Kinetics of Zn–C Battery Leaching with Choline Chloride/Urea Natural Deep Eutectic Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Leaching Experiments
Kinetic Modeling
2.2. Effect of Temperature and Solid/NADES Ratio
2.3. Activation Energy
2.4. Final Solid Residue
3. Materials and Methods
3.1. ChCl/Urea NADES Preparation
3.1.1. FTIR Studies
3.1.2. 1H NMR Spectra
3.2. Zinc–Carbon Battery Powder
3.3. Leaching Experiments
3.4. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, S.; Zhou, J.; Jia, H.; Zhang, H. Liquid–liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent. Food Chem. 2018, 243, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 39, 70–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomé, L.I.N.; Baião, V.; da Silva, W.; Brett, C.M.A. Deep eutectic solvents for the production and application of new materials. Appl. Mater. Today 2018, 10, 30–50. [Google Scholar] [CrossRef]
- Stefanovic, R.; Ludwig, M.; Webber, G.B.; Atkin, R.; Page, A.J. Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor. Phys. Chem. Chem. Phys. 2016, 19, 3297–3306. [Google Scholar] [CrossRef]
- Zhekenov, T.; Toksanbayev, N.; Kazakbayeva, Z.; Shah, D.; Mjalli, F.S. Formation of type III Deep Eutectic Solvents and effect of water on their intermolecular interactions. Fluid Phase Equilibria 2017, 441, 43–48. [Google Scholar] [CrossRef]
- Singh, M.B.; Kumar, V.S.; Chaudhary, M.; Singh, P. A mini review on synthesis, properties and applications of deep eutectic solvents. J. Indian Chem. Soc. 2021, 98, 100210. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; McKenzie, K.J.; Obi, S.U. Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. J. Chem. Eng. Data 2006, 51, 1280–1282. [Google Scholar] [CrossRef]
- Durand, E.; Lecomte, J.; Baréa, B.; Villeneuve, P. Towards a better understanding of how to improve lipase-catalyzed reactions using deep eutectic solvents based on choline chloride. Eur. J. Lipid Sci. Technol. 2013, 116, 16–23. [Google Scholar] [CrossRef]
- Panić, M.; Andlar, M.; Tišma, M.; Rezić, T.; Šibalić, D.; Bubalo, M.C.; Redovniković, I.R. Natural deep eutectic solvent as a unique solvent for valorisation of orange peel waste by the integrated biorefinery approach. Waste Manag. 2020, 120, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Aroso, I.M.; Reis, R.L.; Duarte, A.R.C.; Craveiro, R.; Paiva, A. Enhanced performance of supercritical fluid foaming of natural-based polymers by deep eutectic solvent. AIChE J. 2014, 60, 3701–3706. [Google Scholar] [CrossRef] [Green Version]
- Anastas, P.T.; Williamson, T.C. Green Chemistry: An Overview; Chapter 1; ACS American Chemical Society: Washington, DC, USA, 1996; pp. 1–17. [Google Scholar]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Francisco, M.; van der Bruinhorst, A.; Kroon, M.C. Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents. Angew. Chem. Int. Ed. 2013, 52, 3074–3085. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Qi, X.; Li, T.; Luo, M.; Wang, W.; Zu, Y.; Fu, Y. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep. Purif. Technol. 2015, 149, 237–244. [Google Scholar] [CrossRef]
- Buzatu, M.; Săceanu, S.; Petrescu, M.; Ghica, G.; Buzatu, T. Recovery of zinc and manganese from spent batteries by reductive leaching in acidic media. J. Power Sources 2014, 247, 612–617. [Google Scholar] [CrossRef]
- Baba, A.; Adekola, A.; Bale, R. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc–carbon batteries. J. Hazard. Mater. 2009, 171, 838–844. [Google Scholar] [CrossRef]
- Musariri, B.; Akdogan, G.; Dorfling, C.; Bradshaw, S. Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries. Miner. Eng. 2019, 137, 108–117. [Google Scholar] [CrossRef]
