.3. Industrial Cereal Solid Wastes (ICSW)
2.4. Extraction Procedure and Sample Preparation
2.5. Determinations
2.6. Statistics
3. Results and Discussion
3.1. LTTM Synthesis
3.2. Extraction Efficiency of the LTTMs
3.3. Antioxidant Activity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
AAR | antiradical activity (μmol·DPPH·g−1) |
PR | reducing power (μmol·AAE·g−1) |
RL/S | liquid-to-solid ratio (mL·g−1) |
YTFn | yield in total flavanols (mg·CtE·g−1) |
YTFn | yield in total flavonoids (mg·RtE·g−1) |
YTP | yield in total polyphenols (mg·CAE·g−1) |
Abbreviations
AAE | ascorbic acid equivalents |
AL | l-alanine |
CAE | caffeic acid equivalents |
CC | choline chloride |
CtE | catechin equivalents |
DMACA | p-dimethylaminocinnamaldehyde |
DPPH• | 2,2-diphenyl-picrylhydrazyl radical |
dw | dry weight |
GA | l-glutamic acid |
GL | glycine |
HBA | hydrogen bond acceptor |
HBD | hydrogen bond donor |
LA | l-lactic acid |
LTTM | low-transition temperature mixture |
RtE | rutin (quercetin 3-O-rutinoside) equivalents |
TPTZ | 2,4,6-tripyridyl-s-triazine |
References
- Patel, S. Cereal bran: The next super food with significant antioxidant and anticancer potential. Mediterr. J. Nutr. Metab. 2012, 5, 91–104. [Google Scholar] [CrossRef]
- Stevenson, L.; Phillips, F.; O’sullivan, K.; Walton, J. Wheat bran: Its composition and benefits to health, a European perspective. Int. J. Food Sci. Nutr. 2012, 63, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- ElMekawy, A.; Diels, L.; de Wever, H.; Pant, D. Valorization of cereal based biorefinery byproducts: Reality and expectations. Environ. Sci. Technol. 2013, 47, 9014–9027. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.R.; El-Said, A.M.; Khalifa, S.A.; Göransson, U.; Bohlin, L.; Borg-Karlson, A.-K.; Verpoorte, R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem. 2012, 60, 10877–10895. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Bergez-Lacoste, M.; Thiebaud-Roux, S.; de Caro, P.; Fabre, J.F.; Gerbaud, V.; Mouloungui, Z. From chemical platform molecules to new biosolvents: Design engineering as a substitution methodology. Biofuels Bioprod. Biorefin. 2014, 8, 438–451. [Google Scholar] [CrossRef]
- Espino, M.; de los Ángeles Fernández, M.; Gomez, F.J.; Silva, M.F. Natural designer solvents for greening analytical chemistry. TrAC Trends Anal. Chem. 2016, 76, 126–136. [Google Scholar] [CrossRef]
- Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angew. Chem. Int. Ed. 2013, 52, 3074–3085. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents–solvents for the 21st century. Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Manousaki, A.; Jancheva, M.; Grigorakis, S.; Makris, D.P. Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: A comparison with conventional eco-friendly solvents. Recycling 2016, 1, 194–204. [Google Scholar] [CrossRef]
- Mouratoglou, E.; Malliou, V.; Makris, D.P. Novel glycerol-based natural eutectic mixtures and their efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste Biomass Valoriz. 2016, 7, 1377–1387. [Google Scholar] [CrossRef]
- Bakirtzi, C.; Triantafyllidou, K.; Makris, D.P. Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. [Google Scholar] [CrossRef]
- Makris, D.P. Kinetics of ultrasound-assisted flavonoid extraction from agri-food solid wastes using water/glycerol mixtures. Resources 2016, 5, 7. [Google Scholar] [CrossRef]
- Michail, A.; Sigala, P.; Grigorakis, S.; Makris, D.P. Kinetics of ultrasound-assisted polyphenol extraction from spent filter coffee using aqueous glycerol. Chem. Eng. Comm. 2016, 203, 407–413. [Google Scholar] [CrossRef]
- Karagiorgou, I.; Grigorakis, S.; Lalas, S.; Makris, D.P. Polyphenolic burden and in vitro antioxidant properties of Moringa oleifera root extracts. J. HerbMed Pharmacol. 2016, 5, 33–38. [Google Scholar]
