The Utilization of Waste Toner as a Modifier in Trinidad Asphalts
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Preparation of Samples
3.2. Sample Characterization
4. Conclusions
- The toner-modified blend containing 20% Toner B exhibited the highest G*, while the blend containing 15% Toner B exhibited the highest elasticity and viscosity;
- All of the modified TLA/TPB paving binders exhibited superior temperature susceptibility;
- The blend containing the 20% Toner B exhibited the best temperature susceptibility at temperatures below 75 °C, while the blend containing 20% Toner D exhibited the best temperature susceptibility at temperatures above 75 °C;
- The same two modified blends (20% Toner B and 20% Toner D) exhibited the best temperature susceptibility for viscosity (µ) at temperatures below 70 °C and above 70 °C, respectively;
- In terms of elasticity (δ), at 90 °C the modified paving binders containing 5% Toner C and 20% Toner D were elastically superior to the world-renowned TLA.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forti, V.; Balde, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential. 2020. Available online: https://www.itu.int/en/ITU-D/Environment/Documents/Toolbox/GEM_2020_def.pdf (accessed on 11 January 2021).
- Wilkinson, E. COVID-19 and the Problem of Electronic Waste. Retrieved from Bright Green Independent Media for Radical, Democratic and Green Movements. 7 August 2020. Available online: http://bright-green.org/2020/08/07/covid-19-and-the-problem-of-electronic-waste/ (accessed on 11 January 2021).
- Babar, S.; Gavade, N.; Shinde, H.; Gore, A.; Mahajan, P.; Lee, K.H.; Bhuse, V.; Garadkar, K. An innovative transformation of waste toner powder into magnetic g-C3N4-Fe2O3 photocatalyst: Sustainable e-waste management. J. Environ. Chem. Eng. 2019, 7, 103041. [Google Scholar] [CrossRef]
- Dumitrescu, S.D.; Cotet, E.C.; Popa, C.P.; Stoica, G.S. Method and installation for recycling plastic waste and toner dust in the production of asphaltic mixtures. Proc. Manuf. Syst. 2014, 9, 233–238. [Google Scholar]
- Ruan, J.; Li, J.; Xu, Z. An environmental friendly recover production line of waste toner cartridges. J. Hazard. Mater. 2004, 185, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Ewers, U.; Nowak, D. Health hazards caused by laser printers and copiers. Gefahrst. Reinhalt. Luft 2006, 66, 203–210. [Google Scholar]
- Fink, J.K. Reactive Polymers: Fundamentals and Applications, 3rd ed.; A Concise Guide to Industrial Polymers; Elsevier: Oxford, UK, 2018. [Google Scholar]
- Batayneh, M.K.; Marie, I.; Asi, I. Promoting the use of crumb rubber concrete in developing countries. Waste Manag. 2008, 28, 2171–2176. [Google Scholar] [CrossRef]
- Ministry of the Environment and Water Resources. Republic of Trinidad and Tobago National Environmental Policy: The Environmental Policy Planning Division. 9 March 2011. Available online: http://www.ema.co.tt/new/images/policies/national-environmental-policy2006.pdf (accessed on 19 January 2021).
- Basel Convention. Basel Convention Regional Centre for Training and Technology Transfer for the Caribbean Region—Business Plan 2012–2013. 22 December 2012. Available online: http://www.basel.int/Portals/4/Basel%20Convention/docs/centers/bussplan/bp2012-2013/Caribbean.pdf (accessed on 19 January 2021).
