Liberation and Separation of Valuable Components from LED Modules: Presentation of Two Innovative Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manual Disassembly and Sorting
2.2. Characterisation of LED Packages, Chips and Encapsulation
2.3. Approaches for Liberation and Concentration of Valuable Components from LED Modules
3. Results and Discussion
3.1. Disassembly and Sorting Process
3.2. Characterisation of LED Packages, Chips and Encapsulation
3.3. Approaches for Liberation and Concentration of Valuable Components from LED Modules
3.3.1. Chemical Treatment
3.3.2. Thermal Treatment
3.3.3. Comparative Experiments
3.4. Estimates for Resource Recovery from LED Lamps in the European Union from 2022 and 2030
- The annual number of LED lamps sold in the EU is 968 million [2];
- The average number of LED packages per LED lamp is 21.4, and the average mass of LED chips and encapsulation per LED package is 3.7 mg (see Table 2);
- The average mass percent of a component X (X = Ga, In, Pd, Ag, Au, Sr, Y, Ce, Eu, Gd and Lu) in the concentrate is given in Table 2;
- The construction and the chemical composition of LED lamps will not change during this time period;
- The content of Y in tailings from alluvial tin mines in Malaysia is about 0.56 wt%, and the content of YO in xenotome is 60 wt% [29];
- The content of Ga in bauxite and zinc ores is about 100 ppm [30].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EF | enrichment factor |
EHF | electrohydraulic fragmentation |
EoL | end-of-life |
EU | European Union |
ICP-MS | inductively coupled plasma mass spectrometry |
LED | light emitting diode |
MLA | mineral liberation analysis |
References
- Bessho, M.; Shimizu, K. Latest trends in LED lighting. Electron. Commun. Jpn. 2012, 95, 1–7. [Google Scholar] [CrossRef]
- Nikulski, J.S.; Ritthoff, M.; von Gries, N. The potential and limitations of critical raw material recycling: The case of LED lamps. Resources 2021, 10, 37. [Google Scholar] [CrossRef]
- Held, G. Introduction to Light Emitting Diode Technology and Applications; Auerbach Publications: Boca Ration, FL, USA, 2009. [Google Scholar]
- Kumar, A.; Kuppusamy, V.K.; Holuszko, M.; Song, S.; Loschiavo, A. LED lamps waste in Canada: Generation and characterization. Resour. Conserv. Recycl. 2019, 146, 329–336. [Google Scholar] [CrossRef]
- Cenci, M.P.; Dal Berto, F.C.; Schneider, E.L.; Veit, H.M. Assessment of LED lamps components and materials for a recycling perspective. Waste Manag. 2020, 107, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Buchert, M.; Manhart, A.; Bleher, D.; Pingel, D. Recycling Critical Raw Materials from Waste Electronic Equipment; Oeko-Institut e.V.: Darmstadt, Germany, 2012; pp. 1–80. [Google Scholar]
- Mizanur Rahman, S.M.; Kim, J.; Lerondel, G.; Bouzidi, Y.; Nomenyo, K.; Clerget, L. Missing research focus in end-of-life management of light-emitting diode (LED) lamps. Resour. Conserv. Recycl. 2017, 127, 256–258. [Google Scholar] [CrossRef]
- Reuter, M.A.; van Schaik, A. Product-centric simulation-based design for recycling: Case of LED lamp recycling. J. Sustain. Metall. 2015, 1, 4–28. [Google Scholar] [CrossRef] [Green Version]
- LED Professional. LED Lamps Recycling for a Circular Economy. 2016. Available online: https://www.led-professional.com/resources-1/articles/led-lamps-recycling-technology-for-a-circular-economy (accessed on 14 September 2021).
