Emerging and Recycling of Li-Ion Batteries to Aid in Energy Storage, A Review
Abstract
:1. Introduction
2. Lithium-Ion Battery (LIB)
Cell Component | Material | Composition/wt% | Cost/% |
---|---|---|---|
Cathode active material | Layered structures, e.g., LiCoO2 (LCO)/Li(NixMnyCo1-x-y)O2 (NMC)/Li(Ni1-x-yCoAly)O2 (NCA), Spinel structures, e.g., LiMn2O4 (LMO), Olivine structures, e.g., LiFePO4 (LFP) | 22–25 | 65–70 |
Cathode foil | Al | 4–5 | 1 |
Anode active material | Materials made of silicon or carbonaceous substances (such as graphite or hard carbon) | 24–26 | 8–9 |
Anode foil | Cu | 3 | 2 |
Binder | Polyvinylidene fluoride (PVDF)/polytetrafluoroethylene (PTFE)/polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC)/styrene butadiene rubber (SBR) | 2–3 | 8–9 |
Electrolyte | Mixtures of ethylene carbonate (EC)/propylene carbonate (PC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC)/diethyl carbonate (DEC) and additives, e.g., fluoroethylene carbonate (FEC)/vinylene carbonate (VC) | 10–12 | 1 |
Conductive additive | Acetylene black (AB) | 1 | 0.1 |
Conductive salt | LiPF6 | 1.5–2 | 8 |
Separator | Polyethylene (PE)/polypropylene (PP) | 4–5 | 4 |
Cell case | Varies (metal or laminate) | 4–6 | 4 |
2.1. Anode
2.1.1. Carbon-Based Anode
2.1.2. Hard Carbon
2.1.3. Alloy Anode
2.1.4. Metallic Anode
2.1.5. Silicon-Based Anode
2.2. Cathode
2.2.1. LiCoO2
2.2.2. LiFePO4
2.2.3. LiMnO2
2.2.4. LiNixCoyMn1-x-yO2 (NCM)
2.2.5. V2O5
2.3. Electrolyte
2.3.1. Liquid Electrolyte
2.3.2. Organic Electrolyte
2.3.3. Aqueous Electrolyte
2.3.4. Water-in-Salt Electrolyte
2.3.5. Ionic Liquid Electrolyte
3. Fabrication Technique of LIBs
3.1. Cylindrical Cell Fabrication
3.2. Prismatic Cell Fabrication
3.3. Pouch Cell Fabrication
4. Advancement in Battery Technology
5. Recycling Spent Li-Ion Batteries
5.1. Discharging
5.2. Dismantling
6. Cutting-Edge LIB Recycling Techniques
6.1. Pyrometallurgy
6.2. Hydrometallurgy
6.2.1. Leaching
6.2.2. Alkali Leaching
6.2.3. Acid Leaching
6.3. Direct Recycling
7. Applications of LIBs
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Asif Amjad, M.; Arshed, N.; Mohamed, A.; Ali, S.; Haider Jafri, M.A.; Khan, Y.A. Fossil Energy Demand and Economic Development in BRICS Countries. Front. Energy Res. 2022, 10, 842793. [Google Scholar] [CrossRef]
- Afroze, S.; Reza, M.S.; Amin, M.R.; Taweekun, J.; Azad, A.K. Progress in Nanomaterials Fabrication and Their Prospects in Artificial Intelligence towards Solid Oxide Fuel Cells: A Review. Int. J. Hydrogen Energy 2022, in press. [Google Scholar] [CrossRef]
- Yao, X.; Yasmeen, R.; Haq Padda, I.U.; Hassan Shah, W.U.; Kamal, M.A. Inequalities by Energy Sources: An Assessment of Environmental Quality. PLoS ONE 2020, 15, e0230503. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.S.; Azad, A.K.; Bakar, M.S.A.; Karim, M.R.; Sharifpur, M.; Taweekun, J. Evaluation of Thermochemical Characteristics and Pyrolysis of Fish Processing Waste for Renewable Energy Feedstock. Sustainability 2022, 14, 1203. [Google Scholar] [CrossRef]
- Afroze, S.; Reza, S.; Somalu, M.R.; Azad, A.K. Super—Protonic Conductors for Solid Acid Fuel Cells (SAFCs): A Review. Eurasian J. Phys. Funct. Mater. 2023, 7, 6–37. [Google Scholar] [CrossRef]
- Munawer, M.E. Human Health and Environmental Impacts of Coal Combustion and Post-Combustion Wastes. J. Sustain. Min. 2018, 17, 87–96. [Google Scholar] [CrossRef]
- Reza, M.S.; Taweekun, J.; Afroze, S.; Siddique, S.A.; Islam, M.S.; Wang, C.; Azad, A.K. Investigation of Thermochemical Properties and Pyrolysis of Barley Waste as a Source for Renewable Energy. Sustainability 2023, 15, 1643. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Koh, S.C.L.; Reaney, I.M.; Acquaye, A.; Schileo, G.; Mustapha, K.B.; Greenough, R. Perovskite Solar Cells: An Integrated Hybrid Lifecycle Assessment and Review in Comparison with Other Photovoltaic Technologies. Renew. Sustain. Energy Rev. 2017, 80, 1321–1344. [Google Scholar] [CrossRef]
- Afroze, S.; Reza, M.S.; Cheok, Q.; Islam, S.N.; Abdalla, A.M.; Taweekun, J.; Azad, A.K.; Khalilpoor, N.; Issakhov, A. Advanced Applications of Fuel Cells during the COVID-19 Pandemic. Int. J. Chem. Eng. 2021, 2021, 5539048. [Google Scholar] [CrossRef]
- Afroze, S.; Torino, N.; Henry, P.F.; Reza, M.S.; Cheok, Q.; Azad, A.K. Neutron and X-Ray Powder Diffraction Data to Determine the Structural Properties of Novel Layered Perovskite PrSrMn2O5+δ. Data Brief 2020, 29, 105173. [Google Scholar] [CrossRef]
- Reza, M.S.; Ahmad, N.B.H.; Afroze, S.; Taweekun, J.; Sharifpur, M.; Azad, A.K. Hydrogen Production from Water Splitting through Photocatalytic Activity of Carbon-Based Materials. Chem. Eng. Technol. 2022, 46, 420–434. [Google Scholar] [CrossRef]
- Solovyev, A.A.; Kuterbekov, K.A.; Nurkenov, S.A.; Nygymanova, A.S.; Shipilova, A.V.; Smolyanskiy, E.A.; Rabotkin, S.V.; Ionov, I.V. Anode-Supported Solid Oxide Fuel Cells with Multilayer LSC/CGO/LSC Cathode. Fuel Cells 2021, 21, 408–412. [Google Scholar] [CrossRef]
- Kuterbekov, K.A.K.; Nikonov, A.V.N.; Bekmyrza, K.Z.; Pavzderin, N.B.; Kabyshev, A.M.; Kubenova, M.M.; Kabdrakhimova, G.D.; Aidarbekov, N. Classification of Solid Oxide Fuel Cells. Nanomaterials 2022, 12, 1059. [Google Scholar] [CrossRef] [PubMed]
- Omeiza, L.A.; Abdalla, A.M.; Wei, B.; Dhanasekaran, A.; Subramanian, Y.; Afroze, S.; Reza, M.S.; Bakar, S.A.; Azad, A.K. Nanostructured Electrocatalysts for Advanced Applications in Fuel Cells. Energies 2023, 16, 1876. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Q.L.; Zou, R.; Xu, Q. Metal-Organic Frameworks for Energy Applications. Chem 2017, 2, 52–80. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of Energy Storage Systems in Distribution Networks: Placement, Sizing, Operation, and Power Quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Divya, K.C.; Østergaard, J. Battery Energy Storage Technology for Power Systems—An Overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Abakumov, A.M.; Fedotov, S.S.; Antipov, E.V.; Tarascon, J.M. Solid State Chemistry for Developing Better Metal-Ion Batteries. Nat. Commun. 2020, 11, 4976. [Google Scholar] [CrossRef]
- Schechner, S. The Art of Making Leyden Jars and Batteries According to Benjamin Franklin. eRittenhouse 2015, 26, 1–11. [Google Scholar]
- Chatterjee, S. Michael Faraday: Discovery of Electromagnetic Induction. Resonance 2002, 7, 35–45. [Google Scholar] [CrossRef]
- Křepelková, M. Evolution of Batteries: From Experiments to Everyday Usage. Available online: http://poseidon2.feld.cvut.cz/conf/poster/poster2017/proceedings/Poster_2017/Section_HS/HS_034_Krepelkova.pdf (accessed on 30 April 2023).
- Ronalds, B.F. The Bicentennial of Francis Ronalds’s Electric Telegraph. Phys. Today 2016, 69, 26–31. [Google Scholar] [CrossRef]
- Yang, J.L.; Cao, J.M.; Zhao, X.X.; Zhang, K.Y.; Zheng, S.H.; Gu, Z.Y.; Wu, X.L. Advanced Aqueous Proton Batteries: Working Mechanism, Key Materials, Challenges and Prospects. EnergyChem 2022, 4, 100092. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef]
- Eshetu, G.G.; Judez, X.; Li, C.; Martinez-Ibañez, M.; Gracia, I.; Bondarchuk, O.; Carrasco, J.; Rodriguez-Martinez, L.M.; Zhang, H.; Armand, M. Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion’s Chemistry-Induced Anomalous Synergistic Effect. J. Am. Chem. Soc. 2018, 140, 9921–9933. [Google Scholar] [CrossRef]
- Sankaralingam, R.K.; Seshadri, S.; Sunarso, J.; Bhatt, A.I.; Kapoor, A. Overview of the Factors Affecting the Performance of Vanadium Redox Flow Batteries. J. Energy Storage 2021, 41, 102857. [Google Scholar] [CrossRef]
- Viswanathan, B.; Viswanathan, B. Chapter 12—Batteries; Elsevier B.V.: Amsterdam, The Netherlands, 2017; ISBN 9780444563538. [Google Scholar]
- Luo, Y.; Yan, Y.; Zheng, S.; Xue, H.; Pang, H. Graphitic Carbon Nitride Based Materials for Electrochemical Energy Storage. J. Mater. Chem. A 2019, 7, 901–924. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, G.; Li, Q.; Xue, H.; Pang, H. Non-Noble Metal-Transition Metal Oxide Materials for Electrochemical Energy Storage. Energy Storage Mater. 2018, 15, 171–201. [Google Scholar] [CrossRef]
- Prifti, H.; Parasuraman, A.; Winardi, S.; Lim, T.M.; Skyllas-Kazacos, M. Membranes for Redox Flow Battery Applications. Membranes 2012, 2, 275–306. [Google Scholar] [CrossRef]
- Williamson, S.S.; Cassani, P.A.; Lukic, S.; Blunier, B. Energy Storage, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; ISBN 9780123820365. [Google Scholar]
- Pinnangudi, B.; Kuykendal, M.; Bhadra, S. Smart Grid Energy Storage; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780081009529. [Google Scholar]
- Abo-Khalil, A.G.; Abdelkareem, M.A.; Sayed, E.T.; Maghrabie, H.M.; Radwan, A.; Rezk, H.; Olabi, A.G. Electric Vehicle Impact on Energy Industry, Policy, Technical Barriers, and Power Systems. Int. J. Thermofluids 2022, 13, 100134. [Google Scholar] [CrossRef]
- Akhmetov, N.; Manakhov, A.; Al-Qasim, A.S. Li-Ion Battery Cathode Recycling: An Emerging Response to Growing Metal Demand and Accumulating Battery Waste. Electronics 2023, 12, 1152. [Google Scholar] [CrossRef]
- Nazri, G.-A.; Pistoia, G. (Eds.) Lithium Batteries: Science and Technology—Google Books; Springer US: New York City, NY, USA, 2003; ISBN 978-0-387-92675-9. [Google Scholar]
- Hailes, O. Lithium in International Law: Trade, Investment, and the Pursuit of Supply Chain Justice. J. Int. Econ. Law 2022, 25, 148–170. [Google Scholar] [CrossRef]
- Bhutada, G. This Chart Shows More than 25 Years of Lithium Production by Country. Available online: https://www.weforum.org/agenda/2023/01/chart-countries-produce-lithium-world/ (accessed on 27 March 2023).