- Yildirim, Y.; Hazlett, D.; Davio, R. Toner-modified asphalt demonstration projects. Resour. Conversat. Recycl. 2004, 42, 295–308. [Google Scholar] [CrossRef]
- Solaimanian, M.; Kennedy, T.W.; McGennis, R.B. Use of Waste Toner in Asphaltic Concrete; Center for Transportation Research, The University of Texas at Austin: Austin, TX, USA, 1997. [Google Scholar]
- Widyatmoko, I.; Elliott, R. Characteristics of elastomeric and plastomeric binders in contact with natural asphalts. Constr. Build. Mater. 2008, 22, 239–249. [Google Scholar] [CrossRef]
- Maharaj, R. Composition and Rheological Properties of Trinidad Lake Asphalt and Trinidad Petroleum Bitumen. Int. J. Appl. Chem. 2009, 5, 169–179. [Google Scholar]
- Maharaj, R.; Ramjattan-Harry, V.; Mohamed, N. Rutting and Fatigue Cracking Resistance of Waste Cooking Oil Modified Trinidad Asphaltic Materials. Sci. World J. 2015, 2015, 385013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maharaj, R.; Ramjattan-Harry, V.; Mohamed, N. The Rheological Properties of Waste Cooking Oil Blended Trinidad Asphaltic Materials. Prog. Rubber Plast. Recycl. Technol. J. 2015, 31, 219–234. [Google Scholar] [CrossRef]
- Maharaj, R.; Maharaj, C.; Hosein, A. Performance of waste polymer modified road paving materials. Prog. Rubber Plast. Recycl. Technol. 2018, 34, 19–33. [Google Scholar] [CrossRef]
- Ali, R.; Maharaj, R.; Mohammed, S.; White, D. Reusing clay based spent media filter to modify Trinidad asphaltic materials. Clay Res. 2020, 39, 23–30. [Google Scholar] [CrossRef]
- Maharaj, R.; Balgobin, A.; Singh-Ackbarali, D. The Influence of Waste Polythelene on the Rheological Properties of Trinidad Lake Asphalt and Trinidad Petroleum Bitumen. Asian J. Mater. Sci. 2009, 1, 36–44. [Google Scholar] [CrossRef]
- Maharaj, R.; Singh-Ackbarali, D.; St George, A.; Russel, S. The Influence of Recycled Tyre Rubber on the Rheological Properties of Trinidad Lake Asphalt and Trinidad Petroleum Bitumen. Int. J. Appl. Chem. 2009, 5, 181–191. [Google Scholar]
- Ackbarali, D.S.; Maharaj, R. The viscoelastic properties of Trinidad Lake Asphalt-used engine oil blends. Int. J. Appl. Chem. 2011, 7, 1–8. [Google Scholar]
- Mohamed, N.; Ramjattan, V.; Maharaj, R. Mechanistic Enhancement of Asphaltic Materials Using Fly Ash. J. Appl. Sci. 2016, 16, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Maharaj, C.; White, D.; Maharaj, R.; Morin, C. Re-use of steel slag as an aggregate to asphaltic road pavement surface. Cogent Eng. 2017, 4, 1416889. [Google Scholar] [CrossRef]
- Mohamed, N.; Ramlochan, D.; Maharaj, R. Rutting and Fatigue Cracking Susceptibility of Polystyrene Modified Asphalt. Am. J. Appl. Sci. 2017, 14, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Sun, L. Chapter 11—Shear strength measurements for asphalt mixture. In Structural Behavior of Asphalt Pavements; Butterworth-Heinemann: Oxrod, UK, 2016; pp. 715–795. [Google Scholar] [CrossRef]
- Mohamed, N.; Ramjattan-Harry, V.; Maharaj, R. Flow Properties of Fly Ash Modified Asphaltic Binders. Prog. Rubber Plast. Recycl. Technol. 2017, 33, 85–102. [Google Scholar] [CrossRef]
- Russo, F.; Veropalumbo, R.; Viscione, N.; Oreto, C.; Biancardo, S.A. Rheological performance of soft and rigid waste plastic-modified bitumen and mastics. In Plastic Waste for Sustainable Asphalt Roads; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Naples, Italy, 2022; pp. 61–83. [Google Scholar]
- Aghayan, I.; Khafajeh, R. Recycling of PET in asphalt concrete. In Use of Recycled Plastics in Eco-Efficient Concrete; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Naples, Italy, 2019; pp. 269–285. [Google Scholar]
- Wang, H.; Liu, X.; Apostolidis, P.; Scarpas, T. Rheological Behavior and Its Chemical Interpretation of Crumb Rubber Modified Asphalt Containing Warm-Mix Additives. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 337–348. [Google Scholar] [CrossRef]
- Kaya, D.; Topal, A.; McNally, T. Relationship between processing parameters and aging with the rheological behaviour of SBS modifited bitumen. Constr. Build. Mater. 2019, 211, 345–350. [Google Scholar] [CrossRef]
- King, G.; King, H.; Pavlovich, R.D.; Epps, A.L.; Khandal, P. Additives in Asphalt. 1999. Available online: http://www.amaac.org.mx/archivos/eventos/1cma_1999/31.pdf (accessed on 19 January 2021).