- Kumar, A.; Kuppusamy, V.K.; Holuszko, M. Selective metal liberation in waste LED lamps using high voltage pulse fragmentation. In Proceedings of the International Mineral Processing Conference (IMPC 2018), Moscow, Russia, 17–21 September 2018; pp. 3231–3240. [Google Scholar]
- Mizanur Rahman, S.M.; Kim, J.; Lerondel, G.; Bouzidi, Y.; Clerget, L. Value retention options in circular economy: Issues and challenges of LED lamp preprocessing. Sustainability 2019, 11, 4723. [Google Scholar] [CrossRef] [Green Version]
- Martins, T.R.; Tanabe, E.H.; Bertuol, D.A. Innovative method for the recycling of end-of-life LED bulbs by mechanical processing. Resour. Conserv. Recycl. 2020, 161, 104875. [Google Scholar] [CrossRef]
- Chen, W.-S.; Hsu, L.-L.; Wang, L.-P. Recycling the GaN waste from LED industry by pressurized leaching method. Metals 2018, 8, 861. [Google Scholar] [CrossRef] [Green Version]
- Maarefvand, M.; Sheibani, S.; Rashchi, F. Recovery of gallium from waste LEDs by oxidation and subsequent leaching. Hydrometallurgy 2020, 191, 105230. [Google Scholar] [CrossRef]
- Nagy, S.; Bokányi, L.; Gombkötő, I.; Magyar, T. Recycling of gallium from end-of-life light emitting diodes. Arch. Metall. Mater. 2017, 62, 1161–1166. [Google Scholar] [CrossRef] [Green Version]
- Swain, B.; Mishra, C.; Kang, L.; Park, K.-S.; Lee, C.G.; Hong, H.S. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching. Environ. Res. 2015, 138, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Swain, B.; Mishra, C.; Kang, L.; Park, K.-S.; Lee, C.G.; Hong, H.S.; Park, J.-J. Recycling of metal-organic chemical vapor deposition waste of GaN based power device and LED industry by acidic leaching: Process optimization and kinetics study. J. Power Sources 2015, 281, 265–271. [Google Scholar] [CrossRef]
- Zhan, L.; Xia, F.; Ye, Q.; Xiang, X.; Xie, B. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes. J. Hazard. Mater. 2015, 299, 388–394. [Google Scholar] [CrossRef]
- Zhan, L.; Wang, Z.; Zhang, Y.; Xu, Z. Recycling of metals (Ga, In, As and Ag) from waste light-emitting diodes in sub/supercritical ethanol. Resour. Conserv. Recycl. 2020, 155, 104695. [Google Scholar] [CrossRef]
- Murakami, H.; Nishihama, S.; Yoshizuka, K. Separation and recovery of gold from waste LED using ion exchange method. Hydrometallurgy 2015, 157, 194–198. [Google Scholar] [CrossRef]
- Ruiz-Mercado, G.J.; Gonzalez, M.A.; Smith, R.L.; Meyer, D.E. A conceptual chemical process for the recycling of Ce, Eu, and Y from LED flat panel displays. Resour. Conserv. Recycl. 2017, 126, 42–49. [Google Scholar] [CrossRef]
- Alim, M.A.; Abdullah, M.Z.; Aziz, M.S.A.; Kamarudin, R. Die attachment, wire bonding, and encapsulation process in LED packaging: A review. Sens. Actuators A Phys. 2021, 329, 112817. [Google Scholar]
- Gao, T.; Tian, J.; Liu, Y.; Liu, R.; Zhuang, W. Garnet phosphors for white-light-emitting diodes: Modification and calculation. Dalton Trans. 2021, 50, 3769–3781. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Xin, S.; Wang, Q.; Li, Y.; Wu, Q.; Wang, C.; Wang, X.; Ding, X.; Geng, W. Recent development in rare earth doped phosphors for white light emitting diodes. J. Rare Earths 2015, 33, 1–12. [Google Scholar] [CrossRef]
- Pellis, A.; Byrne, F.P.; Sherwood, J.; Vastano, M.; Comerford, J.W.; Farmer, T.J. Safer bio-based solvents to replace toluene and tetrahydrofuran for the biocatalyzed synthesis of polyesters. Green Chem. 2019, 21, 1686–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, F.P.; Forier, B.; Bossaert, G.; Hoebers, C.; Farmer, T.J.; Hunt, A.J. A methodical selection process for the development of ketones and esters as bio-based replacements for traditional hydrocarbon solvents. Green Chem. 2018, 20, 4003–4011. [Google Scholar] [CrossRef] [Green Version]
- Emsley. Nature’s Building Blocks: An A-Z Guide to the Elements; Oxford University Press: New York, NY, USA, 2011; pp. 32–58. [Google Scholar]
- Xu, C.; Chi, R.A.; Zhang, Y.; Zhong, C.; Ruan, Y.; Lyu, R.; Zhou, F. Process mineralogy of Bayan Obo rare earth ore by MLA. Physicochem. Probl. Miner. Process. 2020, 56, 737–745. [Google Scholar] [CrossRef]
- Sulaiman, M.Y. An overview of the rare-earth mineral processing industry in Malaysia. Mater. Sci. Forum 2020, 70–72, 389–396. [Google Scholar] [CrossRef]
- Foley, N.K.; Jaskula, B.W.; Kimball, B.E.; Schulte, R.F. Chapter H: Gallium. In Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply; Schulz, K.J., DeYoung, J.J.H., Seal Ii, R.R., Bradley, D.C., Eds.; U.S. Geological Survey Professional Paper 1802; U.S. Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2021; U.S. Geological Survey: Reston, VA, USA, 2021.