- Chen, D.; Rao, S.; Wang, D.; Cao, H.; Xie, W.; Liu, Z. Synergistic Leaching of Valuable Metals from Spent Li-Ion Batteries Using Sulfuric Acid- L-Ascorbic Acid System. Chem. Eng. J. 2020, 388, 124321. [Google Scholar] [CrossRef]
- He, H.; Sun, F.; Wang, Z.; Lin, C.; Zhang, C.; Xiong, R.; Deng, J.; Zhu, X.; Xie, P.; Zhang, S.; et al. China’s Battery Electric Vehicles Lead the World: Achievements in Technology System Architecture and Technological Breakthroughs. Green Energy Intell. Transp. 2022, 1, 100020. [Google Scholar] [CrossRef]
- Lyu, P.; Liu, X.; Qu, J.; Zhao, J.; Huo, Y.; Qu, Z.; Rao, Z. Recent Advances of Thermal Safety of Lithium Ion Battery for Energy Storage. Energy Storage Mater. 2020, 31, 195–220. [Google Scholar] [CrossRef]
- Scrosati, B. Challenge of Portable Power. Nature 1995, 373, 557–558. [Google Scholar] [CrossRef]
- Bhutada, G. Mapped: EV Battery Manufacturing Capacity, by Region. Available online: https://www.visualcapitalist.com/sp/mapped-ev-battery-manufacturing-capacity-by-region/ (accessed on 28 March 2023).
- Pacala, S.; Socolow, R. Stabilization Wedges: Solving the Climate Problem for the next 50 Years with Current Technologies. Science 2004, 305, 968–972. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Scrosati, B.; Garche, J. Lithium Batteries: Status, Prospects and Future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chem. Rev. 2013, 113, 5364–5457. [Google Scholar] [CrossRef]
- BU-302: Series and Parallel Battery Configurations—Battery University. Available online: https://batteryuniversity.com/article/bu-302-series-and-parallel-battery-configurations (accessed on 25 April 2023).
- Ahmeid, M.; Muhammad, M.; Lambert, S.; Attidekou, P.S.; Milojevic, Z. A Rapid Capacity Evaluation of Retired Electric Vehicle Battery Modules Using Partial Discharge Test. J. Energy Storage 2022, 50, 104562. [Google Scholar] [CrossRef]
- Jyoti, J.; Singh, B.P.; Tripathi, S.K. Recent Advancements in Development of Different Cathode Materials for Rechargeable Lithium Ion Batteries. J. Energy Storage 2021, 43, 103112. [Google Scholar] [CrossRef]
- Roy, P.; Srivastava, S.K. Nanostructured Anode Materials for Lithium Ion Batteries. J. Mater. Chem. A 2015, 3, 2454–2484. [Google Scholar] [CrossRef]
- Deng, D. Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Grosjean, C.; Herrera Miranda, P.; Perrin, M.; Poggi, P. Assessment of World Lithium Resources and Consequences of Their Geographic Distribution on the Expected Development of the Electric Vehicle Industry. Renew. Sustain. Energy Rev. 2012, 16, 1735–1744. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Wolverton, C.; Isaacs, E.D. Electrical Energy Storage for Transportation—Approaching the Limits Of, and Going Beyond, Lithium-Ion Batteries. Energy Environ. Sci. 2012, 5, 7854–7863. [Google Scholar] [CrossRef]
- Rangarajan, S.S.; Sunddararaj, S.P.; Sudhakar, A.V.V.; Shiva, C.K.; Subramaniam, U.; Collins, E.R.; Senjyu, T. Lithium-Ion Batteries—The Crux of Electric Vehicles with Opportunities and Challenges. Clean Technol. 2022, 4, 908–930. [Google Scholar] [CrossRef]
- Pan, H.; Hu, Y.S.; Chen, L. Room-Temperature Stationary Sodium-Ion Batteries for Large-Scale Electric Energy Storage. Energy Environ. Sci. 2013, 6, 2338–2360. [Google Scholar] [CrossRef]
- Martin, G.; Rentsch, L.; Höck, M.; Bertau, M. Lithium Market Research—Global Supply, Future Demand and Price Development. Energy Storage Mater. 2017, 6, 171–179. [Google Scholar] [CrossRef]
- Altiparmak, S.O. China and Lithium Geopolitics in a Changing Global Market. Chin. Polit. Sci. Rev. 2022. [Google Scholar] [CrossRef]
- Bridge, G.; Faigen, E. Towards the Lithium-Ion Battery Production Network: Thinking beyond Mineral Supply Chains. Energy Res. Soc. Sci. 2022, 89, 102659. [Google Scholar] [CrossRef]
- Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef]
- Atawi, I.E.; Al-Shetwi, A.Q.; Magableh, A.M.; Albalawi, O.H. Recent Advances in Hybrid Energy Storage System Integrated Renewable Power Generation: Configuration, Control, Applications, and Future Directions. Batteries 2022, 9, 29. [Google Scholar] [CrossRef]
- Wang, F.; Wu, X.; Li, C.; Zhu, Y.; Fu, L.; Wu, Y.; Liu, X. Nanostructured Positive Electrode Materials for Post-Lithium Ion Batteries. Energy Environ. Sci. 2016, 9, 3570–3611. [Google Scholar] [CrossRef]
- Zhang, K.; Han, X.; Hu, Z.; Zhang, X.; Tao, Z.; Chen, J. Nanostructured Mn-Based Oxides for Electrochemical Energy Storage and Conversion. Chem. Soc. Rev. 2015, 44, 699–728. [Google Scholar] [CrossRef]
- Yao, J.; Li, Y.; Massé, R.C.; Uchaker, E.; Cao, G. Revitalized Interest in Vanadium Pentoxide as Cathode Material for Lithium-Ion Batteries and beyond. Energy Storage Mater. 2018, 11, 205–259. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; He, P.; Hosono, E.; Zhou, H. Nano Active Materials for Lithium-Ion Batteries. Nanoscale 2010, 2, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
- Nzereogu, P.U.; Omah, A.D.; Ezema, F.I.; Iwuoha, E.I.; Nwanya, A.C. Anode Materials for Lithium-Ion Batteries: A Review. Appl. Surf. Sci. Adv. 2022, 9, 100233. [Google Scholar] [CrossRef]
- Mukherjee, R.; Krishnan, R.; Lu, T.M.; Koratkar, N. Nanostructured Electrodes for High-Power Lithium Ion Batteries. Nano Energy 2012, 1, 518–533. [Google Scholar] [CrossRef]
- Bruce, P.G.; Scrosati, B.; Tarascon, J.M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem.-Int. Ed. 2008, 47, 2930–2946. [Google Scholar] [CrossRef]
- Garole, D.J.; Hossain, R.; Garole, V.J.; Sahajwalla, V.; Nerkar, J.; Dubal, D.P. Recycle, Recover and Repurpose Strategy of Spent Li-Ion Batteries and Catalysts: Current Status and Future Opportunities. ChemSusChem 2020, 13, 3079–3100. [Google Scholar] [CrossRef]
- Natarajan, S.; Aravindan, V. Burgeoning Prospects of Spent Lithium-Ion Batteries in Multifarious Applications. Adv. Energy Mater. 2018, 8, 1802303. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling Lithium-Ion Batteries from Electric Vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Sethurajan, M.; Gaydardzhiev, S. Bioprocessing of Spent Lithium Ion Batteries for Critical Metals Recovery—A Review. Resour. Conserv. Recycl. 2021, 165, 105225. [Google Scholar] [CrossRef]
- Chen, T.; Jin, Y.; Lv, H.; Yang, A.; Liu, M.; Chen, B.; Xie, Y.; Chen, Q. Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Trans. Tianjin Univ. 2020, 26, 208–217. [Google Scholar] [CrossRef]
- Whittingham, M.S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104, 4271–4301. [Google Scholar] [CrossRef]
- Luan, C.; Ma, C.; Wang, C.; Chang, L.; Xiao, L.; Yu, Z.; Li, H. Influence of the Connection Topology on the Performance of Lithium-Ion Battery Pack under Cell-to-Cell Parameters Variations. J. Energy Storage 2021, 41, 102896. [Google Scholar] [CrossRef]
- Baumann, M.; Wildfeuer, L.; Rohr, S.; Lienkamp, M. Parameter Variations within Li-Ion Battery Packs—Theoretical Investigations and Experimental Quantification. J. Energy Storage 2018, 18, 295–307. [Google Scholar] [CrossRef]
- Arun, V.; Kannan, R.; Ramesh, S.; Vijayakumar, M.; Raghavendran, P.S.; Siva Ramkumar, M.; Anbarasu, P.; Sundramurthy, V.P. Review on Li-Ion Battery vs Nickel Metal Hydride Battery in EV. Adv. Mater. Sci. Eng. 2022, 2022, 7910072. [Google Scholar] [CrossRef]
- Sobianowska-Turek, A.; Urbańska, W.; Janicka, A.; Zawiślak, M.; Matla, J. The Necessity of Recycling Ofwaste Li-Ion Batteries Used in Electric Vehicles as Objects Posing a Threat to Human Health and the Environment. Recycling 2021, 6, 35. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Siddiqui, S.E.T.; Rahman, M.A.; Kim, J.H.; Sharif, S.B.; Paul, S. A Review on Recent Advancements of Ni-NiO Nanocomposite as an Anode for High-Performance Lithium-Ion Battery. Nanomaterials 2022, 12, 2930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, L.; Sun, F.; Wang, Z. An Overview on Thermal Safety Issues of Lithium-Ion Batteries for Electric Vehicle Application. IEEE Access 2018, 6, 23848–23863. [Google Scholar] [CrossRef]
- John, B. Goodenough Evolution of Strategies for Modern Rechargeable Batteries. J. Power Sources 2011, 196, 22201. [Google Scholar] [CrossRef]
- Liu, C.; Neale, Z.G.; Cao, G. Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries. Mater. Today 2016, 19, 109–123. [Google Scholar] [CrossRef]
- Liu, D.; Cao, G. Engineering Nanostructured Electrodes and Fabrication of Film Electrodes for Efficient Lithium Ion Intercalation. Energy Environ. Sci. 2010, 3, 1218–1237. [Google Scholar] [CrossRef]
- Thompson, D.L.; Hartley, J.M.; Lambert, S.M.; Shiref, M.; Harper, G.D.J.; Kendrick, E.; Anderson, P.; Ryder, K.S.; Gaines, L.; Abbott, A.P. The Importance of Design in Lithium Ion Battery Recycling—A Critical Review. Green Chem. 2020, 22, 7585–7603. [Google Scholar] [CrossRef]
- Schotten, C.; Nicholls, T.P.; Bourne, R.A.; Kapur, N.; Nguyen, B.N.; Willans, C.E. Making Electrochemistry Easily Accessible to the Synthetic Chemist. Green Chem. 2020, 22, 3358–3375. [Google Scholar] [CrossRef]