- Paleologou, I.; Vasiliou, A.; Grigorakis, S.; Makris, D.P. Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Convers. Biorefin. 2016, 6, 289–299. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013, 31, 877–902. [Google Scholar] [CrossRef] [PubMed]
- Blidi, S.; Bikaki, M.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. A comparative evaluation of bio-solvents for the efficient extraction of polyphenolic phytochemicals: Apple waste peels as a case study. Waste Biomass Valoriz. 2015, 6, 1125–1133. [Google Scholar] [CrossRef]
- Shehata, E.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Extraction optimisation using water/glycerol for the efficient recovery of polyphenolic antioxidants from two Artemisia species. Sep. Purif. Technol. 2015, 149, 462–469. [Google Scholar] [CrossRef]
- Bi, W.; Tian, M.; Row, K.H. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J. Chromatogr. A 2013, 1285, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Ivanišová, E.; Ondrejovič, M.; Šilhár, S. Antioxidant activity of milling fractions of selected cereals. Nova Biotechnol. Chim. 2012, 11, 45–56. [Google Scholar] [CrossRef]
- Boz, H. Ferulic Acid in Cereals—A Review. Czech J. Food Sci. 2015, 33, 1–7. [Google Scholar] [CrossRef]
- Buranov, A.U.; Mazza, G. Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem. 2009, 115, 1542–1548. [Google Scholar] [CrossRef]
- Irakli, M.N.; Samanidou, V.F.; Biliaderis, C.G.; Papadoyannis, I.N. Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chem. 2012, 134, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Ragaee, S.; Seetharaman, K.; Abdel-Aal, E.-S.M. The impact of milling and thermal processing on phenolic compounds in cereal grains. Crit. Rev. Food Sci. Nutr. 2014, 54, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Arranz, S.; Calixto, F.S. Analysis of polyphenols in cereals may be improved performing acidic hydrolysis: A study in wheat flour and wheat bran and cereals of the diet. J. Cereal Sci. 2010, 51, 313–318. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Casazza, A.A.; Strelec, I.; Paini, M.; Planinić, M.; Perego, P. Influence of high-pressure/high-temperature extraction on the recovery of phenolic compounds from barley grains. J. Food Biochem. 2015, 39, 696–707. [Google Scholar] [CrossRef]
- Emmons, C.L.; Peterson, D.M. Antioxidant activity and phenolic contents of oat groats and hulls. Cereal Chem. 1999, 76, 902–906. [Google Scholar] [CrossRef]
- Hitayezu, R.; Baakdah, M.M.; Kinnin, J.; Henderson, K.; Tsopmo, A. Antioxidant activity, avenanthramide and phenolic acid contents of oat milling fractions. J. Cereal Sci. 2015, 63, 35–40. [Google Scholar] [CrossRef]
- Guitard, R.; Nardello-Rataj, V.; Aubry, J.-M. Theoretical and kinetic tools for selecting effective antioxidants: application to the protection of omega-3 oils with natural and synthetic phenols. Int. J. Mol. Sci. 2016, 17, 1220. [Google Scholar] [CrossRef] [PubMed]
- Aoun, M.; Makris, D. Binary mixtures of natural polyphenolic antioxidants with ascorbic acid: Impact of interactions on the antiradical activity. Int. Food Res. J. 2012, 19, 603–606. [Google Scholar]
- Aoun, M.; Makris, D.P. Use of response surface methodology to evaluate the reducing power in binary solutions of ascorbic acid with natural polyphenolic antioxidants. Int. J. Food Stud. 2013, 2, 238–251. [Google Scholar] [CrossRef]
- Samra, M.A.; Chedea, V.S.; Economou, A.; Calokerinos, A.; Kefalas, P. Antioxidant/prooxidant properties of model phenolic compounds: Part I. Studies on equimolar mixtures by chemiluminescence and cyclic voltammetry. Food Chem. 2011, 125, 622–629. [Google Scholar] [CrossRef]
Code | HBA | Ratio HBD:HBA | Conditions (T, t) | Remarks |
---|---|---|---|---|
LA-GA1 | l-Glutamic acid | 1:1 | 80–90 °C, 60 min | No interaction |