Reference | Comminution, Liberation or Particle-Size Reduction | Sizing and Separation of Particles by Screening or Classification | Obtained Fractions |
---|---|---|---|
LED professional (2016) [9] | Electrohydraulic fragmentation | Manual sorting | LED packages, mixed fraction (glass, metals, plastics, ceramics, residual, electronic comp.) |
Kumar et al. (2018) [10] | Electrohydraulic fragmentation | Sieving, manual sorting of fractions +6.3 mm | −0.30 mm; 0.30–1.18 mm; 1.18–6.3 mm; +6.3 mm fractions |
Mizanur Rahman et al. (2019) [11] | Manual and automatic disassembly (hydro-comminution and shredding) | Manual sorting, sieving | Aluminum, plastic, LED modules, printed circuit boards |
Martins et al. (2020) [12] | Comminution in a hammer mill | Sieving, electrostatic separation, magnetic separation, gravity separation (non-magnetic fraction) | Capacitors, coils, wires, polymeric housing, polymeric cover, metallic housing, Edison screw, printed circuit boards, heat sink with LEDs |
LED Module | S1 | S2 | S3 | S4 | S5 | Average Value |
---|---|---|---|---|---|---|
LED module before treatment | ||||||
LED module after treatment | ||||||
Detached LED chips and encapsulation | ||||||
Mass of LED module in g | 5.44 | 4.95 | 5.49 | 1.95 | 6.02 | 4.77 |
Mass of LED chips and encapsulation in mg | 61 | 55 | 63 | 66 | 63 | 62 |
Number of LED packages | 20 | 40 | 10 | 25 | 12 | 21.4 |
Mass of LED chips and encapsulation per LED package in mg | 3.1 | 1.4 | 6.3 | 2.6 | 5.3 | 3.7 |
Main components [wt%] | ||||||
Ga | 4.03 | 0.61 | 0.25 | 2.95 | 0.62 | 1.69 |
Sr | 1.02 | 0.35 | 1.09 | 0.65 | 0.25 | 0.67 |
Y | 7.96 | 0.01 | 4.20 | 4.81 | 0.06 | 3.41 |
Lu | <0.01 | 15.47 | 0.01 | <0.01 | 17.19 | 6.54 |
Other relevant components [ppm] | ||||||
In | 66 | 60 | 47 | 39 | 38 | 50 |
Pd | 1623 | 4 | 842 | 942 | 13 | 685 |
Ag | 1589 | 18 | 977 | 621 | 1377 | 916 |
Au | 12 | 6 | 2 | 4 | 2 | 5 |
Eu | 320 | 251 | 197 | 233 | 308 | 262 |
Gd | 13 | 6 | 15 | 9 | 10 | 10 |
Chemical Treatment | Thermal Treatment | |||
---|---|---|---|---|
Main high value components | ||||
[wt%] | EF | [wt%] | EF | |
Ga | 2.67 | 78.0 | 0.13 | 3.60 |
Y | 4.56 | 119 | 0.34 | 6.20 |
Lu | 5.67 | 128 | 0.36 | 6.25 |
Other valuable components | ||||
[ppm] | EF | [ppm] | EF | |
Sr | 6719 | 102 | 26 | 6.26 |
In | 67 | 0.38 | 872 | 6.24 |
Pd | 889 | 117 | 67 | 6.18 |
Ag | 3238 | 1.30 | 4216 | 5.96 |
Au | 4 | 5.10 | 3 | 3.34 |
Eu | 294 | 69.9 | 114 | 6.14 |
Gd | 15 | 34.9 | 3 | 5.68 |
Base metals | ||||
[wt%] | EF | [wt%] | EF | |
Al | 10.8 | 0.14 | 7.4 | 0.10 |
Fe | 0.08 | 0.28 | 0.57 | 1.48 |
Cu | 0.19 | 0.03 | 31.5 | 6.20 |
Zn | 0.38 | 14.2 | 0.12 | 3.20 |
Sn | 0.54 | 0.10 | 24.6 | 6.25 |
Ga | In | Pd | Ag | Au | Sr | Y | Ce | Eu | Gd | Lu | |
---|---|---|---|---|---|---|---|---|---|---|---|
Prod in kg | 1307 | 3.84 | 53 | 71 | 0.40 | 519 | 2634 | 113 | 20.21 | 13.69 | 5049 |
Res in t | 13,074 | - | - | - | - | - | 995 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balinski, A.; Recksiek, V.; Stoll, M.; Christesen, C.; Stelter, M. Liberation and Separation of Valuable Components from LED Modules: Presentation of Two Innovative Approaches. Recycling 2022, 7, 26. https://doi.org/10.3390/recycling7030026
Balinski A, Recksiek V, Stoll M, Christesen C, Stelter M. Liberation and Separation of Valuable Components from LED Modules: Presentation of Two Innovative Approaches. Recycling. 2022; 7(3):26. https://doi.org/10.3390/recycling7030026
Chicago/Turabian StyleBalinski, Adam, Volker Recksiek, Michael Stoll, Christian Christesen, and Michael Stelter. 2022. "Liberation and Separation of Valuable Components from LED Modules: Presentation of Two Innovative Approaches" Recycling 7, no. 3: 26. https://doi.org/10.3390/recycling7030026
APA StyleBalinski, A., Recksiek, V., Stoll, M., Christesen, C., & Stelter, M. (2022). Liberation and Separation of Valuable Components from LED Modules: Presentation of Two Innovative Approaches. Recycling, 7(3), 26. https://doi.org/10.3390/recycling7030026