Waste Management for Green Concrete Solutions: A Concise Critical Review
Abstract
:1. Introduction
1.1. The Composition of the Ordinary Portland Cement
1.2. Environmental Hazards
1.3. Modification Methods
2. Methodology
3. Green Additives
3.1. Supplementary Cementitious Materials as a Binder
3.2. Biochar as a Concrete Composite
3.3. Non-Carbonized Agricultural Waste
4. Discussion
4.1. Green Additives to Concrete
4.2. Future Directions
- CO2 emission reduction within the green concrete production.
- Improvement of the waste-modified concrete with the controlled properties such as the chemical composition and morphology of the used waste-based materials with the minimization of the pretreatment energy consumption.
- 3D printing capability of the green concrete.
- Light-generating studies enabling application of the green concrete for the light absorption capability and light emission.
- Durability, compression strength, tensile strength, flexural strength, ion penetration, long-term environmental conditions treatment studies of the modified concrete.
- Improvement of the electrical conductivity and acoustic wave damping of the waste-loaded concrete as intelligent materials for versatile applications.
- Improvement of long-life cycle of the green concrete and reusability.
- Investigation of volume change, such as shrinkage and expansion of the waste-modified concrete in various experimental conditions such as salinity, humidity, and temperatures to simulate other geographical regions.
- Water storage studies and application.
- Heat storage studies and application in passive buildings.
- Abrasion resistance, chlorine and sulfate ions resistance, acid resistance, and toughness of the proposed concrete should also be investigated deeper.
- One of the most important issues is safety, so despite the leakage studies, the materials proposed for the concrete application should be carefully selected to reduce the risk of leakage of harmful chemicals.
- Improvement of concrete durability, especially towards the seismic damping.
- Sustainable waste management within the concrete application.
- IT tools based on Artificial Intelligence towards prediction of the mechanical properties of the green concrete.
- Scalability towards industrial scale application of green concrete.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sariatli, F. Linear economy versus circular economy: A comparative and analyzer study for optimization of economy for sustainabilty. Visegr. J. Bioeconomy Sustain. Dev. 2017, 1, 31. [Google Scholar] [CrossRef] [Green Version]
- Gartner, E.M.; Macphee, D.E. A physico-chemical basis for novel cementitious binders. Cem. Concr. Res. 2011, 41, 736–749. [Google Scholar] [CrossRef]
- Liew, K.M.; Sojobi, A.O.; Zhang, L.W. Green concrete: Prospects and challenges. Constr. Build. Mater. 2017, 156, 1063–1095. [Google Scholar] [CrossRef]
- Leadership in Energy and Environmental Design (LEED). U.S. Green Building Council, Washington, DC, USA. Available online: https://www.usgbc.org (accessed on 1 May 2022).
- Coffetti, D.; Crotti, E.; Gazzaniga, G.; Carrara, M.; Pastore, T.; Coppola, L. Pathways towards sustainable concrete. Cem. Concr. Res. 2022, 254, 106718. [Google Scholar] [CrossRef]
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Sivakrishna, A.; Adesina, A.; Awoyera, P.O.; Rajesh Kumar, K. Green concrete: A review of recent developments. Mater. Today Proc. 2020, 27, 54–58. [Google Scholar] [CrossRef]
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef] [Green Version]
- Danish, A.; Salim, M.; Ahmed, T. Trends and developments in green cement “A sustainable approach”. Sustain. Struct. Mater. 2019, 2, 45–60. [Google Scholar] [CrossRef]
- Anandaraj, S.; Rooby, J.; Awoyera, P.O.; Gobinath, R. Structural distress in glass fibre-reinforced concrete under loading and exposure to aggressive environments. Constr. Build. Mater. 2019, 197, 862–870. [Google Scholar] [CrossRef]
- Awoyera, P.O.; Akinmusuru, J.O.; Ndambuki, J.M. Green concrete production with ceramic wastes and laterite. Constr. Build. Mater. 2016, 117, 29–36. [Google Scholar] [CrossRef]
- Shi, C.; Day, R.L. Comparison of different methods for enhancing reactivity of pozzolans. Cem. Concr. Res. 2001, 31, 813–818. [Google Scholar] [CrossRef]
- Saad, S.A.; Nuruddin, M.F.; Shafiq, N.; Ali, M. The Effect of Incineration Temperature to the Chemical and Physical Properties of Ultrafine Treated Rice Husk Ash (UFTRHA) as Supplementary Cementing Material (SCM). Procedia Eng. 2016, 148, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, 7647. [Google Scholar] [CrossRef] [Green Version]
- Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F. Assessment of pozzolanic activity of different calcined clays. Cem. Concr. Compos. 2013, 37, 319–332. [Google Scholar] [CrossRef]
- Ashraf, M.; Iqbal, M.F.; Rauf, M.; Ashraf, M.U.; Ulhaq, A.; Muhammad, H.; Liu, Q. Developing a sustainable concrete incorporating bentonite clay and silica fume: Mechanical and durability performance. J. Clean. Prod. 2022, 337, 130315. [Google Scholar] [CrossRef]
- Beskopylny, A.; Stel’makh, S.A.; Shcherban, E.M.; Mailyan, L.R.; Meskhi, B. Nano modifying additive micro silica influence on integral and differential characteristics of vibrocentrifuged concrete. J. Build. Eng. 2022, 51, 104235. [Google Scholar] [CrossRef]