- Abdollahifar, M.; Molaiyan, P.; Perovic, M.; Kwade, A. Insights into Enhancing Electrochemical Performance of Li-Ion Battery Anodes via Polymer Coating. Energies 2022, 15, 8791. [Google Scholar] [CrossRef]
- Kam, K.; Doeff, M. Electrode Materials for Lithium Ion Batteries|Sigma-Aldrich. Mater. Matters 2012, 7, 56–60. [Google Scholar]
- Mekonnen, Y.; Sundararajan, A.; Sarwat, A.I. A Review of Cathode and Anode Materials for Lithium-Ion Batteries. In Proceedings of the IEEE Southeastcon 2016, Norfolk, VA, USA, 30 March–3 April 2016. [Google Scholar] [CrossRef]
- Borah, R.; Hughson, F.R.; Johnston, J.; Nann, T. On Battery Materials and Methods. Mater. Today Adv. 2020, 6, 100046. [Google Scholar] [CrossRef]
- Matsui, F.; Eguchi, R.; Nishiyama, S.; Izumi, M.; Uesugi, E.; Goto, H.; Matsushita, T.; Sugita, K.; Daimon, H.; Hamamoto, Y.; et al. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-Intercalated Graphite Superconductor Surface. Sci. Rep. 2016, 6, 36258. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The Structure of Suspended Graphene Sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef]
- Birowska, M.; Milowska, K.; Majewski, J.A. Van Der Waals Density Functionals for Graphene Layers and Graphite. Acta Phys. Pol. A 2011, 120, 845–848. [Google Scholar] [CrossRef]
- Kaskhedikar, N.A.; Maier, J. Lithium Storage in Carbon Nanostructures. Adv. Mater. 2009, 21, 2664–2680. [Google Scholar] [CrossRef]
- Yoshio, M.; Brodd, R.J.; Kozawa, A. Lithium-Ion Batteries: Science and Technologies; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1, ISBN 9780387344447. [Google Scholar]
- Markevich, E.; Levi, M.D.; Aurbach, D. Comparison between Potentiostatic and Galvanostatic Intermittent Titration Techniques for Determination of Chemical Diffusion Coefficients in Ion-Insertion Electrodes. J. Electroanal. Chem. 2005, 580, 231–237. [Google Scholar] [CrossRef]
- Persson, K.; Sethuraman, V.A.; Hardwick, L.J.; Hinuma, Y.; Meng, Y.S.; Van Der Ven, A.; Srinivasan, V.; Kostecki, R.; Ceder, G. Lithium Diffusion in Graphitic Carbon. J. Phys. Chem. Lett. 2010, 1, 1176–1180. [Google Scholar] [CrossRef]
- Billaud, D.; McRae, E.; Hérold, A. Synthesis and Electrical Resistivity of Lithium-Pyrographite Intercalation Compounds (Stages I, II and III). Mater. Res. Bull. 1979, 14, 857–864. [Google Scholar] [CrossRef]
- Qi, Y.; Guo, H.; Hector, L.G.; Timmons, A. Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation. J. Electrochem. Soc. 2010, 157, A558. [Google Scholar] [CrossRef]
- Scharner, S.; Weppner, W.; Schmid-Beurmann, P. Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel. J. Electrochem. Soc. 1999, 146, 857–861. [Google Scholar] [CrossRef]
- Wagemaker, M.; Simon, D.R.; Kelder, E.M.; Schoonman, J.; Ringpfeil, C.; Haake, U.; Lützenkirchen-Hecht, D.; Frahm, R.; Mulder, F.M. A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12. Adv. Mater. 2006, 18, 3169–3173. [Google Scholar] [CrossRef]
- Takami, N.; Hoshina, K.; Inagaki, H. Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction. J. Electrochem. Soc. 2011, 158, A725. [Google Scholar] [CrossRef]
- Wunde, F.; Berkemeier, F.; Schmitz, G. Lithium Diffusion in Sputter-Deposited Li4Ti5O12 Thin Films. J. Power Sources 2012, 215, 109–115. [Google Scholar] [CrossRef]
- Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. Li-Ion Diffusion in Amorphous Si Films Prepared by RF Magnetron Sputtering: A Comparison of Using Liquid and Polymer Electrolytes. Mater. Chem. Phys. 2010, 120, 421–425. [Google Scholar] [CrossRef]
- Ding, N.; Xu, J.; Yao, Y.X.; Wegner, G.; Fang, X.; Chen, C.H.; Lieberwirth, I. Determination of the Diffusion Coefficient of Lithium Ions in Nano-Si. Solid State Ion. 2009, 180, 222–225. [Google Scholar] [CrossRef]
- Pharr, M.; Zhao, K.; Wang, X.; Suo, Z.; Vlassak, J.J. Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries. Nano Lett. 2012, 12, 5039–5047. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Magasinski, A.; Yushin, G.; Fuller, T.F. Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature. J. Electrochem. Soc. 2010, 157, A1139. [Google Scholar] [CrossRef]
- Laforge, B.; Levan-Jodin, L.; Salot, R.; Billard, A. Study of Germanium as Electrode in Thin-Film Battery. J. Electrochem. Soc. 2008, 155, A181. [Google Scholar] [CrossRef]
- Baggetto, L.; Notten, P.H.L. Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study. J. Electrochem. Soc. 2009, 156, A169. [Google Scholar] [CrossRef]
- Chockla, A.M.; Klavetter, K.C.; Mullins, C.B.; Korgel, B.A. Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2012, 4, 4658–4664. [Google Scholar] [CrossRef] [PubMed]
- Tirado, J.L. Inorganic Materials for the Negative Electrode of Lithium-Ion Batteries: State-of-the-Art and Future Prospects. Mater. Sci. Eng. R Rep. 2003, 40, 103–136. [Google Scholar] [CrossRef]
- Xie, J.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Zhao, X.B.; Cao, G.S. Li-Ion Diffusion Behavior in Sn, SnO and SnO2 Thin Films Studied by Galvanostatic Intermittent Titration Technique. Solid State Ion. 2010, 181, 1611–1615. [Google Scholar] [CrossRef]
- Courtney, I.; Tse, J. Ab Initio Calculation of the Lithium-Tin Voltage Profile. Phys. Rev. B-Condens. Matter Mater. Phys. 1998, 58, 15583–15588. [Google Scholar] [CrossRef]
- Hamon, Y.; Brousse, T.; Jousse, F.; Topart, P.; Buvat, P.; Schleich, D.M. Aluminum Negative Electrode in Lithium Ion Batteries. J. Power Sources 2001, 97–98, 185–187. [Google Scholar] [CrossRef]
- Saint, J.; Morcrette, M.; Larcher, D.; Tarascon, J.M. Exploring the Li-Ga Room Temperature Phase Diagram and the Electrochemical Performances of the LixGay Alloys vs. Li. Solid State Ion. 2005, 176, 189–197. [Google Scholar] [CrossRef]
- Hwa, Y.; Sung, J.H.; Wang, B.; Park, C.M.; Sohn, H.J. Nanostructured Zn-Based Composite Anodes for Rechargeable Li-Ion Batteries. J. Mater. Chem. 2012, 22, 12767–12773. [Google Scholar] [CrossRef]
- Qian, J.; Qiao, D.; Ai, X.; Cao, Y.; Yang, H. Reversible 3-Li Storage Reactions of Amorphous Phosphorus as High Capacity and Cycling-Stable Anodes for Li-Ion Batteries. Chem. Commun. 2012, 48, 8931–8933. [Google Scholar] [CrossRef]
- Park, C.-M.; Yoon, S.; Lee, S.-I.; Kim, J.-H.; Jung, J.-H.; Sohn, H.-J. High-Rate Capability and Enhanced Cyclability of Antimony-Based Composites for Lithium Rechargeable Batteries. J. Electrochem. Soc. 2007, 154, A917. [Google Scholar] [CrossRef]
- Park, C.M.; Jung, H.; Sohn, H.J. Electrochemical Behaviors and Reaction Mechanism of Nanosilver with Lithium. Electrochem. Solid-State Lett. 2009, 12, A171–A175. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, M.; Naik, D.; Gole, J.L. Electrochemical Properties of Li-Mg Alloy Electrodes for Lithium Batteries. J. Power Sources 2001, 92, 70–80. [Google Scholar] [CrossRef]
- Xianming, W.; Nishina, T.; Uchida, I. Lithium Alloy Formation at Bismuth Thin Layer Electrode and Its Kinetics in Propylene Carbonate Electrolyte. J. Power Sources 2002, 104, 90–96. [Google Scholar] [CrossRef]
- Abe, Y.; Saito, I.; Tomioka, M.; Kabir, M.; Kumagai, S. Effects of Excessive Prelithiation on Full-Cell Performance of Li-Ion Batteries with a Hard-Carbon/Nanosized-Si Composite Anode. Batteries 2022, 8, 210. [Google Scholar] [CrossRef]
- Megahed, S.; Scrosati, B. Lithium-Ion Rechargeable Batteries. J. Power Sources 1994, 51, 79–104. [Google Scholar] [CrossRef]
- Selis, L.A.; Seminario, J.M. Dendrite Formation in Silicon Anodes of Lithium-Ion Batteries. RSC Adv. 2018, 8, 5255–5267. [Google Scholar] [CrossRef]
- Zheng, H.; Qu, Q.; Zhang, L.; Liu, G.; Battaglia, V.S. Hard Carbon: A Promising Lithium-Ion Battery Anode for High Temperature Applications with Ionic Electrolyte. RSC Adv. 2012, 2, 4904–4912. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, Y.; Li, J.; Song, Y.; Shi, J.; Guo, Q.; Liu, L. Synthesis and Electrochemical Properties of Artificial Graphite as an Anode for High-Performance Lithium-Ion Batteries. Carbon 2013, 64, 553–556. [Google Scholar] [CrossRef]
- Chauque, S.; Oliva, F.Y.; Visintin, A.; Barraco, D.; Leiva, E.P.M.; Cámara, O.R. Lithium Titanate as Anode Material for Lithium Ion Batteries: Synthesis, Post-Treatment and Its Electrochemical Response. J. Electroanal. Chem. 2017, 799, 142–155. [Google Scholar] [CrossRef]
- Mou, H.; Xiao, W.; Miao, C.; Li, R.; Yu, L. Tin and Tin Compound Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review. Front. Chem. 2020, 8, 141. [Google Scholar] [CrossRef]
- Casimir, A.; Zhang, H.; Ogoke, O.; Amine, J.C.; Lu, J.; Wu, G. Silicon-Based Anodes for Lithium-Ion Batteries: Effectiveness of Materials Synthesis and Electrode Preparation. Nano Energy 2016, 27, 359–376. [Google Scholar] [CrossRef]
- Ni, J.; Huang, Y.; Gao, L. A High-Performance Hard Carbon for Li-Ion Batteries and Supercapacitors Application. J. Power Sources 2013, 223, 306–311. [Google Scholar] [CrossRef]
- Kureha Battery Materials Japan (KBMJ) Partners with Kuraray and the INCJ to Support Global Growth of Li-Ion Battery Hard Carbon Anode Technology—Green Car Congress. Available online: https://www.greencarcongress.com/2012/07/kbmj-20120731.html (accessed on 18 April 2023).