- Albler, F.J.; Bica, K.; Foreman, M.R.S.J.; Holgersson, S.; Tyumentsev, J. A comparison of two methods of recovering cobalt from a deep eutectic solvent: Implications for battery recycling. Clean. Prod. 2017, 167, 806–814. [Google Scholar] [CrossRef]
- Foreman, M.R. Progress towards a process for the recycling of nickel metal hydride electric cells using a deep eutectic solvent. Cogent Chem. 2016, 2, 1139289. [Google Scholar] [CrossRef]
- Millia, L.; Dall’Asta, V.; Ferrara, C.; Berbenni, V.; Quartarone, E.; Perna, F.M.; Capriati, V.; Mustarelli, P. Bio-inspired choline chloride-based deep eutectic solvents as electrolytes for lithium-ion batteries. Solid State Ionics 2018, 323, 44–48. [Google Scholar] [CrossRef]
- Tang, B.; Zhang, H.; Row, K.H. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J. Sep. Sci. 2015, 38, 1053–1064. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhu, M.; Zhao, Z.; Tong, B.; Fan, Y.; Hua, Z. Hydrometallurgical processes for recycling spent Lithium-Ion batteries: A critical review, ACS Sustain. Chem. Eng. 2018, 6, 13611–13627. [Google Scholar] [CrossRef]
- Sung-Yong, C.; Won-Geun, L.; Pan-Pan, S. Solvent Extraction Separation of Silver(I) and Zinc(II) from Nitrate Leach Solution of Spent Silver Oxide Batteries with D2EHPA. Mat. Trans. 2019, 60, 1090–1095. [Google Scholar] [CrossRef] [Green Version]
- Topçu, M.; Rüşen, A.; Küçük, Ö. Treatment of copper converter slag with deep eutectic solvent as green chemical. Waste Manag. 2021, 132, 64–73. [Google Scholar] [CrossRef]
- Tran, M.K.; Rodrigues, M.-T.F.F.; Kato, K.; Babu, G.; Ajayan, P.M. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat. Energy 2019, 4, 339–345. [Google Scholar] [CrossRef]
- Alonso, D.A.; Baeza, A.; Chinchilla, R.; Gomez, C.; Guillen, G.; Marset, X.; Pastor, I.M.; Ramon, D.J.; Ñiguez, D.R.; Saavedra, B. Eutectic mixtures as a sustainable alternative to solvents conventions in Organic Chemestry. An. Quím. 2018, 114, 79–87. [Google Scholar]
- Hammond, O.S.; Bowron, D.T.; Edler, K.J. Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem. 2016, 18, 2736–2744. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Deng, D.; Chen, Y.; Shan, H.; Ai, N. Solubilities and thermodynamic properties of CO2 in choline-chloride based deep eutectic solvents. J. Chem. Thermodyn. 2014, 75, 58–62. [Google Scholar] [CrossRef]
- Dias, R.M.; da Costa, M.C.; Jimenez, Y.P. Perspectives of Using DES-Based Systems for Solid–Liquid and Liquid–Liquid Extraction of Metals from E-Waste. Minerals 2022, 12, 710. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, K.; Chen, J.; Yu, J. Ascorbic acid and choline chloride: A new natural deep eutectic solvent for extracting ter-butylhydroquinone antioxidant. J. Molec. Liq. 2018, 260, 173–179. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O.; Oliveira, M.B.P.P. Strategies for Pesticides Analysis, 1st ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Chen, W.-S.; Liao, C.-T.; Lin, K.-Y. Recovery Zinc and Manganese from Spent Battery Powder by Hydrometallurgical Route. Energy Procedia 2017, 107, 167–174. [Google Scholar] [CrossRef]
- Abdel-Aal, E.; Rashad, M. Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid. Hydrometallurgy 2004, 74, 189–194. [Google Scholar] [CrossRef]
- Mishra, D.; Kim, D.J.; Ralph, D.E.; Ahn, J.G.; Rhee, Y.H. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. J. Hazard. Mater. 2008, 152, 1082–1091. [Google Scholar] [CrossRef]
- Dickinson, C.; Heal, G. Solid–liquid diffusioncontrolled rate equations. Thermochim. Acta 1999, 340-341, 89–103. [Google Scholar] [CrossRef]