- Chen, R.; Li, Y.; Xiang, R.; Li, S. Effect of particle size of fly ash on the properties of lightweight insulation materials. Constr. Build. Mater. 2016, 123, 120–126. [Google Scholar] [CrossRef]
- Capucci, G.M.; Ruffini, V.; Barbieri, V.; Siligardi, C.; Ferrari, A.M. Life cycle assessment of wheat husk based agro-concrete block. J. Clean. Prod. 2022, 349, 131437. [Google Scholar] [CrossRef]
- Amin, M.N.; Siffat, M.A.; Shahzada, K.; Khan, K. Influence of Fineness of Wheat Straw Ash on Autogenous Shrinkage and Mechanical Properties of Green Concrete. Crystals 2022, 12, 588. [Google Scholar] [CrossRef]
- Sun, B.; Ye, G.; de Schutter, G. A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials. Constr. Build. Mater. 2022, 326, 126843. [Google Scholar] [CrossRef]
- Naqi, A.; Jang, J.G. Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review. Sustainability 2019, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- Habert, G. Assessing the environmental impact of conventional and ‘green’ cement production. In Eco-Efficient Construction and Building Materials; Woodhead Publishing: Thorston, UK, 2014; pp. 199–238. [Google Scholar] [CrossRef]
- Shi, C.; Jiménez, A.F.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Ababneh, A.; Matalkah, F.; Matalkeh, B. Effects of kaolin characteristics on the mechanical properties of alkali-activated binders. Constr. Build. Mater. 2022, 318, 126020. [Google Scholar] [CrossRef]
- Ahmed, M.M.; El-Naggar, K.A.M.; Tarek, D.; Ragab, A.; Sameh, H.; Zeyad, A.M.; Tayeh, B.A.; Maafa, I.M.; Yousef, A. Fabrication of thermal insulation geopolymer bricks using ferrosilicon slag and alumina waste. Case Stud. Constr. Mater. 2021, 15, e00737. [Google Scholar] [CrossRef]
- Scrivener, K.; Capmas, A. Calcium aluminate cements. In Lea’s Chemistry of Cement and Concrete, 4th ed.; Hewlett, P.C., Ed.; Arnold Publishers: London, UK, 1998; pp. 709–778. [Google Scholar]
- Ismail, Z.; Al-Hashmi, E. Recycling of waste glass as a partial replacement for fine aggregate in concrete. Waste Manag. 2009, 29, 655–659. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Elmoaty, A.; Aboshama, A.Y. Utilization of waste glass powder in the production of cement and concrete. Constr. Build. Mater. 2016, 124, 866–877. [Google Scholar] [CrossRef]
- Shukla, A.; Gupta, N.; Gupta, A. Development of green concrete using waste marble dust. Mater. Today Proc. 2020, 26, 2590–2594. [Google Scholar] [CrossRef]
- Rao, A.; Jha, K.; Misra, S. Use of aggregates from recycled construction and demolition waste in concrete. Resour. Conserv. Recycl. 2007, 50, 71–81. [Google Scholar] [CrossRef]
- Abdulfattah, O.; Alsurakji, I.H.; El-Qanni, A.; Samaaneh, M.; Najjar, M.; Abdallah, R.; Assaf, I. Experimental evaluation of using pyrolyzed carbon black derived from waste tires as additive towards sustainable concrete. Case Stud. Constr. Mater. 2022, 16, e00938. [Google Scholar] [CrossRef]
- Ali, F.; Khan, M.A.; Qurashi, M.A.; Shah, S.A.R.; Khan, N.M.; Khursheed, Z.; Rahim, H.S.; Arshad, H.; Farhan, M.; Waseem, M. Utilization of pyrolytic carbon black waste for the development of sustainable materials. Processes 2020, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Bompa, D.V.; Elghazouli, A.Y.; Xu, B.; Stafford, P.J.; Ruiz-Teran, A.M. Experimental assessment and constitutive modelling of rubberised concrete materials. Constr. Build. Mater. 2017, 137, 246–260. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.S.; Gupta, R.C. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew. Sustain. Energy Rev. 2016, 54, 1323–1333. [Google Scholar] [CrossRef]
- Hernández-Olivares, F.; Barluenga, G.; Parga-Landa, B.; Bollati, M.; Witoszek, B. Fatigue behaviour of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements. Constr. Build. Mater. 2007, 21, 1918–1927. [Google Scholar] [CrossRef]
- Khatib, Z.K.; Bayomy, F.M. Rubberized Portland cement concrete. J. Mater. Civ. Eng. 1999, 11, 206–213. [Google Scholar] [CrossRef]
- Najim, K.B.; Hall, M.R. Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Constr. Build. Mater. 2012, 27, 521–530. [Google Scholar] [CrossRef]
- Roychand, R.; Gravina, R.J.; Zhuge, Y.; Ma, X.; Youssf, O.; Mills, J.E. A comprehensive review on the mechanical properties of waste tire rubber concrete. Constr. Build. Mater. 2020, 237, 117651. [Google Scholar] [CrossRef]
- Siddika, A.; Al Mamun, M.A.; Alyousef, R.; Amran, Y.H.M.; Aslani, F.; Alabduljabbar, H. Properties and utilizations of waste tire rubber in concrete: A review. Constr. Build. Mater. 2019, 224, 711–731. [Google Scholar] [CrossRef]
- Xu, J.; Yao, Z.; Yang, G.; Han, Q. Research on crumb rubber concrete: From a multi-scale review. Constr. Build. Mater. 2020, 232, 117282. [Google Scholar] [CrossRef]
- Strukar, K.; Sipos, T.K.; Milicevic, I.; Busic, R. Potential use of rubber as aggregate in structural reinforced concrete element—A review. Eng. Struct. 2019, 188, 452–468. [Google Scholar] [CrossRef]
- Pivak, A.; Pavlikova, M.; Zaleska, M.; Reiterman, P.; Barnat-Hunek, D.; Pavlik, Z. Magnesia-based cement composites with recycled waste tire rubber filler. AIP Conf. Proc. 2022, 2425, 070003. [Google Scholar] [CrossRef]
- Rah, A.; Ali, A.; Mahmood, N.; Kadhum, M.M. Effect of the waste rubber tires aggregate on some properties of normal concrete. Eng. Technol. J. 2022, 40, 275–281. [Google Scholar] [CrossRef]