- Wan, Y.; Liu, Y.; Chao, D.; Li, W.; Zhao, D. Recent Advances in Hard Carbon Anodes with High Initial Coulombic Efficiency for Sodium-Ion Batteries. Nano Mater. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Peng, M.; Shin, K.; Jiang, L.; Jin, Y.; Zeng, K.; Zhou, X.; Tang, Y. Alloy-Type Anodes for High-Performance Rechargeable Batteries. Angew. Chem.-Int. Ed. 2022, 61, e202206770. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, K.G.; Goebel, S.; Greszler, T.; Mathias, M.; Oelerich, W.; Eroglu, D.; Srinivasan, V. Quantifying the Promise of Lithium–air Batteries for Electric Vehicles. Energy Environ. Sci. 2014, 7, 1555–1563. [Google Scholar] [CrossRef]
- Kim, H.; Choi, J.; Sohn, H.; Kang, T. The Insertion Mechanism of Lithium into Mg2Si Anode Material for Li-Ion Batteries. J. Electrochem. Soc. 1999, 146, 4401–4405. [Google Scholar] [CrossRef]
- Park, C.M.; Kim, J.H.; Kim, H.; Sohn, H.J. Li-Alloy Based Anode Materials for Li Secondary Batteries. Chem. Soc. Rev. 2010, 39, 3115–3141. [Google Scholar] [CrossRef]
- Leela, A.; Reddy, M.; Gowda, S.R.; Shaijumon, M.M.; Ajayan, P.M.; Reddy, A.L.M.; Gowda, S.R.; Ajayan, M.; Shaijumon, M.M. Hybrid Nanostructures for Energy Storage Applications. Adv. Mater. 2012, 24, 5045–5064. [Google Scholar] [CrossRef]
- Kasavajjula, U.; Wang, C.; Appleby, A.J. Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells. J. Power Sources 2007, 163, 1003–1039. [Google Scholar] [CrossRef]
- Qian, D.; Gu, Y.; Chen, Y.; Liu, H.; Wang, J.; Zhou, H. Ultra-High Specific Capacity of Cr3+-Doped Li4Ti5O12 at 1.55 V as Anode Material for Lithium-Ion Batteries. Mater. Lett. 2019, 238, 102–106. [Google Scholar] [CrossRef]
- Guan, B.Y.; Lu, Y.; Wang, Y.; Wu, M.; Wen, X.; Lou, D.; Guan, B.Y.; Lu, Y.; Lou, X.W.; Wang, Y.; et al. Porous Iron–Cobalt Alloy/Nitrogen-Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal–Organic Framework Hybrids for Oxygen Reduction. Adv. Funct. Mater. 2018, 28, 1706738. [Google Scholar] [CrossRef]
- Chen, D.; Ji, G.; Ding, B.; Ma, Y.; Qu, B.; Chen, W.; Lee, J.Y. Double Transition-Metal Chalcogenide as a High-Performance Lithium-Ion Battery Anode Material. Ind. Eng. Chem. Res. 2014, 53, 17901–17908. [Google Scholar] [CrossRef]
- Qi, Z.; Wu, Y.; Li, X.; Qu, Y.; Yang, Y.; Mei, D. Microwave-Assisted Synthesis of CuC2O4·× H2O for Anode Materials in Lithium-Ion Batteries with a High Capacity. Ionics 2020, 26, 33–42. [Google Scholar] [CrossRef]
- Aragón, M.J.; León, B.; Vicente, C.P.; Tirado, J.L. Synthesis and Electrochemical Reaction with Lithium of Mesoporous Iron Oxalate Nanoribbons. Inorg. Chem. 2008, 47, 10366–10371. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; He, X.; Liu, Q.; Qi, X.; Sun, D.; Zheng, Y.; Wang, R.; Bai, Y. Enhanced Reversible Li-Ion Storage in Si@Ti3C2 MXene Nanocomposite. Electrochem. Commun. 2018, 97, 16–21. [Google Scholar] [CrossRef]
- Ding, W.; Wang, S.; Wu, X.; Wang, Y.; Li, Y.; Zhou, P.; Zhou, T.; Zhou, J.; Zhuo, S. Co0.85Se@C/Ti3C2Tx MXene Hybrids as Anode Materials for Lithium-Ion Batteries. J. Alloys Compd. 2020, 816, 152566. [Google Scholar] [CrossRef]
- Wu, H.; Cui, Y. Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries. Nano Today 2012, 7, 414–429. [Google Scholar] [CrossRef]
- Teki, R.; Krishnan, R.; Parker, T.C.; Lu, T.M.; Datta, M.K.; Kumta, P.N.; Koratkar, N. Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries. Small 2009, 5, 2236–2242. [Google Scholar] [CrossRef]
- Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C. Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries. J. Power Sources 2014, 257, 421–443. [Google Scholar] [CrossRef]
- Szczech, J.R.; Jin, S. Nanostructured Silicon for High Capacity Lithium Battery Anodes. Energy Environ. Sci. 2011, 4, 56–72. [Google Scholar] [CrossRef]
- Obrovac, M.N.; Christensen, L. Structural Changes in Silicon Anodes during Lithium Insertion/extraction. Electrochem. Solid-State Lett. 2004, 7, 93–96. [Google Scholar] [CrossRef]
- Schipper, F.; Nayak, P.K.; Erickson, E.M.; Amalraj, S.F.; Srur-Lavi, O.; Penki, T.R.; Talianker, M.; Grinblat, J.; Sclar, H.; Breuer, O.; et al. Study of Cathode Materials for Lithium-Ion Batteries: Recent Progress and New Challenges. Inorganics 2017, 5, 32. [Google Scholar] [CrossRef]
- Huang, Y. The Discovery of Cathode Materials for Lithium-ion Batteries from the View of Interdisciplinarity. Interdiscip. Mater. 2022, 1, 323–329. [Google Scholar] [CrossRef]
- Mohamed, N.; Allam, N.K. Recent Advances in the Design of Cathode Materials for Li-Ion Batteries. RSC Adv. 2020, 10, 21662–21685. [Google Scholar] [CrossRef]
- Chen, X.; Shen, W.; Vo, T.T.; Cao, Z.; Kapoor, A. An Overview of Lithium-Ion Batteries for Electric Vehicles. In Proceedings of the 10th International Power & Energy Conference (IPEC), Ho Chi Minh City, Vietnam, 12–14 December 2012; pp. 230–235. [Google Scholar] [CrossRef]
- Louli, A.J.; Eldesoky, A.; deGooyer, J.; Coon, M.; Aiken, C.P.; Simunovic, Z.; Metzger, M.; Dahn, J.R. Different Positive Electrodes for Anode-Free Lithium Metal Cells. J. Electrochem. Soc. 2022, 169, 40517. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, K.; Wang, Z. A Review of the Application of Carbon Materials for Lithium Metal Batteries. Batteries 2022, 8, 246. [Google Scholar] [CrossRef]
- Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the Correlation between Surface Chemistry and Performance of Graphite Negative Electrodes for Li Ion Batteries. Electrochim. Acta 1999, 45, 67–86. [Google Scholar] [CrossRef]
- Ramasubramanian, B.; Sundarrajan, S.; Chellappan, V.; Reddy, M.V.; Ramakrishna, S.; Zaghib, K. Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review. Batteries 2022, 8, 133. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M. Olivine Positive Electrodes for Li-Ion Batteries: Status and Perspectives. Batteries 2018, 4, 39. [Google Scholar] [CrossRef]
- Xia, H.; Meng, Y.S.; Lu, L.; Ceder, G.; Alliance, S. Electrochemical Behavior and Li Diffusion Study of LiCoO2 Thin Film Electrodes Prepared by PLD. Sci. Commons 2007. Available online: https://en.scientificcommons.org/20613936 (accessed on 27 April 2023).
- Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J.; Guo, F.; Wu, Y.A.; Rong, Y.; Kou, R.; Xiao, X.; et al. Approaching the Capacity Limit of Lithium Cobalt Oxide in Lithium Ion Batteries via Lanthanum and Aluminium Doping. Nat. Energy 2018, 3, 936–943. [Google Scholar] [CrossRef]
- Bruce, P.G.; Armstrong, A.R.; Gitzendanner, R.L. New Intercalation Compounds for Lithium Batteries: Layered LiMnO2. J. Mater. Chem. 1999, 9, 193–198. [Google Scholar] [CrossRef]
- Vitins, G.; West, K. Lithium Intercalation into Layered LiMnO2. J. Electrochem. Soc. 1997, 144, 2587–2592. [Google Scholar] [CrossRef]
- Che, G.; Jirage, K.B.; Fisher, E.R.; Martin, C.R.; Yoneyama, H. Chemical-Vapor Deposition-Based Template Synthesis of Microtubular TiS2 Battery Electrodes. J. Electrochem. Soc. 1997, 144, 4296–4302. [Google Scholar] [CrossRef]
- Wang, R.; He, X.; He, L.; Wang, F.; Xiao, R.; Gu, L.; Li, H.; Chen, L. Atomic Structure of Li2MnO3 after Partial Delithiation and Re-Lithiation. Adv. Energy Mater. 2013, 3, 1358–1367. [Google Scholar] [CrossRef]
- Ohzuku, T.; Ueda, A.; Nagayama, M. Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells. J. Electrochem. Soc. 1993, 140, 1862–1870. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Y.; Meng, Y.; Wang, Y.; Ou, J.; Guo, Y.; Xiao, D. Phytic Acid Derived LiFePO4 beyond Theoretical Capacity as High-Energy Density Cathode for Lithium Ion Battery. Nano Energy 2017, 34, 408–420. [Google Scholar] [CrossRef]
- Yamada, A.; Chung, S.C.; Hinokuma, K. Optimized LiFePO4 for Lithium Battery Cathodes. J. Electrochem. Soc. 2001, 148, A224. [Google Scholar] [CrossRef]
- Shukla, A.K.; Prem Kumar, T. Materials for Next-Generation Lithium Batteries. Curr. Sci. 2008, 94, 314–331. [Google Scholar]
- Lloris, J.M.; Pérez Vicente, C.; Tirado, J.L. Improvement of the Electrochemical Performance of LiCoPO4 5 V Material Using a Novel Synthesis Procedure. Electrochem. Solid-State Lett. 2002, 5, 234–237. [Google Scholar] [CrossRef]
- Choi, D.; Wang, D.; Bae, I.T.; Xiao, J.; Nie, Z.; Wang, W.; Viswanathan, V.V.; Lee, Y.J.; Zhang, J.G.; Graff, G.L.; et al. LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode. Nano Lett. 2010, 10, 2799–2805. [Google Scholar] [CrossRef]
- Priyono, S.; Lubis, B.M.; Humaidi, S. Synthesis of Lithium Mangan Dioxide (LiMn2O4) for Lithium-Ion Battery Cathode from Various Lithium Sources Related Content Heating Effect on Manufacturing Li4Ti5O12 Electrode Sheet with PTFE Binder on Battery Cell Performance. J. Phys. Conf. Ser. 2018, 985, 012054. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, S.; Oh, P.; Kim, Y.; Cho, J. High Performance LiMn2O4 Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries. Nano Lett. 2014, 14, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Manthiram, A. Synthesis and Electrochemical Properties of LiCo2O4 Spinel Cathodes. J. Electrochem. Soc. 2002, 149, A162. [Google Scholar] [CrossRef]
- Daniel, C.; Mohanty, D.; Li, J.; Wood, D.L. Cathode Materials Review. AIP Conf. Proc. 2014, 1597, 26–43. [Google Scholar] [CrossRef]
- Kaur, G.; Gates, B.D. Review—Surface Coatings for Cathodes in Lithium Ion Batteries: From Crystal Structures to Electrochemical Performance. J. Electrochem. Soc. 2022, 169, 43504. [Google Scholar] [CrossRef]
- Du Pasquier, A.; Plitz, I.; Menocal, S.; Amatucci, G. A Comparative Study of Li-Ion Battery, Supercapacitor and Nonaqueous Asymmetric Hybrid Devices for Automotive Applications. J. Power Sources 2003, 115, 171–178. [Google Scholar] [CrossRef]
- Maeng, S.; Chung, Y.; Min, S.; Shin, Y. Enhanced Mechanical Strength and Electrochemical Performance of Core–shell Structured High–nickel Cathode Material. J. Power Sources 2020, 448, 227395. [Google Scholar] [CrossRef]
- Noerochim, L.; Suwarno, S.; Idris, N.H.; Dipojono, H.K. Recent Development of Nickel-Rich and Cobalt-Free Cathode Materials for Lithium-Ion Batteries. Batteries 2021, 7, 84. [Google Scholar] [CrossRef]
- Yesibolati, N.; Umirov, N.; Koishybay, A.; Omarova, M.; Kurmanbayeva, I.; Zhang, Y.; Zhao, Y.; Bakenov, Z. High Performance Zn/LiFePO4 Aqueous Rechargeable Battery for Large Scale Applications. Electrochim. Acta 2014, 152, 505–511. [Google Scholar] [CrossRef]
- Ji, H.; Tao, L.; Hu, B.; Xu, J.; Ding, J. Enhanced Rate and Low-Temperature Performance of LiFePO4 Cathode with 2D Ti3C2 MXene as Conductive Network. J. Electroanal. Chem. 2023, 928, 117047. [Google Scholar] [CrossRef]
- Lithium Iron Phosphate (LiFePO4) Battery. Available online: https://www.batteryspace.com/prod-specs/9055.pdf (accessed on 30 April 2023).
- Islam, M.; Omole, A.; Islam, A.; Domijan, A. Dynamic Capacity Estimation for a Typical Grid-Tied Event Programmable Li-FePO4 Battery. In Proceedings of the IEEE International Energy Conference and Exhibition (EnergyCon 2010), Manama, Bahrain, 18–22 December 2010; pp. 594–599. [Google Scholar] [CrossRef]
- Wu, B.; Ren, Y.; Li, N. LiFePO4 Cathode Materials. In Electric Vehicles—The Benefits and Barriers; Soylu, S., Ed.; IntechOpen: London, UK, 2018; Volume 18, pp. 3631–3638. ISBN 978-953-51-6037-3. [Google Scholar]
- Hummel, R.E. Electronic Properties of Materials, 4th ed.; Springer-Verlag: New York, NY, USA, 2011; ISBN 978-1-4419-8164-6. [Google Scholar]
- Zuo, C.; Hu, Z.; Qi, R.; Liu, J.; Li, Z.; Lu, J.; Dong, C.; Yang, K.; Huang, W.; Chen, C.; et al. Double the Capacity of Manganese Spinel for Lithium-Ion Storage by Suppression of Cooperative Jahn–Teller Distortion. Adv. Energy Mater. 2020, 10, 2000363. [Google Scholar] [CrossRef]
- Idemoto, Y.; Mochizuki, T.; Ui, K.; Koura, N. Properties, Crystal Structure, and Performance of O-LiMnO[sub 2] as Cathode Material for Li Secondary Batteries. J. Electrochem. Soc. 2006, 153, A418. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, B.; Cheng, C.; Xiong, W.; Wang, Z.; Zhang, Z.; Wang, L.; Liu, X. A Simple and Facile One-Step Strategy to Synthesize Orthorhombic LiMnO2 Nano-Particles with Excellent Electrochemical Performance. Ceram. Int. 2015, 10, 15266–15271. [Google Scholar] [CrossRef]
- Freire, M.; Kosova, N.V.; Jordy, C.; Chateigner, D.; Lebedev, O.I.; Maignan, A.; Pralong, V. A New Active Li-Mn-O Compound for High Energy Density Li-Ion Batteries. Nat. Mater. 2015, 15, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Asl, H.Y.; Manthiram, A. Reining in Dissolved Transition-Metal Ions. Science 2020, 369, 140–141. [Google Scholar] [CrossRef]
- Choi, J.; Manthiram, A. Role of Chemical and Structural Stabilities on the Electrochemical Properties of Layered LiNi1/3Mn1/3Co1/3O2 Cathodes. J. Electrochem. Soc. 2005, 152, A1714. [Google Scholar] [CrossRef]
- Kang, K.; Meng, Y.S.; Bréger, J.; Grey, C.P.; Ceder, G. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. Science 2006, 311, 977–980. [Google Scholar] [CrossRef]
- Li, J.; Yao, R.; Cao, C. LiNi1/3Co1/3Mn1/3O2 Nanoplates with {010} Active Planes Exposing Prepared in Polyol Medium as a High-Performance Cathode for Li-Ion Battery. ACS Appl. Mater. Interfaces 2014, 6, 5075–5082. [Google Scholar] [CrossRef]
- Yang, C.; Huang, J.; Huang, L.; Wang, G. Electrochemical Performance of LiCo1/3Mn1/3Ni1/3O2 Hollow Spheres as Cathode Material for Lithium Ion Batteries. J. Power Sources 2013, 226, 219–222. [Google Scholar] [CrossRef]
- Gao, P.; Yang, G.; Liu, H.; Wang, L.; Zhou, H. Lithium Diffusion Behavior and Improved High Rate Capacity of LiNi1/3Co1/3Mn1/3O2 as Cathode Material for Lithium Batteries. Solid State Ion. 2012, 207, 50–56. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, P.; Long, Z.; Jiang, Y.; Gao, D. The Morphology, Structure and Electrochemical Properties of LiNi1/3Mn1/3Co1/3O2 Prepared by Electrospun Method. J. Alloys Compd. 2008, 462, 340–342. [Google Scholar] [CrossRef]
- Christensen, C.K.; Sørensen, D.R.; Hvam, J.; Ravnsbæk, D.B. Structural Evolution of Disordered LixV2O5 Bronzes in V2O5 Cathodes for Li-Ion Batteries. Chem. Mater. 2019, 31, 512–520. [Google Scholar] [CrossRef]
- Tolganbek, N.; Yerkinbekova, Y.; Kalybekkyzy, S.; Bakenov, Z.; Mentbayeva, A. Current State of High Voltage Olivine Structured LiMPO4 Cathode Materials for Energy Storage Applications: A Review. J. Alloys Compd. 2021, 882, 160774. [Google Scholar] [CrossRef]
- Chernova, N.A.; Roppolo, M.; Dillon, A.C.; Whittingham, M.S. Layered Vanadium and Molybdenum Oxides: Batteries and Electrochromics. J. Mater. Chem. 2009, 19, 2526–2552. [Google Scholar] [CrossRef]
- Natarajan, S.; Kim, S.J.; Aravindan, V. Restricted Lithiation into a Layered V2O5 cathode towards Building “rocking-Chair” Type Li-Ion Batteries and beyond. J. Mater. Chem. A 2020, 8, 9483–9495. [Google Scholar] [CrossRef]