- Senanayake, G. A mixed surface reaction kinetic model for the reductive leaching of manganese dioxide with acidic sulfur dioxide. Hydrometallurgy 2004, 73, 215–224. [Google Scholar] [CrossRef]
- Senanayake, G.; Das, G. A comparative study of leaching kinetics of limonitic laterite and synthetic iron oxides in sulfuric acid containing sulfur dioxide. Hydrometallurgy 2004, 72, 59–72. [Google Scholar] [CrossRef]
- Agacayak, T.; Aras, A. Investigation of Dissolution Kinetics of Zinc and Manganese From Spent Zinc-Carbon Batteries in Sulphuric Acid Solution. Turk. J. Eng. 2018, 2, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Kursunoglu, S.; Kaya, M. Dissolution and precipitation of zinc and manganese obtained from spent zinc-carbon and alkaline battery powder. Physicochem. Probl. Miner. Process. 2014, 50, 41–45. [Google Scholar] [CrossRef]
- Avraamides, J.; Senanayake, G.; Clegg, R. Sulfur dioxide leaching of spent Zinc-Carbon battery scrap. J. Power Sources 2006, 159, 1488–1493. [Google Scholar] [CrossRef]
- Pateli, I.M.; Thompson, D.; Alabdullah, S.S.M.; Abbott, A.P.; Jenkin, G.R.T.; Hartley, J.M. The effect of pH and hydrogen bond donor on the dissolution of metal oxides in deep eutectic solvents. Green Chem. 2020, 22, 5476–5486. [Google Scholar] [CrossRef]
- Taner, H.A.; Aras, A.; Agacayak, T. Leaching of zinc- carbon batteries in acetic acid solution. Int. Acad. Res. Congr. 2016, 4, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Pereira, N.M.; Pereira, C.M.; Araújo, J.P.; Silva, A.F. Zinc Electrodeposition from deep eutectic solvent containing organic additives. J. Electroanal. Chem. 2017, 801, 545–551. [Google Scholar] [CrossRef]
- Xie, X.; Zou, X.; Lu, X.; Lu, C.; Cheng, H.; Xu, Q.; Zhou, Z. Electrodeposition of Zn and Cu–Zn alloy from ZnO/CuO precursors in deep eutectic solvent. Appl. Surf. Sci. 2016, 385, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Pereira, N.M.; Pereira, C.M.; Araújo, J.P.; Silva, A.F. Electrodeposition of Mn and Mn-Sn Alloy Using Choline Chloride-Based Ionic Liquids. J. Electrochem. Soc. 2017, 164, D486–D492. [Google Scholar] [CrossRef]
- Fashu, S.; Gu, C.D.; Zhang, J.L.; Zheng, H.; Wang, X.L.; Tu, J.P. Electrodeposition, Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic Solvent. J. Mater. Eng. Perform. 2014, 24, 434–444. [Google Scholar] [CrossRef]
- Yue, D.; Jia, Y.; Yao, Y.; Sun, J.; Jing, Y. Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea. Electrochim. Acta 2012, 65, 30–36. [Google Scholar] [CrossRef]
- Deng, L.; Jing, Y.; Sun, J.; Ma, J.; Yue, D.; Wang, H. Preparation and properties of a moisture-stable ionic liquid ChCl–ZnCl2–MgCl2·2CH3COOCH2CH3·2H2O. J. Mol. Liq. 2012, 170, 45–50. [Google Scholar] [CrossRef]
- Song, X.; Hu, W.; Huang, W.; Wang, H.; Yan, S.; Yu, S.; Liu, F. Methanolysis of polycarbonate into valuable product bisphenol A using choline chloride-based deep eutectic solvents as highly active catalysts. Chem. Eng. J. 2020, 388, 124324. [Google Scholar] [CrossRef]
- Khan, M.H.; Kurny, A. Characterization of Spent Household Zinc-Carbon Dry Cell Batteries in the Process of Recovery of Value Metals. J. Miner. Mater. Charact. Eng. 2012, 11, 641–651. [Google Scholar] [CrossRef]
- Sadeghi, S.M.; Jesus, J.; Soares, H.M. A critical updated review of the hydrometallurgical routes for recycling zinc and manganese from spent zinc-based batteries. Waste Manag. 2020, 113, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J.; Rodríguez, F. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. J. Mol. Liq. 2018, 260, 37–43. [Google Scholar] [CrossRef]
Element | Content/wt % |
---|---|
Mn | 48.83 |
Zn | 13.02 |
Fe | 1.12 |
Si | 0.48 |
Ni | 0.25 |
Mg | 0.21 |
C | 5.53 |
S | 0.11 |