- Mahesh, V.; Mahesh, V.; Nagaraj, S.M.; Subhashaya, P.; Singh, G.; Singh, T.S. Physio-mechanical and thermal characterization of jute/rubber crumb hybrid composites and selection of optimal configuration using the MADM approach. Proc. Inst. Mech. Eng. Part C 2022, 09544062221079166. [Google Scholar] [CrossRef]
- Smain, B.; Yacine, A. Rubber influence on the performance of thermal insulating quarry sand mortars—A statistical analysis. Adv. Mater. Sci. 2022, 22, 23–35. [Google Scholar] [CrossRef]
- Sofi, A. Effect of waste tyre rubber on mechanical and durability properties of concrete—A review. Ain Shams Eng. J. 2018, 9, 2691–2700. [Google Scholar] [CrossRef]
- Evans, J.J. Rubber tire leachates in the aquatic environment. Rev. Environ. Contam. Toxicol. 1997, 151, 67–115. [Google Scholar] [CrossRef]
- Wik, A.; Dave, G. Acute toxicity of leachates of tire wear material to Daphnia magna—Variability and toxic components. Chemophere 2006, 64, 1777–1784. [Google Scholar] [CrossRef]
- Sheehan, P.J.; Warmerdam, J.M.; Ogle, S.; Humphrey, D.N.; Patenaude, S.M. Evaluating the risk to aquatic ecosystems posed by leachate from tire shred fill in roads using toxicity tests, toxicity identification evaluations, and groundwater modeling. Environ. Toxicol. Chem. 2006, 25, 400–411. [Google Scholar] [CrossRef]
- Wik, A.; Dave, G. Occurrence and effects of tire wear particles in the environment—A critical review and an initial risk assessment. Environ. Pollut. 2009, 157, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, M.; Andrioletti, M.; Mantecca, P.; Vismara, C.; Camatini, M. Impact of tire debris on in vitro and in vivo systems. Part. Fibre Toxicol. 2005, 2, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gualtieri, M.; Mantecca, P.; Cetta, F.; Camatini, M. Organic compounds in tire particle induce reactive oxygen species and heat-shock proteins in the human alveolar cell line A549. Environ. Int. 2008, 34, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Zhang, X.; Chai, J.; Xu, Z.; Li, S. Experimental study of compressive behavior of polypropylene-fiber-fabric-reinforced concrete. Constr. Build. Mater. 2019, 194, 216–225. [Google Scholar] [CrossRef]
- Mohebi, Z.H.; Bahnamiri, A.B.; Dehestani, M. Effect of polypropylene fibers on bond performance of reinforcing bars in high strength concrete. Constr. Build. Mater. 2019, 215, 401–409. [Google Scholar] [CrossRef]
- Conforti, A.; Tiberti, G.; Plizzari, G.A.; Caratelli, A.; Meda, A. Precast tunnel segments reinforced by macro-synthetic fibers. Tunn. Undergr. Space Technol. 2017, 63, 1–11. [Google Scholar] [CrossRef]
- Fallah, S.; Nematzadeh, M. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Constr. Build. Mater. 2017, 132, 170–187. [Google Scholar] [CrossRef]
- Medina, N.F.; Barluenga, G.B.; Hernández-Olivares, F. Enhancement of durability of concrete composites containing natural pozzolans blended cement through the use of Polypropylene fibers. Compos. Part B Eng. 2014, 61, 214–221. [Google Scholar] [CrossRef]
- Karahan, O.; Atis, C.D. The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des. 2011, 32, 1044–1049. [Google Scholar] [CrossRef]
- Li, J.J.; Niu, J.G.; Wan, C.J.; Jin, B.; Yin, Y.L. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete. Constr. Build. Mater. 2016, 118, 27–35. [Google Scholar] [CrossRef]
- Hameed, A.M.; Ahmed, B.A. Employment the plastic waste to produce the light weight concrete. Energy Procedia 2019, 157, 30–38. [Google Scholar] [CrossRef]
- Kaur, G.; Pavia, S. Physical properties and microstructure of plastic aggregate mortars made with acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), polyoxymethylene (POM) and ABS/PC blend waste. J. Build. Eng. 2020, 31, 101341. [Google Scholar] [CrossRef]
- Boonsiri, T.; Ruckchonlatee, S.; Jangchud, I. Wood plastic composites (WPCs)from multilayer packaging wastes and rHDPE as pallets for green industry. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1234, 012022. [Google Scholar] [CrossRef]
- Lin, C.; Mo, Z.; Meng, X. Construction Mechanics of Nano Pva Modified Fiber Cement Soil. J. Civ. Eng. Urban Plan. 2022, 4, 17–29. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S.; Fucic, A. Toxicity of Buliding Materials; Woodhead Publishing: Cambridge, UK, 2012. [Google Scholar]
- Prahallada, M.C.; Prakash, K.B. Strenght and workability characteristics of waste plastic fibre reinforced concrete produced from recycled aggregates. Int. J. Eng. Res. Appl. 2011, 1, 1791–1802. [Google Scholar]
- Laskar, N.; Kumar, U. Plastics and microplastics: A threat to environment. Environ. Technol. Innov. 2019, 14, 100352. [Google Scholar] [CrossRef]
- Dąbrowska, A. Microplastics pollution. In Applied Water Science Volume 1: Fundamentals and Applications; Inamuddin Ahamed, M.I., Boddula, R., Rangreez, T.A., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2021; Chapter 4. [Google Scholar] [CrossRef]
- Ullah, S.; Qureshi, M.I.; Joyklad, P.; Suparp, S.; Hussain, Q.; Chaiyasarn, K.; Yooprasertchai, E. Effect of partial replacement of E-waste as a fine aggregate on compressive behavior of concrete specimens having different geometry with and without CFRP confinement. J. Build. Eng. 2022, 50, 104151. [Google Scholar] [CrossRef]
- Balasubramanian Gopala, K.; Saraswathy, V. Investigation on partial replacement of coarse aggregate using E-waste in concrete. Int. J. Earth Sci. Eng. 2016, 9, 285–288. [Google Scholar]