- Delmas, C.; Brèthes, S.; Ménétrier, M. ω-LixV2O5—A New Electrode Material for Rechargeable Lithium Batteries. J. Power Sources 1991, 34, 113–118. [Google Scholar] [CrossRef]
- Zhang, J.; Gai, J.; Song, K.; Chen, W. Advances in Electrode/electrolyte Interphase for Sodium-Ion Batteries from Half Cells to Full Cells. Cell Rep. Phys. Sci. 2022, 3, 100868. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in Electrolytes for Rechargeable Li-Based Batteries and beyond. Green Energy Environ. 2016, 1, 18–42. [Google Scholar] [CrossRef]
- Dai, F.; Cai, M. Best Practices in Lithium Battery Cell Preparation and Evaluation. Commun. Mater. 2022, 3, 64. [Google Scholar] [CrossRef]
- Zhao, D.; Li, S. Regulating the Performance of Lithium-Ion Battery Focus on the Electrode-Electrolyte Interface. Front. Chem. 2020, 8, 821. [Google Scholar] [CrossRef]
- Schroder, K.; Alvarado, J.; Yersak, T.A.; Li, J.; Dudney, N.; Webb, L.J.; Meng, Y.S.; Stevenson, K.J. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes. Chem. Mater. 2015, 27, 5531–5542. [Google Scholar] [CrossRef]
- Fehrmann, R.; Santini, C. Ionic Liquids: Synthesis, Properties, Technologies and Applications; De Gruyter: Berlin, Germany, 2019; ISBN 9783110583632. [Google Scholar]
- Yu, D.; Li, X.; Xu, J. Safety Regulation of Gel Electrolytes in Electrochemical Energy Storage Devices. Sci. China Mater. 2019, 62, 1556–1573. [Google Scholar] [CrossRef]
- Badi, N.; Theodore, A.M.; Alghamdi, S.A.; Al-Aoh, H.A.; Lakhouit, A.; Singh, P.K.; Norrrahim, M.N.F.; Nath, G. The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries. Polymers 2022, 14, 3101. [Google Scholar] [CrossRef]
- Lahiri, A.; Endres, F. Ionic Liquid Electrolytes as a Medium for Electrodeposition of Nanostructured Materials for Li-Ion Batteries. In Encyclopedia of Ionic Liquids; Springer: Singapore, 2021; pp. 1–12. [Google Scholar] [CrossRef]
- Yue, Z.; Dunya, H.; Ashuri, M.; Kucuk, K.; Aryal, S.; Antonov, S.; Alabbad, B.; Segre, C.U.; Mandal, B.K. Synthesis of a Very High Specific Surface Area Active Carbon and Its Electrical Double-Layer Capacitor Properties in Organic Electrolytes. ChemEngineering 2020, 4, 43. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, W.H. Development of Electrolytes towards Achieving Safe and High-Performance Energy-Storage Devices: A Review. ChemElectroChem 2015, 2, 22–36. [Google Scholar] [CrossRef]
- Hubble, D.; Brown, D.E.; Zhao, Y.; Fang, C.; Lau, J.; McCloskey, B.D.; Liu, G. Liquid Electrolyte Development for Low-Temperature Lithium-Ion Batteries. Energy Environ. Sci. 2022, 15, 550–578. [Google Scholar] [CrossRef]
- Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Wang, G.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. Nonflammable Organic Electrolytes for High-Safety Lithium-Ion Batteries. Energy Storage Mater. 2020, 32, 425–447. [Google Scholar] [CrossRef]
- Logan, E.R.; Tonita, E.M.; Gering, K.L.; Li, J.; Ma, X.; Beaulieu, L.Y.; Dahn, J.R. A Study of the Physical Properties of Li-Ion Battery Electrolytes Containing Esters. J. Electrochem. Soc. 2018, 165, A21–A30. [Google Scholar] [CrossRef]
- Zhang, H.; Qiao, L.; Armand, M. Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium. Angew. Chem. Int. Ed. 2022, 61, e202214054. [Google Scholar] [CrossRef]
- Björklund, E.; Göttlinger, M.; Edström, K.; Brandell, D.; Younesi, R. Investigation of Dimethyl Carbonate and Propylene Carbonate Mixtures for LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 Cells. ChemElectroChem 2019, 6, 3429–3436. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303–4417. [Google Scholar] [CrossRef]
- Flamme, B.; Rodriguez Garcia, G.; Weil, M.; Haddad, M.; Phansavath, P.; Ratovelomanana-Vidal, V.; Chagnes, A. Guidelines to Design Organic Electrolytes for Lithium-Ion Batteries: Environmental Impact, Physicochemical and Electrochemical Properties. Green Chem. 2017, 19, 1828–1849. [Google Scholar] [CrossRef]
- Perricone, E.; Chamas, M.; Leprêtre, J.C.; Judeinstein, P.; Azais, P.; Raymundo-Pinero, E.; Béguin, F.; Alloin, F. Safe and Performant Electrolytes for Supercapacitor. Investigation of Esters/carbonate Mixtures. J. Power Sources 2013, 239, 217–224. [Google Scholar] [CrossRef]
- Koch, V.R.; Goldman, J.L.; Mattos, C.J.; Mulvaney, M. Specular Lithium Deposits from Lithium Hexafluoroarsenate/Diethyl Ether Electrolytes. J. Electrochem. Soc. 1982, 129, 1–4. [Google Scholar] [CrossRef]
- Abouimrane, A.; Belharouak, I.; Amine, K. Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries. Electrochem. Commun. 2009, 11, 1073–1076. [Google Scholar] [CrossRef]
- Zeng, Z.; Murugesan, V.; Han, K.S.; Jiang, X.; Cao, Y.; Xiao, L.; Ai, X.; Yang, H.; Zhang, J.G.; Sushko, M.L.; et al. Non-Flammable Electrolytes with High Salt-to-Solvent Ratios for Li-Ion and Li-Metal Batteries. Nat. Energy 2018, 3, 674–681. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, J.; Vatamanu, J.; Borodin, O.; Bedrov, D.; Zhou, X.; Zhang, W.; Li, W.; Xu, K.; Xing, L. Expanding the Low-Temperature and High-Voltage Limits of Aqueous Lithium-Ion Battery. Energy Storage Mater. 2022, 45, 903–910. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, X.; Zhu, Y.; Hu, C.; Chang, Z.; Wu, Y.; Holze, R. Macroporous LiFePO4 as a Cathode for an Aqueous Rechargeable Lithium Battery of High Energy Density. J. Mater. Chem. A 2013, 1, 14713–14718. [Google Scholar] [CrossRef]
- Edge, J.S.; O’Kane, S.; Prosser, R.; Kirkaldy, N.D.; Patel, A.N.; Hales, A.; Ghosh, A.; Ai, W.; Chen, J.; Yang, J.; et al. Lithium Ion Battery Degradation: What You Need to Know. Phys. Chem. Chem. Phys. 2021, 23, 8200–8221. [Google Scholar] [CrossRef]
- Shchurov, N.I.; Dedov, S.I.; Malozyomov, B.V.; Shtang, A.A.; Martyushev, N.V.; Klyuev, R.V.; Andriashin, S.N. Degradation of Lithium-Ion Batteries in an Electric Transport Complex. Energies 2021, 14, 8072. [Google Scholar] [CrossRef]
- Chang, Z.; Li, C.; Wang, Y.; Chen, B.; Fu, L.; Zhu, Y.; Zhang, L.; Wu, Y.; Huang, W. A Lithium Ion Battery Using an Aqueous Electrolyte Solution. Sci. Rep. 2016, 6, 28421. [Google Scholar] [CrossRef]
- Arnold, S.; Wang, L.; Presser, V.; Arnold, S.; Wang, L.; Presser, V. Dual-Use of Seawater Batteries for Energy Storage and Water Desalination. Small 2022, 18, 2107913. [Google Scholar] [CrossRef]
- Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods 2019, 3, 1800272. [Google Scholar] [CrossRef]
- Beck, F.; Rüetschi, P. Rechargeable Batteries with Aqueous Electrolytes. Electrochim. Acta 2000, 45, 2467–2482. [Google Scholar] [CrossRef]
- Doughty, D.; Roth, E.P. A General Discussion of Li Ion Battery Safety. Electrochem. Soc. Interface 2012, 21, 37–44. [Google Scholar] [CrossRef]
- Suo, L.; Borodin, O.; Wang, Y.; Rong, X.; Sun, W.; Fan, X.; Xu, S.; Schroeder, M.A.; Cresce, A.V.; Wang, F.; et al. “Water-in-Salt” Electrolyte Makes Aqueous Sodium-Ion Battery Safe, Green, and Long-Lasting. Adv. Energy Mater. 2017, 7, 1701189. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, B.; Liu, X.; Liu, J.; Ding, J.; Zhong, C.; Hu, W. Water-in-Salt Electrolyte for Safe and High-Energy Aqueous Battery. Energy Storage Mater. 2021, 34, 461–474. [Google Scholar] [CrossRef]
- Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. “Water-in-Salt” electrolyte Enables High-Voltage Aqueous Lithium-Ion Chemistries. Science 2015, 350, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Lux, S.F.; Terborg, L.; Hachmöller, O.; Placke, T.; Meyer, H.-W.; Passerini, S.; Winter, M.; Nowak, S. LiTFSI Stability in Water and Its Possible Use in Aqueous Lithium-Ion Batteries: pH Dependency, Electrochemical Window and Temperature Stability. J. Electrochem. Soc. 2013, 160, A1694–A1700. [Google Scholar] [CrossRef]
- Kudryavtsev, P. Lithium in nature, application, methods of extraction (review). J. Sci. Isr.-Technol. Advant. 2016, 18, 63. [Google Scholar]
- Khalid, S.; Pianta, N.; Mustarelli, P.; Ruffo, R. Use of Water-In-Salt Concentrated Liquid Electrolytes in Electrochemical Energy Storage: State of the Art and Perspectives. Batteries 2023, 9, 47. [Google Scholar] [CrossRef]
- HAGIWARA, R.; LEE, J.S. Ionic Liquids for Electrochemical Devices. Electrochemistry 2007, 75, 23–34. [Google Scholar] [CrossRef]
- Domínguez de María, P. Ionic Liquids, Switchable Solvents, and Eutectic Mixtures. Appl. Green Solvents Sep. Process. 2017, 139–154. [Google Scholar] [CrossRef]
- Yu, L.; Chen, G.Z. Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapattery. Front. Chem. 2019, 7, 272. [Google Scholar] [CrossRef]
- Galiński, M.; Lewandowski, A.; Stepniak, I. Ionic Liquids as Electrolytes. Electrochim. Acta 2006, 51, 5567–5580. [Google Scholar] [CrossRef]