Kinetic Model | Solid/NADES = 3.3 g dm−3 | Solid/NADES = 10 g dm−3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Temperature/°C | |||||||||
80 | 100 | 125 | 150 | 80 | 100 | 125 | 150 | ||
Pseudo-first-order | kapp/min−1 | 1.75 × 10−3 | 2.88 × 10−3 | 5.18 × 10−3 | 2.05 × 10−2 | 3.23 × 10−4 | 3.60 × 10−4 | 1.42 × 10−3 | 3.33 × 10−3 |
R2 | 0.93 | 0.98 | 0.97 | 0.99 | 0.95 | 0.92 | 0.94 | 0.94 | |
Second-order | k/min−1 | 2.51 × 10−3 | 4.66 × 10−3 | 1.07 × 10−2 | 1.47 × 10−1 | 4.04 × 10−4 | 4.69 × 10−4 | 1.97 × 10−3 | 5.02 × 10−3 |
R2 | 0.95 | 0.97 | 0.97 | 0.93 | 0.95 | 0.92 | 0.94 | 0.93 | |
Layer diffusion | kd/min−1 | 7.35 × 10−4 | 1.34 × 10−3 | 2.55 × 10−3 | 5.61 × 10−3 | 1.03 × 10−3 | 1.28 × 10−4 | 5.68 × 10−4 | 1.46 × 10−3 |
R2 | 0.95 | 0.97 | 0.97 | 0.96 | 0.96 | 0.92 | 0.95 | 0.94 | |
Shrinking sphere model | kss/min−1 | 5.17 × 10−4 | 8.19 × 10−4 | 1.36 × 10−3 | 4.14 × 10−3 | 1.00 × 10−4 | 1.10 × 10−4 | 7.64 × 10−4 | 9.70 × 10−4 |
R2 | 0.93 | 0.97 | 0.97 | 0.97 | 0.95 | 0.91 | 0.93 | 0.94 | |
Shrinking core model | kpl/min−1 | 1.04 × 10−4 | 2.05 × 10−4 | 4.49 × 10−4 | 1.78 × 10−3 | 1.33 × 10−5 | 1.69 × 10−5 | 7.81 × 10−5 | 2.13 × 10−4 |
R2 | 0.96 | 0.98 | 0.99 | 0.99 | 0.97 | 0.95 | 0.96 | 0.96 |
Kinetic Model | Solid/NADES = 3.3 g dm−3 | Solid/NADES = 10 g dm−3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Temperature/°C | |||||||||
80 | 100 | 125 | 150 | 80 | 100 | 125 | 150 | ||
Pseudo-first-order | kapp/min−1 | 1.69 × 10−3 | 1.66 × 10−3 | 8.00 × 10−3 | 3.59 × 10−2 | 9.10 × 10−4 | 1.12 × 10−3 | 3.55 × 10−3 | 5.97 × 10−3 |
R2 | 0.94 | 0.99 | 0.97 | 0.93 | 0.96 | 0.97 | 0.93 | 0.95 | |
Second-order | k/min−1 | 2.15 × 10−3 | 2.51 × 10−3 | 2.09 × 10−2 | 6.06 × 10−1 | 1.10 × 10−3 | 1.39 × 10−3 | 5.10 × 10−3 | 8.94 × 10−3 |
R2 | 0.95 | 0.98 | 0.97 | 0.70 | 0.97 | 0.97 | 0.95 | 0.97 | |
Layer diffusion | kd/min−1 | 5.65 × 10−4 | 7.41 × 10−4 | 3.75 × 10−3 | 7.29 × 10−3 | 2.55 × 10−4 | 3.50 × 10−4 | 1.47 × 10−3 | 2.51 × 10−3 |
R2 | 0.96 | 0.98 | 0.97 | 0.88 | 0.98 | 0.98 | 0.96 | 0.96 | |
Shrinking sphere model | kss/min−1 | 5.20 × 10−4 | 4.83 × 10−4 | 1.95 × 10−3 | 5.60 × 10−3 | 2.85 × 10−4 | 3.47 × 10−4 | 1.05 × 10−3 | 1.75 × 10−3 |
R2 | 0.93 | 0.98 | 0.97 | 0.95 | 0.96 | 0.97 | 0.93 | 0.95 | |
Shrinking core model | kpl/min−1 | 7.38 × 10−5 | 1.08 × 10−4 | 7.53 × 10−4 | 2.57 × 10−3 | 3.20 × 10−5 | 4.49 × 10−5 | 2.08 × 10−4 | 3.67 × 10−4 |
R2 | 0.97 | 0.99 | 0.98 | 0.97 | 0.99 | 0.99 | 0.98 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Reyes, I.G.; Mendoza-Pérez, J.A.; Ruiz-Guerrero, R.; Medina-Velázquez, D.Y.; Zepeda-Vallejo, L.G.; Morales-Ramírez, Á.d.J. Kinetics of Zn–C Battery Leaching with Choline Chloride/Urea Natural Deep Eutectic Solvents. Recycling 2022, 7, 86. https://doi.org/10.3390/recycling7060086
Cruz-Reyes IG, Mendoza-Pérez JA, Ruiz-Guerrero R, Medina-Velázquez DY, Zepeda-Vallejo LG, Morales-Ramírez ÁdJ. Kinetics of Zn–C Battery Leaching with Choline Chloride/Urea Natural Deep Eutectic Solvents. Recycling. 2022; 7(6):86. https://doi.org/10.3390/recycling7060086
Chicago/Turabian StyleCruz-Reyes, Irlanda G., Jorge A. Mendoza-Pérez, Rosario Ruiz-Guerrero, Dulce Y. Medina-Velázquez, Luis G. Zepeda-Vallejo, and Ángel de J. Morales-Ramírez. 2022. "Kinetics of Zn–C Battery Leaching with Choline Chloride/Urea Natural Deep Eutectic Solvents" Recycling 7, no. 6: 86. https://doi.org/10.3390/recycling7060086
APA StyleCruz-Reyes, I. G., Mendoza-Pérez, J. A., Ruiz-Guerrero, R., Medina-Velázquez, D. Y., Zepeda-Vallejo, L. G., & Morales-Ramírez, Á. d. J. (2022). Kinetics of Zn–C Battery Leaching with Choline Chloride/Urea Natural Deep Eutectic Solvents. Recycling, 7(6), 86. https://doi.org/10.3390/recycling7060086