- Kale, S.P.; Pathan, H.I. Recycling of demolished concrete and E-waste. Int. J. Sci. Res. 2015, 4, 789–792. [Google Scholar]
- Arora, A.; Dave, U.V. Utilization of e-waste and plastic bottle waste in concrete. Int. J. Stud. Res. Technol. Manag. 2013, 1, 398–406. [Google Scholar]
- Luhar, S.; Luhar, I. Potential application of E-wastes in construction industry: A review. Constr. Build. Mater. 2019, 203, 222–240. [Google Scholar] [CrossRef]
- Rautela, R.; Arya, S.; Vishwakarma, S.; Lee, J.; Kim, K.; Kumar, S. E-waste management and its effects on the environment and human health. Sci. Total Environ. 2021, 773, 145623. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Ali, M.U.; Zheng, C.; Cai, Z.; Wong, M.H. Toxic chemicals from uncontrolled e-waste recycling: Exposure, body burden, health impact. J. Hazard. Mater. 2022, 426, 127792. [Google Scholar] [CrossRef] [PubMed]
- Ahirwar, R.; Tripathi, A.K. E-waste management: A review of recycling process, environmental and occupational health hazards, and potential solutions. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100409. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, M.; Li, Y.; Wang, B.; Chen, S.; Xu, Z. Impact of technological innovation and regulation development on e-waste toxicity: A case study of waste mobile phones. Sci. Rep. 2018, 8, 7100. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, L.; Tsang, D.C.W.; Guo, B.; Yang, J.; Shen, Z.; Hou, D.; Ok, Y.S.; Poon, C.S. Biochar as green additives in cement-based composites with carbon dioxide curing. J. Clean. Prod. 2020, 258, 120678. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Xue, Q.; Huang, X.; Liu, L.; Poon, C.S. Sludge biochar as a green additive in cement-based composites: Mechanical properties and hydration kinetics. Constr. Build. Mater. 2020, 262, 120723. [Google Scholar] [CrossRef]
- Assaggaf, R.A.; Ali, M.R.; Al-Dulaijan, S.U.; Maslehuddin, M. Properties of concrete with untreated and treated crumb rubber—A review. J. Mater. Res. Technol. 2021, 11, 1753–1798. [Google Scholar] [CrossRef]
- Gupta, S.; Tulliani, J.M.; Kua, H.W. Carbonaceous admixtures in cementitious building materials: Effect of particle size blending on rheology, packing, early age properties and processing energy demand. Sci. Total Env. 2022, 807, 150884. [Google Scholar] [CrossRef]
- Cosentino, I.; Restuccia, L.; Ferro, G.A.; Tulliani, J.M. Type of materials, pyrolysis conditions, carbon content and size dimensions: The parameters that influence the mechanical properties of biochar cement-based composites. Theor. Appl. Fract. Mech. 2019, 103, 102261. [Google Scholar] [CrossRef]
- Danish, A.; Mosaberpanah, M.A.; Salim, M.U.; Ahmad, N.; Ahmad, F.; Ahmad, A. Reusing biochar as a filler or cement replacement material in cementitious composites: A review. Constr. Build. Mater. 2021, 300, 124295. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Pang, X.; Qin, Y.; Wang, J. Properties of cement containing pulverized biochar pyrolyzed at different temperatures. Constr. Build. Mater. 2020, 263, 120616. [Google Scholar] [CrossRef]
- Hu, L.; He, Z.; Zhang, S. Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement. J. Clean. Prod. 2020, 264, 121744. [Google Scholar] [CrossRef]
- Restuccia, L.; Ferro, G.A.; Suarez-Riera, D.; Srico, A.; Bernardi, P.; Belleti, B.; Malcevschi, A. Mechanical characterization of different biochar-based cement composites. Procedia Struct. Integr. 2020, 25, 226–233. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W.; Kua, H.W.; Yang, J.; Ok, Y.S.; Ding, S.; Hou, D.; Poon, C.S. The roles of biochar as green admixture for sediment-based construction products. Cem. Concr. Compos. 2019, 104, 103348. [Google Scholar] [CrossRef]
- Zeidabadi, Z.A.; Bakhtiari, S.; Abbaslou, H.; Ghanizadeh, A.R. Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Constr. Build. Mater. 2018, 181, 301–308. [Google Scholar] [CrossRef]
- Winters, D.; Boakye, K.; Simske, S. Toward Carbon-Neutral Concrete through Biochar–Cement–Calcium Carbonate Composites: A Critical Review. Sustainability 2022, 14, 4633. [Google Scholar] [CrossRef]
- Zunino, F.; Lopez, M. Decoupling the physical and chemical effects of supplementary cementitious materials on strength and permeability: A multi-level approach. Cem. Concr. Compos. 2016, 65, 19–28. [Google Scholar] [CrossRef]
- Abalaka, A.E. Strength and some durability properties of concrete containing rice husk ash produced in a charcoal incinerator at low specific surface. Int. J. Concr. Struct. Mater. 2013, 7, 287–293. [Google Scholar] [CrossRef] [Green Version]
- van der Lugt, P.; van den Dobbelsteen, A.A.J.F.; Janssen, J.J.A. An environmental, economic and practical assessment of bamboo as a building material for supporting structures. Constr. Build. Mater. 2006, 20, 648–656. [Google Scholar] [CrossRef]
- Liu, W.; Xu, S.; Li, K. Utilizing Bamboo Biochar in Cement Mortar as a Bio-Modifier to Improve the Compressive Strength and Crack-Resistance Fracture Ability. Constr. Build. Mater. 2022, 327, 126917. [Google Scholar] [CrossRef]