LA-GA3 | 3:1 | 80–90 °C, 60 min | No interaction | |
LA-GA5 | 5:1 | 80–90 °C, 60 min | No interaction | |
LA-GA7 | 7:1 | 80–90 °C, 60 min | No interaction | |
LA-GA9 | 9:1 | 80–90 °C, 60 min | No interaction | |
LA-AL1 | l-Alanine | 1:1 | 80–90 °C, 60 min | No interaction |
LA-AL3 | 3:1 | 80–90 °C, 60 min | No interaction | |
LA-AL5 | 5:1 | 80–90 °C, 60 min | Highly viscous brown liquid | |
LA-AL7 | 7:1 | 80–90 °C, 40 min | Colorless liquid | |
LA-AL9 | 9:1 | 80–90 °C, 40 min | Colorless liquid | |
LA-AL11 | 11:1 | 80–90 °C, 40 min | Colorless liquid | |
LA-GL5 | Glycine | 5:1 | 80–90 °C, 40 min | Colorless liquid |
LA-GL7 | 7:1 | 80–90 °C, 40 min | Colorless liquid | |
LA-GL9 | 9:1 | 80–90 °C, 40 min | Colorless liquid | |
LA-CC1 | Choline chloride | 1:1 | 80–90 °C, 30 min | Colorless liquid |
LA-CC3 | 3:1 | 80–90 °C, 30 min | Colorless liquid | |
LA-CC5 | 5:1 | 80–90 °C, 30 min | Colorless liquid |
Code | ICSW | Certified Raw Material | Origin |
---|---|---|---|
WS | Soft wheat bran | Triticum aestivum | Pafilis Mills, Corinth, Greece |
WH | Hard wheat bran | Triticum durum | Pafilis Mills, Corinth, Greece |
OT | Oat bran | Avena sativa | Strobl Naturmühle Mills, Linz-Ebelsberg, Austria |
RY | Rye bran | Secale cereale | Strobl Naturmühle Mills, Linz-Ebelsberg, Austria |
BL | Barley bran | Hordeum vulgare L. | Strobl Naturmühle Mills, Linz-Ebelsberg, Austria |
CN | Corn bran | Zea mays | Karanikas Mills, Alexandria, Greece |
LTTM | ICSW | |||||
---|---|---|---|---|---|---|
WS | WH | OT | RY | BL | CN | |
LA-GL5 | 4.15 ± 0.04 | 3.86 ± 0.35 | 2.45 ± 0.12 | 1.93 ± 0.19 | 3.52 ± 0.07 | 1.76 ± 0.05 |
LA-GL7 | 4.45 ± 0.03 | 4.81 ± 0.43 α | 2.42 ± 0.14 | 2.84 ± 0.28 | 4.97 ± 0.10 α | 2.24 ± 0.07 |
LA-GL9 | 4.17 ± 0.04 | 4.46 ± 0.40 α | 2.36 ± 0.12 | 2.15 ± 0.21 | 3.80 ± 0.08 | 1.94 ± 0.06 |
LA-AL7 | 4.11 ± 0.08 | 3.79 ± 0.08 | 2.55 ± 0.23 | 2.26 ± 0.07 | 3.65 ± 0.15 | 1.77 ± 0.09 |
LA-AL9 | 4.41 ± 0.09 | 4.82 ± 0.10 α | 2.51 ± 0.23 | 2.15 ± 0.06 | 4.40 ± 0.18 α | 1.83 ± 0.09 |
LA-AL11 | 4.40 ± 0.09 | 3.94 ± 0.08 | 2.46 ± 0.22 | 2.27 ± 0.07 | 3.85 ± 0.15 | 1.75 ± 0.09 |
LA-CC1 | 4.89 ± 0.34 α | 3.11 ± 0.16 | 2.87 ± 0.29 | 2.16 ± 0.19 | 1.44 ± 0.13 α | 2.75 ± 0.28 |
LA-CC3 | 5.90 ± 0.41 α | 4.12 ± 0.21 | 3.76 ± 0.30 α | 3.82 ± 0.34 α | 3.23 ± 0.29 | 7.33 ± 0.73 α |
LA-CC5 | 4.29 ± 0.30 | 2.39 ± 0.12 α | 3.81 ± 0.31 α | 4.82 ± 0.43 α | 3.34 ± 0.30 | 2.63 ± 0.26 |
AE | 3.05 ± 0.18 α | 2.82 ± 0.20 α | 1.28 ± 0.13 α | 1.84 ± 0.11 α | 2.95 ± 0.06 | 1.70 ± 0.12 |
W | 2.55 ± 0.15 α | 2.47 ± 0.17 α | 0.37 ± 0.03 α | 1.54 ± 0.09 α | 0.84 ± 0.08 α | 0.86 ± 0.06 α |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kottaras, P.; Koulianos, M.; Makris, D.P. Low-Transition Temperature Mixtures (LTTMs) Made of Bioorganic Molecules: Enhanced Extraction of Antioxidant Phenolics from Industrial Cereal Solid Wastes. Recycling 2017, 2, 3. https://doi.org/10.3390/recycling2010003
Kottaras P, Koulianos M, Makris DP. Low-Transition Temperature Mixtures (LTTMs) Made of Bioorganic Molecules: Enhanced Extraction of Antioxidant Phenolics from Industrial Cereal Solid Wastes. Recycling. 2017; 2(1):3. https://doi.org/10.3390/recycling2010003
Chicago/Turabian StyleKottaras, Panagiotis, Michael Koulianos, and Dimitris P. Makris. 2017. "Low-Transition Temperature Mixtures (LTTMs) Made of Bioorganic Molecules: Enhanced Extraction of Antioxidant Phenolics from Industrial Cereal Solid Wastes" Recycling 2, no. 1: 3. https://doi.org/10.3390/recycling2010003
APA StyleKottaras, P., Koulianos, M., & Makris, D. P. (2017). Low-Transition Temperature Mixtures (LTTMs) Made of Bioorganic Molecules: Enhanced Extraction of Antioxidant Phenolics from Industrial Cereal Solid Wastes. Recycling, 2(1), 3. https://doi.org/10.3390/recycling2010003