- Afroze, S.; Torino, N.; Reza, M.S.; Radenahmad, N.; Cheok, Q.; Henry, P.F.; Azad, A.K. Structure-Conductivity Relationship of PrBaMnMoO6−δ through in-Situ Measurements: A Neutron Diffraction Study. Ceram. Int. 2021, 47, 541–546. [Google Scholar] [CrossRef]
- Jónsson, E. Ionic Liquids as Electrolytes for Energy Storage Applications—A Modelling Perspective. Energy Storage Mater. 2020, 25, 827–835. [Google Scholar] [CrossRef]
- Balbuena, P.B. Electrolyte Materials—Issues and Challenges. AIP Conf. Proc. 2014, 1597, 82–97. [Google Scholar] [CrossRef]
- Lalia, B.S.; Yoshimoto, N.; Egashira, M.; Morita, M. A Mixture of Triethylphosphate and Ethylene Carbonate as a Safe Additive for Ionic Liquid-Based Electrolytes of Lithium Ion Batteries. J. Power Sources 2010, 195, 7426–7431. [Google Scholar] [CrossRef]
- Salami, N. Molecular Dynamics (MD) Study on the Electrochemical Properties of Electrolytes in Lithium-Ion Battery (LIB) Applications. Master’s Thesis, University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 2014. [Google Scholar]
- Saleem, A.M.; Desmaris, V.; Enoksson, P. Performance Enhancement of Carbon Nanomaterials for Supercapacitors. J. Nanomater. 2016, 2016, 1537269. [Google Scholar] [CrossRef]
- Kühnel, R.-S.; Reber, D.; Battaglia, C. Perspective—Electrochemical Stability of Water-in-Salt Electrolytes. J. Electrochem. Soc. 2020, 167, 70544. [Google Scholar] [CrossRef]
- Chen, J.; Vatamanu, J.; Xing, L.; Borodin, O.; Chen, H.; Guan, X.; Liu, X.; Xu, K.; Li, W. Improving Electrochemical Stability and Low-Temperature Performance with Water/Acetonitrile Hybrid Electrolytes. Adv. Energy Mater. 2020, 10, 1902654. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Zhang, G.; Ma, A.; Chen, W.; Shao, L.; Shen, C.; Xie, K. High-Performance Solid Composite Polymer Electrolyte for All Solid-State Lithium Battery through Facile Microstructure Regulation. Front. Chem. 2019, 7, 388. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, J.; Lu, G.; Li, W.; Tao, Q.; Shi, C.; Jin, H.; Chen, G.; Wang, S. Fundamentals of Electrolytes for Solid-State Batteries: Challenges and Perspectives. Front. Mater. 2020, 7, 111. [Google Scholar] [CrossRef]
- Ciez, R.E.; Whitacre, J.F. Comparison between Cylindrical and Prismatic Lithium-Ion Cell Costs Using a Process Based Cost Model. J. Power Sources 2017, 340, 273–281. [Google Scholar] [CrossRef]
- Budde-Meiwes, H.; Drillkens, J.; Lunz, B.; Muennix, J.; Rothgang, S.; Kowal, J.; Sauer, D.U. A Review of Current Automotive Battery Technology and Future Prospects. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 227, 761–776. [Google Scholar] [CrossRef]
- Raccichini, R.; Amores, M.; Hinds, G. Critical Review of the Use of Reference Electrodes in Li-Ion Batteries: A Diagnostic Perspective. Batteries 2019, 5, 12. [Google Scholar] [CrossRef]
- Yao, X.Y.; Pecht, M.G. Tab Design and Failures in Cylindrical Li-Ion Batteries. IEEE Access 2019, 7, 24082–24095. [Google Scholar] [CrossRef]
- Smekens, J.; Gopalakrishnan, R.; Steen, N.; Omar, N.; Hegazy, O.; Hubin, A.; Van Mierlo, J. Influence of Electrode Density on the Performance of Li-Ion Batteries: Experimental and Simulation Results. Energies 2016, 9, 104. [Google Scholar] [CrossRef]
- Saw, L.H.; Ye, Y.; Tay, A.A.O. Integration Issues of Lithium-Ion Battery into Electric Vehicles Battery Pack. J. Clean. Prod. 2016, 113, 1032–1045. [Google Scholar] [CrossRef]
- Yang, C.; Chen, J.; Qing, T.; Fan, X.; Sun, W.; von Cresce, A.; Ding, M.S.; Borodin, O.; Vatamanu, J.; Schroeder, M.A.; et al. 4.0 V Aqueous Li-Ion Batteries. Joule 2017, 1, 122–132. [Google Scholar] [CrossRef]
- Hawley, W.B.; Li, J. Electrode Manufacturing for Lithium-Ion batteries—Analysis of Current and next Generation Processing. J. Energy Storage 2019, 25, 100862. [Google Scholar] [CrossRef]
- Faraji Niri, M.; Reynolds, C.; Román Ramírez, L.A.; Kendrick, E.; Marco, J. Systematic Analysis of the Impact of Slurry Coating on Manufacture of Li-Ion Battery Electrodes via Explainable Machine Learning. Energy Storage Mater. 2022, 51, 223–238. [Google Scholar] [CrossRef]
- Reynolds, C.D.; Slater, P.R.; Hare, S.D.; Simmons, M.J.H.; Kendrick, E. A Review of Metrology in Lithium-Ion Electrode Coating Processes. Mater. Des. 2021, 209, 109971. [Google Scholar] [CrossRef]
- Singh, M.; Kaiser, J.; Hahn, H. Thick Electrodes for High Energy Lithium Ion Batteries. J. Electrochem. Soc. 2015, 162, A1196–A1201. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.; Wang, J.; Wang, Y. Current and Future Lithium-Ion Battery Manufacturing. iScience 2021, 24, 102332. [Google Scholar] [CrossRef]
- McTurk, E.; Amietszajew, T.; Fleming, J.; Bhagat, R. Thermo-Electrochemical Instrumentation of Cylindrical Li-Ion Cells. J. Power Sources 2018, 379, 309–316. [Google Scholar] [CrossRef]
- Gozdz, A.S.; Riley, G.N., Jr.; Hoff, C.M. Battery Tab Location Design and Method of Construction. U.S. Patent US 8,084,158, 27 December 2011. [Google Scholar]
- Yao, X.Y.; Kong, L.; Pecht, M.G. Reliability of Cylindrical Li-Ion Battery Safety Vents. IEEE Access 2020, 8, 101859–101866. [Google Scholar] [CrossRef]
- An, S.J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D.L. The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (SEI) and Its Relationship to Formation Cycling. Carbon 2016, 105, 52–76. [Google Scholar] [CrossRef]
- Coleman, B.; Ostanek, J.; Heinzel, J. Reducing Cell-to-Cell Spacing for Large-Format Lithium Ion Battery Modules with Aluminum or PCM Heat Sinks under Failure Conditions. Appl. Energy 2016, 180, 14–26. [Google Scholar] [CrossRef]
- US6143442A - Prismatic Battery - Google Patents. Available online: https://patents.google.com/patent/US6143442 (accessed on 30 April 2023).
- Sigl, M.E.; Grabmann, S.; Kick, L.F.; Zens, A.; Hartl, R.; Zaeh, M.F. Cell-Internal Contacting of Prismatic Lithium-Ion Batteries Using Micro-Friction Stir Spot Welding. Batteries 2022, 8, 174. [Google Scholar] [CrossRef]
- Thin-walled, C. The Effect of Using a Metal Tube on Laser Welding of the Battery Case and the Tab for Lithium-Ion Battery. Materials 2020, 13, 4460. [Google Scholar] [CrossRef]
- Sit, K.; Li, P.K.C.; Ip, C.W.; Li, C.W.; Wan, L.; Lam, Y.F.; Lai, P.Y.; Fan, J.; Magnuson, D. Studies of the Energy and Power of Current Commercial Prismatic and Cylindrical Li-Ion Cells. J. Power Sources 2004, 125, 124–134. [Google Scholar] [CrossRef]
- Tomaszewska, A.; Chu, Z.; Feng, X.; O’Kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L.; et al. Lithium-Ion Battery Fast Charging: A Review. eTransportation 2019, 1, 100011. [Google Scholar] [CrossRef]
- Widyantara, R.D.; Zulaikah, S.; Juangsa, F.B.; Budiman, B.A.; Aziz, M. Review on Battery Packing Design Strategies for Superior Thermal Management in Electric Vehicles. Batteries 2022, 8, 287. [Google Scholar] [CrossRef]
- Lyu, Y.; Siddique, A.R.M.; Majid, S.H.; Biglarbegian, M.; Gadsden, S.A.; Mahmud, S. Electric Vehicle Battery Thermal Management System with Thermoelectric Cooling. Energy Rep. 2019, 5, 822–827. [Google Scholar] [CrossRef]
- Wu, W.; Wu, W.; Wang, S. Thermal Management Optimization of a Prismatic Battery with Shape-Stabilized Phase Change Material. Int. J. Heat Mass Transf. 2018, 121, 967–977. [Google Scholar] [CrossRef]
- Zhu, F.; Zhou, R.; Sypeck, D.; Deng, J.; Bae, C. Failure Behavior of Prismatic Li-Ion Battery Cells under Abuse Loading Condition—A Combined Experimental and Computational Study. J. Energy Storage 2022, 48, 103969. [Google Scholar] [CrossRef]
- Mussa, A.S.; Klett, M.; Lindbergh, G.; Lindström, R.W. Effects of External Pressure on the Performance and Ageing of Single-Layer Lithium-Ion Pouch Cells. J. Power Sources 2018, 385, 18–26. [Google Scholar] [CrossRef]
- Trask, S.E.; Li, Y.; Kubal, J.J.; Bettge, M.; Polzin, B.J.; Zhu, Y.; Jansen, A.N.; Abraham, D.P. From Coin Cells to 400 mAh Pouch Cells: Enhancing Performance of High-Capacity Lithium-Ion Cells via Modifications in Electrode Constitution and Fabrication. J. Power Sources 2014, 259, 233–244. [Google Scholar] [CrossRef]
- Lee, J.; Ko, B.; Kang, J.; Chung, Y.; Kim, Y.; Halim, W.; Lee, J.H.; Joo, Y.L. Facile and Scalable Fabrication of Highly Loaded Sulfur Cathodes and Lithium–sulfur Pouch Cells via Air-Controlled Electrospray. Mater. Today Energy 2017, 6, 255–263. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, H.; Bai, L.; Song, J.; Jin, Y.; Liu, S.; Zheng, W.; Xie, X.; Liu, W. Graphene Oxide Microrolls as High- Content Si Carriers Boosting Li-Ion Storage. Chem. Eng. J. 2023, 452, 139586. [Google Scholar] [CrossRef]
- Lithium-Ion Batteries-Fundamentals, Advancements, and Challenges. Available online: https://e-vehicleinfo.com/lithium-ion-batteries-fundamentals-advancements-and-challenges/ (accessed on 16 February 2023).