- Akhtar, A.; Sarmah, A.K. Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties. Sci. Total Environ. 2018, 616–617, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Ataie, F. Influence of rice straw fibers on concrete strength and drying shrinkage. Sustainability 2018, 10, 2445. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Kua, H.W.; Koh, H.J. Application of biochar from food and wood waste as green admixture for cement mortar. Sci. Total Environ. 2018, 619–620, 419–435. [Google Scholar] [CrossRef]
- Pranteeh, S.; Guo, R.; Wang, T.; Dubey, B.K.; Sarmah, A.K. Accelerated carbonation of biochar reinforced cement-fly ash composites: Enhancing and sequestering CO2 in building materials. Constr. Build. Mater. 2020, 244, 118363. [Google Scholar] [CrossRef]
- Chen, L.; Wang, l.; Zhang, Y.; Ruan, S.; Mechthcerine, V.; Tsang, D.C.W. Roles of biochar in cement-based stabilization/solidification of municipal solid waste incineration fly ash. Chem. Eng. J. 2022, 430, 132972. [Google Scholar] [CrossRef]
- Wang, S.; Miller, A.; Llamazos, E.; Fonseca, F.; Baxter, L. Biomass fly ash in concrete: Mixture proportioning and mechanical properties. Fuel 2008, 87, 365–371. [Google Scholar] [CrossRef]
- Milovanovic, B.; Strimer, N.; Carevic, I.; Baricevic, A. Wodd biomass ash as raw material in concrete industry. Gradevinar 2016, 71, 505–514. [Google Scholar] [CrossRef]
- Wang, S.; Baxter, L. Comprehensive study of biomass fly ash in concrete: Strength, microscopy, kinetics and durability. Fuel Process. Technol. 2007, 88, 1165–1170. [Google Scholar] [CrossRef]
- Omran, A.; Soliman, N.; Xie, A.; Davidenko, T.; Tagnit-Hamou, A. Field trials with concrete incorporating biomass-fly ash. Constr. Build. Mater. 2018, 186, 660–669. [Google Scholar] [CrossRef]
- Qin, Y.; Pang, X.; Tan, K.; Bao, T. Evaluation of pervious concrete performance with pulverized biochar as cement replacement. Cem. Concr. Compos. 2021, 119, 104022. [Google Scholar] [CrossRef]
- Sirico, A.; Bernardi, P.; Belleti, B.; Malcevshi, A.; Dalcanale, E.; Domenichelli, I.; Foroni, P.; Moretti, E. Mechanical characterization of cement-based materials containing biochar from gasification. Constr. Build. Mater. 2020, 246, 118490. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Wang, L.; Ruan, S.; Chen, J.; Li, H.; Yang, J.; Mechtcherine, V.; Tsang, D.C.W. Biochar-augmented carbon-negative concrete. Chem. Eng. J. 2022, 43, 133946. [Google Scholar] [CrossRef]
- Sethunarayanan, R.; Chockalingam, S.; Ramanathan, R. Natural fiber reinforced concrete. Transp. Res. Rec. 1989, 1226, 57–60. [Google Scholar]
- Sellami, A.; Merzoud, M.; Amziane, S. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Constr. Build. Mater. 2013, 47, 1117–1124. [Google Scholar] [CrossRef]
- Olanipekun, E.A.; Olusola, K.O.; Ata, O. A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates. Build. Environ. 2006, 41, 297–301. [Google Scholar] [CrossRef]
- Kriker, A.; Debicki, G.; Bali, A.; Khenfer, M.; Chabannet, M. Mechanical properties of date palm fibers and concrete reinforced with date palm fibers in hot-dry climate. Cem. Concr. Compos. 2005, 27, 554–564. [Google Scholar] [CrossRef]
- Lim, K.C.; Rahman, Z.A. The effects of oil palm empty fruit bunches on oil palm nutrition and yield, and soil chemical properties. J. Oil Palm Res. 2022, 14, 1–9. [Google Scholar]
- Torgal, F.P.; Jalali, S. Natural fiber reinforced concrete. In Fibrous and Composite Materials for Civil Engineering Applications; Woodhead Publishing: Thorston, UK, 2011; pp. 154–167. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.M.L. Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Constr. Buil. Mater. 2006, 20, 673–678. [Google Scholar] [CrossRef]
- Castillo-Lara, J.F.; Flores-Johnson, E.A.; Valadez-Gonzalez, A.; Herrera-Franco, P.J.; Carrillo, J.G.; Gonzalez-Chi, P.I.; Li, Q.M. Mechanical Properties of Natural Fiber Reinforced Foamed Concrete. Materials 2020, 13, 3060. [Google Scholar] [CrossRef] [PubMed]
- Mhlongo, J.T.; Nuapia, Y.; Motsa, M.M.; Mahlangu, T.O.; Etale, A. Green chemistry approaches for extraction of cellulose nanofibers (CNFs): A comparison of mineral and organic acids. Mater. Today Proc. 2022, in press. [Google Scholar] [CrossRef]
- Jami, T.; Karade, S.R.; Singh, L.P. A review of the properties of hemp concrete for green building applications. J. Clean. Prod. 2019, 239, 117852. [Google Scholar] [CrossRef]
- Facca, A.G.; Kortschot, M.T.; Yan, N. Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1660–1671. [Google Scholar] [CrossRef]
- Davino, A.; Meglio, E.; Formisano, A. Lime-Based Plaster Reinforced with Hemp Braids as Sustainable Building Product. Architecture 2022, 2, 135–156. [Google Scholar] [CrossRef]
- El-Feky, M.S.; El-Tair, A.M.; Kohail, M.; Serag, M.I. Nano-fibrillated cellulose as a green alternative to carbon nanotubes in nano reinforced cement composites. Int. J. Eng. Innov. Technol. 2019, 8, 2278–3075. [Google Scholar] [CrossRef]
- Zea Escamilla, E.B.B.; Wallbaum, H. Environmental savings from the use of vegetable fibres as concrete reinforcement. In Proceedings of the ISEC 2011-6th International Structural Engineering and Construction Conference, Zürich, Switzerland, 21–26 June 2011; pp. 1315–1320. [Google Scholar] [CrossRef]
- Ali, M.; Chouw, N. Experimental investigations on coconut-fibre rope tensile strength and pullout from coconut fibre reinforced concrete. Constr. Build. Mater. 2013, 41, 681–690. [Google Scholar] [CrossRef]
- Farooqi, M.U.; Ali, M. Contribution of plant fibers in improving the behavior and capacity of reinforced concrete for structural applications. Constr. Build. Mater. 2018, 182, 94–107. [Google Scholar] [CrossRef]