- Smith, C.; Chattergoon, L.; Whiting, R. Use of Elemental and Functional Group Analysis for Monitoring Compositional Changes Occurring on Air Blowing and Accelerated Weathering of Natural Asphalt. Analyst 1993, 118, 947–950. [Google Scholar]
- Singh-Ackbarali, D.; Maharaj, R.; Mohamed, N.; Ramjattan-Harry, V. Potential of using frying oil in paving material: Solution to environmental pollution problem. Environ. Sci. Pollut. Res. 2017, 24, 12220–12226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polacco, G.; Stastna, J.; Biondi, D.; Antonelli, F.; Vlachovicova, Z.; Zanzotto, L. Rheology of asphalts modified with glycidylmethacrylate functionalized polymers. J. Colloid Interface Sci. 2004, 280, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Charles, R.F. Road Paving Inspection and Evaluation; The University of the West Indies: St. Augustine, Trinidad and Tobago, 2013. [Google Scholar]
- Subhash, D. How to Refill Laser Printer Toner: Step by Step Instructions. It4nextgen. 6 January 2022. Available online: https://www.it4nextgen.com/steps-to-refill-laser-printer-toner/?fbclid=IwAR0EFSkwQ05r-qpnLQgiasoSrkVBt9O_I-IJu7vyJ3TVUPtCiE3Z7DrxgZY (accessed on 30 September 2022).
TLA | TPB | |
---|---|---|
Source | Natural product mined from the Pitch Lake. Obtained from the Lake Asphalt of Trinidad and Tobago Limited | By-Product of the Petroleum Fractionation Process. Obtained from the Petroleum Company of Trinidad and Tobago Limited |
Packing | Drum | Drum |
Penetration at 25 °C (ASTM D5) | 0–5 | 60–70 |
Specific Gravity (ASTM D70) | 1.3–1.5 g/cm3 | 1.00–1.06 g/cm3 |
Softening Point (ASTM D36) | 89–99 °C | 225 °C |
Flash Point (ASTM D92) | 255–260 °C | 49–56 °C |
Mass of Sample 6 g | ||||||
---|---|---|---|---|---|---|
% Toner Required in Blends | Asphalt Blend | |||||
Toner A | Toner B | |||||
Actual Mass of TLA/TPB Added (g) | Actual Mass of Toner A Added (g) | Actual % Toner A | Actual Mass of TLA/TPB Added (g) | Actual Mass of Toner B Added (g) | Actual % Toner B | |
0.00 | 6.0064 | 0.0000 | 0.00 | 0.0000 | 0.0000 | 0.0000 |
5.00 | 5.7067 | 0.3061 | 5.01 | 5.7022 | 0.3121 | 5.20 |
10.00 | 5.4168 | 0.6076 | 10.13 | 5.4057 | 0.6009 | 10.01 |
15.00 | 5.1128 | 0.9052 | 15.01 | 5.1070 | 0.9034 | 15.06 |
20.00 | 4.8056 | 1.2075 | 20.13 | 4.8046 | 1.2059 | 20.10 |
% Toner Required in Blends | Toner C | Toner D | ||||
Actual Mass of TLA/TPB Added (g) | Actual Mass of Toner C Added (g) | Actual % Toner C | Actual Mass of TLA/TPB Added (g) | Actual Mass of Toner D Added (g) | Actual % Toner D | |
0.00 | 0.0000 | 0.0000 | 0.00 | 0.0000 | 0.0000 | 0.0000 |
5.00 | 5.7031 | 0.3010 | 5.02 | 5.7005 | 0.3082 | 5.14 |
10.00 | 5.4059 | 0.6039 | 10.07 | 5.4042 | 0.6016 | 10.03 |
15.00 | 5.1064 | 0.9023 | 15.04 | 5.1073 | 0.9108 | 15.18 |
20.00 | 4.8030 | 1.2036 | 20.06 | 4.8097 | 1.2007 | 20.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rambarran, S.; Maharaj, R.; Mohammed, S.; Sangster, N. The Utilization of Waste Toner as a Modifier in Trinidad Asphalts. Recycling 2022, 7, 74. https://doi.org/10.3390/recycling7050074
Rambarran S, Maharaj R, Mohammed S, Sangster N. The Utilization of Waste Toner as a Modifier in Trinidad Asphalts. Recycling. 2022; 7(5):74. https://doi.org/10.3390/recycling7050074
Chicago/Turabian StyleRambarran, Shane, Rean Maharaj, Sharona Mohammed, and Nadine Sangster. 2022. "The Utilization of Waste Toner as a Modifier in Trinidad Asphalts" Recycling 7, no. 5: 74. https://doi.org/10.3390/recycling7050074
APA StyleRambarran, S., Maharaj, R., Mohammed, S., & Sangster, N. (2022). The Utilization of Waste Toner as a Modifier in Trinidad Asphalts. Recycling, 7(5), 74. https://doi.org/10.3390/recycling7050074