- Long, W.; Wang, Y. Effect of pine needle fibre reinforcement on the mechanical properties of concrete. Constr. Build. Mater. 2021, 278, 122333. [Google Scholar] [CrossRef]
- Elbehiry, A.; Elnawawy, O.; Kassem, M.; Zaher, A.; Uddin, N.; Mostafa, M. Performance of concrete beams reinforced using banana fiber bars. Case Stud. Constr. Mater. 2020, 13, e00361. [Google Scholar] [CrossRef]
- Olaoye, R.A.; Oluremi, J.R.; Ajamu, S.O. The Use of Fibre Waste as Complement in Concrete for a Sustainable Environment. Innov. Syst. Des. Eng. 2013, 4, 91–98. [Google Scholar]
- Kammoun, Z.; Trabelsi, A. Development of lightweight concrete using prickly pear fibres. Constr. Build. Mater. 2019, 210, 269–277. [Google Scholar] [CrossRef]
- Nensok, M.H.; Mydin, M.A.O.; Awang, H. Optimization of mechanical properties of cellular lightweight concrete with alkali treated banana fiber. Rev. Constr. 2021, 20, 491–511. [Google Scholar] [CrossRef]
- Mansilla, C.; Pradena, M.; Fuentealba, C.; César, A. Evaluation of mechanical properties of concrete reinforced with eucalyptus globulus bark fibres. Sustainability 2020, 12, 10026. [Google Scholar] [CrossRef]
- Ali, M. Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction. Mater. Constr. 2016, 66, e073. [Google Scholar] [CrossRef] [Green Version]
- Suhaili, S.S.; Mydin, M.A.O.; Awang, H. Influence of Mesocarp Fibre Inclusion on Thermal Properties of Foamed Concrete. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 87, 1–11. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Azmi, M.; Johari, M.; Abadel, A.; Abutaleb, A.; Mijarsh, M.J.A.; Almalki, A. Transport properties of palm oil fuel ash-based high-performance green concrete subjected to steam curing regimes. Case Stud. Constr. Mater. 2022, 16, e01077. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Kolawole, J.T.; Olalusi, O.B. Mechanical and durability properties of coir fibre reinforced concrete. J. Eng. Sci. Technol. 2019, 14, 1482–1496. [Google Scholar]
- Ogunbode, E.B.; Egba, E.I.; Olaiju, O.A.; Elnafaty, A.S.; Kawuwa, S.A. Microstructure and mechanical properties of green concrete composites containing coir fibre. Chem. Eng. Trans. 2017, 61, 1879–1884. [Google Scholar] [CrossRef]
- Saravanan, N.; Buvaneshwari, M. Experimental Investigation on Behaviour of Natural Fibre Concrete (Sisal Fibre). Int. J. Sci. Res. Eng. Trends 2018, 4, 528–531. [Google Scholar]
- Kumarasamy, K.; Shyamala, G.; Gebreyowhanse, H. Kumarasamy Strength Properties of Bamboo Fiber Reinforced Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 981, 032063. [Google Scholar] [CrossRef]
- Mohamad, N.; Iman, M.A.; Mydin, M.A.O.; Samad, A.A.A.; Rosli, J.A.; Noorwirdawati, A. Mechanical properties and flexure behaviour of lightweight foamed concrete incorporating coir fibre. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012140. [Google Scholar] [CrossRef]
- Ahmad, Z.; Saman, H.M.; Tahir, P.M. Oil Palm Trunk Fiber as a Bio-Waste Resource for Concrete Reinforcement. Int. J. Mech. Mater. Eng. 2010, 5, 199–207. [Google Scholar]
- Babatunde, O.E.; Yatim, J.M.; Razavi, M.; Yunus, I.M.; Azzmi, N.M. Experimental Study of Kenaf Bio Fibrous Concrete Composites. Adv. Sci. Lett. 2018, 24, 3922–3927. [Google Scholar] [CrossRef]
- Trezza, M.A.; Zito, S.; Tironi, A.; Irassar, E.F.; Rahhal, V.F. Portland blended cements: Demolition ceramic waste management. Mater. Constr. 2017, 67, e114. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.-H.; Jung, Y.-B.; Cho, M.-S.; Tae, S.-H. Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Clean. Prod. 2015, 103, 774–783. [Google Scholar] [CrossRef]
- Das, S.K.; Mohapatra, A.K.; Rath, A.K. Geo-polymer Concrete–Green Concrete for the Future—A Review. Int. J. Civ. Eng. Res. 2014, 5, 21–28. [Google Scholar]
- Cheba, K.; Bąk, I.; Szopik-Depczyńska, K.; Ioppolo, G. Directions of green transformation of the European Union countries. Ecol. Indic. 2022, 136, 108601. [Google Scholar] [CrossRef]
- Lu, Y.L.; Geng, J.; He, G.Z. Industrial transformation and green production to reduce environmental emissions: Taking cement industry as a case. Adv. Clim. Chang. Res. 2015, 6, 202–209. [Google Scholar] [CrossRef]
- Khan, K.; Ishfaq, M.; Amin, M.N.; Shahzada, K.; Wahab, N.; Faraz, M.I. Evaluation of Mechanical and Microstructural Properties and Global Warming Potential of Green Concrete with Wheat Straw Ash and Silica Fume. Materials 2022, 15, 3177. [Google Scholar] [CrossRef]
- Zapata, J.F.; Azevedo, A.; Fontes, C.; Monteiro, S.N.; Colorado, H.A. Environmental Impact and Sustainability of Calcium Aluminate Cements. Sustainability 2022, 14, 2751. [Google Scholar] [CrossRef]
- Grădinaru, C.M.; Şerbănoiu, A.A.; Babor, D.T.; Sârbu, G.C.; Petrescu-Mag, I.V.; Grbădinaru, A.C. When Agricultural Waste Transforms into an Environmentally Friendly Material: The Case of Green Concrete as Alternative to Natural Resources Depletion. J. Agric. Environ. Ethics 2019, 32, 77–93. [Google Scholar] [CrossRef]
- Rahimi, S.R.; Nikbin, I.M.; Allahyari, H.; Habibi, S. Sustainable approach for recycling waste tire rubber and polyethylene terephthalate (PET) to produce green concrete with resistance against sulfuric acid attack. J. Clean. Prod. 2016, 126, 166–177. [Google Scholar] [CrossRef]
- Suhendro, B. Toward green concrete for better sustainable environment. Proc. Eng. 2014, 95, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Alania, A.H.; Johari, M.A.M.; Noaman, A.T.; Bunnori, N.M.; Majid, T.A. Effect of the incorporation of PET fiber and ternary blended binder on the flexural and tensile behaviour of ultra-high performance green concrete. Constr. Build. Mater. 2022, 311, 127306. [Google Scholar] [CrossRef]
- Amato, I. Green cement: Concrete solutions. Nature 2013, 494, 300–301. [Google Scholar] [CrossRef] [Green Version]
- Agwa, I.S.; Zeyad, A.M.; Tayeh, B.A.; Adesina, A.; de Azevedo, A.R.G.; Amin, M.; Hadzima-Nyarko, M. A comprehensive review on the use of sugarcane bagasse ash as a supplementary cementitious material to produce eco-friendly concretes. Mater. Today Proc. 2022, in press. [CrossRef]
- Amran, M.; Fediuk, R.; Abdelgader, H.S.; Murali, G.; Ozbakkaloglu, T.; Lee, Y.H.; Lee, Y.Y. Fiber-reinforced alkali-activated concrete: A review. J. Build. Eng. 2022, 45, 103638. [Google Scholar] [CrossRef]
- Murugappan, V.; Muthadhi, A. Studies on the influence of alginate as a natural polymer in mechanical and long-lasting properties of concrete—A review. Mater. Today Proc. 2022, in press. [CrossRef]
Filler | Chemical Composition | Properties | Ref. |
---|---|---|---|
Pyrolyzed carbon black derived from waste tires | Carbon 95.42 ± 0.16% Hydrogen 0.77 ± 0.20% Nitrogen 0.22 ± 0.07% Sulphur 3.29 ± 0.09% Calcium 0.19 ± 0.01% Oxygen 0.12 ± 0.07% (Results in dry basis and ash-free) Other: Ash 16.55 ± 0.34% Moisture 1.16 ± 0.14% Volatile matter 2.50 ± 0.74 % | Higher Heating Value (HHV) 28.70 ± 0.1 MJ/kg Specific gravity around 0.64 Particle size 75 μm to 600 μm | [35] |
Carbon black from waste tires | Carbon >98% | Fineness Modulus 0.835 (ASTM C-136 standard) Bulk Density 801 kg/m3 (ASTM C-29 Standard) Size of most particles was 0.15 and 0.075 mm | [36] |
Rubber from car, bus, and truck tyre recycling | Carbon black 25% Polymers 40–55% Softeners and fillers 20–35% | Specific gravity 1.1 Water absorption 7.1% for 4–10 mm particles size Water absorption 1.05 for 10–20 mm particle size | [37] |
Self-compacting crumb rubber | Natural rubber 23.1% Synthetic rubber 17.9% Carbon black 28% Steel 14.5% Ash content% 5.1 Fabric, fillers, accelerators, etc. 16.5% | Specific gravity 1.12 Apparent density 489 kg/m3 Thermal conductivity 0.11 W/k m Tensile resistance 4.2–15 MPa Speed of combustion- very low Water absorption 0.65 (negligible) Particle size 3.35 mm to 10 mm | [40] |
Waste Rubber from tires | Rubber hydrocarbon 47.7%, Carbon black 30.7%Acetone extract 15.6% Ash 2.1% Other 3.9%. | Specific gravity 1.14, particle size 4.75 mm Specific gravity 1.03, particle size 5 to 10 mm | [47] |
Crumb rubber obtained from recycling tires | Non-specified | Apparent density 0.38 g/cm3 Absolute density 0.62 g/cm3 Porosity 75% Water absorption 0.03% Maximum dimension: 1 mm | [49] |
BIOCHAR | |
---|---|
Physical Properties | Chemical Composition |
Porosity (from micro–to macropores) depends on the source of biomass and pyrolysis time | Depends on the pyrolysis temperature |
Moisture sorption ability | The high content of the total and organic carbon |
Different morphology (from granular and wire-like structure to irregular shapes) | Content of micro-and macroelements such as potassium, sodium, magnesium, calcium, copper, zinc, iron |
Specific surface area (dependent on the pyrolysis temperature) | The high content of surface functional groups |
Type of Cement | Fibers | Concrete Mix Proportion | Fiber Content | Compressive Strength, (MPa) Concrete/Composite | Splitting Tensile Strength, (MPa) Concrete/Composite | Flexural Strength, (MPa) Concrete/Composite | Ref. |
---|---|---|---|---|---|---|---|
Ordinary Portland Cement: Type I 42.5R | Prickly pear | Gravel 910 kg/m3, Sand 444 kg/m3,Cement 350 kg/m3, Water 175 kg/m3 | 15 kg/m3 | 32/22.8 after 28 days | - | 2.8/7 after 28 days | [129] |
Ordinary Portland Cement: Type I 42.5R | Pine needle | Water, Cement, Sand Stone, mix ratio 0.49:1:1.615:2.636 | 1 vol.% | 40.8/42.13 | 2.65/2.85 | - | [126] |
Ordinary Portland Cement: Type I 42.5R | Coconut (coir) | Cement 353 kg/m3, Water 194 kg/m3 Fine aggregate 698 kg/m3, Coarse aggregate 1257 kg/m3 | 0.5 wt.%(by wt. of cement) | 24/27.5 after 28 days | 8.5/8.7 after 28 days | - | [135] |
Ordinary Portland Cement | Banana | Cement, Sand, Water, mix ratio 1:1.5:0.45 | 0.4 wt.% | 5.20/8.31 after 28 days | 0.64/1.65 after 28 days | 0.98/2.13 after 28 days | [130] |
Ordinary Portland Cement: Type I | Coconut (coir) | Cement 461 kg/m3, Water 240 kg/m3 Fine aggregate 739 kg/m3, Coarse aggregate 898 kg/m3 | 1 vol.% | 35.23/31.3 after 28 days | 3.35/3.58 after 28 days | 4.58/5.44 after 28 days | [136] |
Ordinary Portland Cement | Sisal | Cement, Fine aggregate, Coarse aggregate, mix ratio 1:1.92:3.24, mix ratio Water/ Cement 0.52 | 1.5 vol.% | 22.00/23.88 (KN/m2) after 28 days | 2.31/3.88 (KN/m2) after 28 days | 3.20/4.92 (KN/m2) after 28 days | [137] |
Ordinary Portland Cement | Bamboo | Cement, Fine aggregate, Coarse aggregate, mix ratio 1:1.86:2.51, mix ratio Water/Cement 0.47 | 2 vol.% | 36.23/36.95 after 28 days | 4.84/5.00 after 28 days | 5.16/6.13 after 28 days | [138] |
Ordinary Portland Cement | Coconut (coir) | Cement, Sand, Water, mix ratio 1:2:0.55 | 0.3 wt.% | 6.5/8.1 after 28 days | 0.93/1.53 after 28 days | 3.25/4.53 after 28 days | [139] |
Ordinary Portland Cement | Oil palm trunk | Cement 360 kg/m3, Water 180 kg/m3 Fine aggregate 530 kg/m3 Coarse aggregate 1075 kg/m3 | 1 Vol.% | 30.5/39.6 | 1.6/2.0 | 27.2/32.2 | [140] |
Ordinary Portland Cement | Kenaf | Cement 418 kg/m3, Water 230 kg/m3 Fine aggregate 725 kg/m3 Coarse aggregate 1002 kg/m3 Super plasticizer (1%) 4.18 kg/m3 | 0.5 Vol% | 36.03/31.04 after 28 days | 3.68/3.95 after 28 days | 4.65/4.98 after 28 days | [141] |
Green Additive | Application | Influence on Properties of Concrete |
---|---|---|
Slag [21,29] | Binder component | Improvement in mechanical and strength properties |
Wheat straw ash [22,23,147] | Binder component | Reduction in the spontaneous shrinkage of high-performance concrete and the final autogenous contraction of concrete |
Alkali-activated materials [24] | Binder component | More favorable properties of the entire concrete, such as low thermal conductivity, high volume stability, rapid strength gaining, fire, and chemical erosion resistance |
Calcium aluminate and calcium sulphoaluminate (mineral wool waste) [27,30,148] | Binder component | Improvement of sulfate resistance, enhancement of mechanical properties, increase in compressive strength |
Waste glass powder [31,32] | Sand substitute | Improvement of concrete mechanical properties, such as concrete tensile strength, compressive strength, and porosity |
Marble mud dust [33] | Sand substitute | Improvement of the strength of concrete, freezing properties and resistance to thawing and peeling of the concrete surface |
Aggregates from the recycling of construction and demolition waste [34,149,150,151,152,153] | Component of concrete materials | Improvement of the concrete, especially those used in lower-level applications |
Tire rubber-based additives [34,35,36,37,41,43,46,148] | Gravel substitute, composite filler, additive to sand mortar | Reduction in the concrete’s weight, improvement of the compressive and flexural strength, reduction in compression and tension and a reduction in Young’s modulus of elasticity, reduction in thermal conductivity |
Plastic fibers [57,58] | Concrete filler | Improvement of compression performance, durability, flexural and tensile strength, reduction in the weight of concrete possible release of plasticizers, flame retardants, pigments and heavy metals to the environment |
E-waste [72,73,74,75,76,77,78,79] | Concrete filler | Improvement of the comprehensive strength of the concrete, tensile, flexural and shear strength, and durability properties, possible release of many harmful compounds to the environment |
Biochar | ||
Rice husk [13,89,92,94,95,99] | Cement binder | Reduction in compressive strength, increase in the permeability of the concrete |
Bamboo waste [96,97] | Pozzolanic material | Improvement of mechanical properties, resistance to cracks |
Rice straw [99] | Cement binder | Improvement of the compressive and tensile strengths, and thermal conductivity |
Food and wood waste [100] | Mortar component | Increase in the compressive strength, sorptivity, resistance to water penetration, and ductility compared to conventional mortar |
Forest wood chips [100] | Cement binder | Improvement of the fracture energy, slight decrease of the flexural strength |
Agricultural waste | ||
Wild vegetal plant [111] | Fibrous reinforcing additive | Improvement of the mechanical strength, positioning of fibers horizontally enhances adhesion with the cement paste |
Waste products obtained in palm oil and coconut oil processing [114,135,136,139,140] | Gravel substitutes | Reduction in concrete production costs, improvement the mechanical properties of the mortar, such tensile strength, with the decrease of the compressive strength of concrete |
Hemp fibers [119,120,121] | Mortar component | Improvement of the thermal stability of mortar and compressive strength |
Nanocellulose Fibers [122] | Composite material | Improvement of the mechanical strength, microstructure, the ductility and hardness of concrete |
Vegetal fibers (i.a., prickly pear fibers, pinpeare needle fibers, banana fibers) [127,129,130] | Concrete composites | Reduction in the compressive strength, improvement in the flexural and the splitting tensile strength of the concrete, change in thermal properties such as lower thermal conductivity and specific heat capacity, and high thermal diffusivity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osial, M.; Pregowska, A.; Wilczewski, S.; Urbańska, W.; Giersig, M. Waste Management for Green Concrete Solutions: A Concise Critical Review. Recycling 2022, 7, 37. https://doi.org/10.3390/recycling7030037
Osial M, Pregowska A, Wilczewski S, Urbańska W, Giersig M. Waste Management for Green Concrete Solutions: A Concise Critical Review. Recycling. 2022; 7(3):37. https://doi.org/10.3390/recycling7030037
Chicago/Turabian StyleOsial, Magdalena, Agnieszka Pregowska, Sławomir Wilczewski, Weronika Urbańska, and Michael Giersig. 2022. "Waste Management for Green Concrete Solutions: A Concise Critical Review" Recycling 7, no. 3: 37. https://doi.org/10.3390/recycling7030037
APA StyleOsial, M., Pregowska, A., Wilczewski, S., Urbańska, W., & Giersig, M. (2022). Waste Management for Green Concrete Solutions: A Concise Critical Review. Recycling, 7(3), 37. https://doi.org/10.3390/recycling7030037