- Chen, Z.; Shen, W.; Chen, L.; Wang, S. Adaptive Online Capacity Prediction Based on Transfer Learning for Fast Charging Lithium-Ion Batteries. Energy 2022, 248, 123537. [Google Scholar] [CrossRef]
- Liangruksa, M.; Kanaphan, Y.; Meethong, N.; Klamchuen, A. First-Principles Investigation of Defective Graphene Anchored with Small Silicon Clusters as a Potential Anode Material for Lithium-Ion Batteries. Surf. Sci. 2023, 122250. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, J.; Duan, X.; Yang, Y.; Dai, X.; Wu, F. Constructing the Bonding between Conductive Agents and Active Materials/binders Stabilizes Silicon Anode in Lithium-Ion Batteries. J. Energy Chem. 2023, 80, 23–31. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Islam, M.T.; Iyer-Raniga, U. Lithium-Ion Battery Recycling in the Circular Economy: A Review. Recycling 2022, 7, 33. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Fan, E.; Xue, Q.; Bian, Y.; Wu, F.; Chen, R. Toward Sustainable and Systematic Recycling of Spent Rechargeable Batteries. Chem. Soc. Rev. 2018, 47, 7239–7302. [Google Scholar] [CrossRef]
- Wang, Y.; An, N.; Wen, L.; Wang, L.; Jiang, X.; Hou, F.; Yin, Y.; Liang, J. Recent Progress on the Recycling Technology of Li-Ion Batteries. J. Energy Chem. 2020, 55, 391–419. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, W.; Liu, X.; Tang, J.; Su, F.; Li, Z.; Yang, J.; Ma, Y. One-Step Selective Separation and Efficient Recovery of Valuable Metals from Mixed Spent Lithium Batteries in the Phosphoric Acid System. Waste Manag. 2023, 155, 53–64. [Google Scholar] [CrossRef]
- Tao, Y.; Sun, T.; Wang, Z. Uncovering Various Paths for Environmentally Recycling Lithium Iron Phosphate Batteries through Life Cycle Assessment. J. Clean. Prod. 2023, 393, 136263. [Google Scholar] [CrossRef]
- Kaya, M. State-of-the-Art Lithium-Ion Battery Recycling Technologies. Circ. Econ. 2022, 1, 100015. [Google Scholar] [CrossRef]
- Zhong, X.; Liu, W.; Han, J.; Jiao, F.; Qin, W.; Liu, T. Pretreatment for the Recovery of Spent Lithium Ion Batteries: Theoretical and Practical Aspects. J. Clean. Prod. 2020, 263, 121439. [Google Scholar] [CrossRef]
- Kim, S.; Bang, J.; Yoo, J.; Shin, Y.; Bae, J.; Jeong, J.; Kim, K.; Dong, P.; Kwon, K. A Comprehensive Review on the Pretreatment Process in Lithium-Ion Battery Recycling. J. Clean. Prod. 2021, 294, 126329. [Google Scholar] [CrossRef]
- Pavón, S.; Kaiser, D.; Bertau, M. Recovery of Al, Co, Cu, Fe, Mn, and Ni from Spent LIBs after Li Selective Separation by COOL-Process—Part 2: Solvent Extraction from Sulphate Leaching Solution. Chem.-Ing.-Tech. 2021, 93, 1840–1850. [Google Scholar] [CrossRef]
- Yu, M.; Bai, B.; Xiong, S.; Liao, X. Evaluating Environmental Impacts and Economic Performance of Remanufacturing Electric Vehicle Lithium-Ion Batteries. J. Clean. Prod. 2021, 321, 128935. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, X.; Yan, S.; Li, S.; Zhou, T. Pursuing Green and Efficient Process towards Recycling of Different Metals from Spent Lithium-Ion Batteries through Ferro-Chemistry. Chem. Eng. J. 2021, 426, 131637. [Google Scholar] [CrossRef]
- Park, S.; Jung, S.; Kwon, D.; Beak, M.; Kwon, E.E.; Kwon, K. Carbothermic Reduction of Spent Lithium-Ion Batteries Using CO2 as Reaction Medium. Chem. Eng. J. 2022, 435, 135165. [Google Scholar] [CrossRef]
- Manthiram, A. A Reflection on Lithium-Ion Battery Cathode Chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef]
- Vieceli, N.; Nogueira, C.A.; Guimarães, C.; Pereira, M.F.C.; Durão, F.O.; Margarido, F. Hydrometallurgical Recycling of Lithium-Ion Batteries by Reductive Leaching with Sodium Metabisulphite. Waste Manag. 2018, 71, 350–361. [Google Scholar] [CrossRef]
- Liang, Z.; Ding, X.; Cai, C.; Peng, G.; Hu, J.; Yang, X.; Chen, S.; Liu, L.; Hou, H.; Liang, S.; et al. Acetate Acid and Glucose Assisted Subcritical Reaction for Metal Recovery from Spent Lithium Ion Batteries. J. Clean. Prod. 2022, 369, 133281. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, Y.; Dong, P. Use of Glucose as Reductant to Recover Co from Spent Lithium Ions Batteries. Waste Manag. 2017, 64, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Jie, C.J.; Tan, S.; Srinivasan, M. Recycling of Cathode from Spent Lithium Iron Phosphate Batteries. J. Hazard. Mater. 2020, 399, 123068. [Google Scholar] [CrossRef] [PubMed]
- Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G.P.; Zaghib, K. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and beyond. Materials 2020, 13, 801. [Google Scholar] [CrossRef] [PubMed]
- Pavlovskii, A.A.; Pushnitsa, K.; Kosenko, A.; Novikov, P.; Popovich, A.A. A Minireview on the Regeneration of NCM Cathode Material Directly from Spent Lithium-Ion Batteries with Different Cathode Chemistries. Inorganics 2022, 10, 141. [Google Scholar] [CrossRef]
- Sun, Q.; Li, X.; Zhang, H.; Song, D.; Shi, X.; Song, J.; Li, C.; Zhang, L. Resynthesizing LiFePO4/C Materials from the Recycled Cathode via a Green Full-Solid Route. J. Alloys Compd. 2020, 818, 153292. [Google Scholar] [CrossRef]
- Windisch-Kern, S.; Holzer, A.; Ponak, C.; Raupenstrauch, H. Pyrometallurgical Lithium-Ion-Battery Recycling: Approach to Limiting Lithium Slagging with the Indured Reactor Concept. Processes 2021, 9, 84. [Google Scholar] [CrossRef]
- Zhou, L.F.; Yang, D.; Du, T.; Gong, H.; Luo, W. Bin The Current Process for the Recycling of Spent Lithium Ion Batteries. Front. Chem. 2020, 8, 578044. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Xu, Z. Environmentally-Friendly Oxygen-Free Roasting/wet Magnetic Separation Technology for in Situ Recycling Cobalt, Lithium Carbonate and Graphite from Spent LiCoO2/graphite Lithium Batteries. J. Hazard. Mater. 2016, 302, 97–104. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Xu, Z. Recycling Metals from Lithium Ion Battery by Mechanical Separation and Vacuum Metallurgy. J. Hazard. Mater. 2017, 338, 124–131. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Xu, Z. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy. Environ. Sci. Technol. 2017, 51, 11960–11966. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Xie, H.; Zhang, B.; Chen, X.; Zhao, Z.; Qu, J.; Xing, P.; Yin, H. Recovery and Regeneration of LiCoO2-Based Spent Lithium-Ion Batteries by a Carbothermic Reduction Vacuum Pyrolysis Approach: Controlling the Recovery of CoO or Co. Waste Manag. 2019, 97, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Fan, E.; Li, L.; Lin, J.; Wu, J.; Yang, J.; Wu, F.; Chen, R. Low-Temperature Molten-Salt-Assisted Recovery of Valuable Metals from Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 16144–16150. [Google Scholar] [CrossRef]
- Vieceli, N.; Casasola, R.; Lombardo, G.; Ebin, B.; Petranikova, M. Hydrometallurgical Recycling of EV Lithium-Ion Batteries: Effects of Incineration on the Leaching Efficiency of Metals Using Sulfuric Acid. Waste Manag. 2021, 125, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, B.; Xie, H.; Qu, J.; Qu, X.; Xing, P.; Yin, H. Hydrometallurgical Recovery of Spent Cobalt-Based Lithium-Ion Battery Cathodes Using Ethanol as the Reducing Agent. Environ. Res. 2020, 181, 108803. [Google Scholar] [CrossRef] [PubMed]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Hydrometallurgical Processing of Spent Lithium Ion Batteries (LIBs) in the Presence of a Reducing Agent with Emphasis on Kinetics of Leaching. Chem. Eng. J. 2015, 281, 418–427. [Google Scholar] [CrossRef]
- Chen, X.; Ma, H.; Luo, C.; Zhou, T. Recovery of Valuable Metals from Waste Cathode Materials of Spent Lithium-Ion Batteries Using Mild Phosphoric Acid. J. Hazard. Mater. 2017, 326, 77–86. [Google Scholar] [CrossRef]
- Lee, C.K.; Rhee, K.I. Preparation of LiCoO2 from Spent Lithium-Ion Batteries. J. Power Sources 2002, 109, 17–21. [Google Scholar] [CrossRef]
- Swain, B.; Jeong, J.; Lee, J.; Lee, G.H.; Sohn, J.S. Hydrometallurgical Process for Recovery of Cobalt from Waste Cathodic Active Material Generated during Manufacturing of Lithium Ion Batteries. J. Power Sources 2007, 167, 536–544. [Google Scholar] [CrossRef]
- Dorella, G.; Mansur, M.B. A Study of the Separation of Cobalt from Spent Li-Ion Battery Residues. J. Power Sources 2007, 170, 210–215. [Google Scholar] [CrossRef]
- Li, L.; Bian, Y.; Zhang, X.; Guan, Y.; Fan, E.; Wu, F.; Chen, R. Process for Recycling Mixed-Cathode Materials from Spent Lithium-Ion Batteries and Kinetics of Leaching. Waste Manag. 2018, 71, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, T. Hydrometallurgical Process for the Recovery of Metal Values from Spent Lithium-Ion Batteries in Citric Acid Media. Waste Manag. Res. 2014, 32, 1083–1093. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tang, X.; Zhang, Y.; Li, L.; Zeng, Z.; Zhang, Y. Process for the Recovery of Cobalt Oxalate from Spent Lithium-Ion Batteries. Hydrometallurgy 2011, 108, 80–86. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Recovery of Valuable Metals from Cathodic Active Material of Spent Lithium Ion Batteries: Leaching and Kinetic Aspects. Waste Manag. 2015, 45, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Pant, D.; Dolker, T. Green and Facile Method for the Recovery of Spent Lithium Nickel Manganese Cobalt Oxide (NMC) Based Lithium Ion Batteries. Waste Manag. 2017, 60, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Bian, Y.; Zhang, X.; Xue, Q.; Fan, E.; Wu, F.; Chen, R. Economical Recycling Process for Spent Lithium-Ion Batteries and Macro- and Micro-Scale Mechanistic Study. J. Power Sources 2018, 377, 70–79. [Google Scholar] [CrossRef]
- Arshad, F.; Li, L.; Amin, K.; Fan, E.; Manurkar, N.; Ahmad, A.; Yang, J.; Wu, F.; Chen, R. A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries. ACS Sustain. Chem. Eng. 2020, 8, 13527–13554. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Chen, H.; Luo, T.; Xu, Z. Leaching Study of Spent Li-Ion Batteries. Procedia Environ. Sci. 2012, 16, 443–450. [Google Scholar] [CrossRef]
- Ma, S.; Liu, F.; Li, K.; Chen, Z.; Chen, F.; Wang, J.; Zhong, S.; Wilson, B.P.; Lundström, M. Separation of Li and Al from Spent Ternary Li-Ion Batteries by in-Situ Aluminum-carbon Reduction Roasting Followed by Selective Leaching. Hydrometallurgy 2022, 213, 105941. [Google Scholar] [CrossRef]
- Porvali, A.; Shukla, S.; Lundström, M. Low-Acid Leaching of Lithium-Ion Battery Active Materials in Fe-Catalyzed Cu-H2SO4 System. Hydrometallurgy 2020, 195, 105408. [Google Scholar] [CrossRef]
- Ali, H.; Khan, H.A.; Pecht, M.G. Circular Economy of Li Batteries: Technologies and Trends. J. Energy Storage 2021, 40, 102690. [Google Scholar] [CrossRef]
- Bai, Y.; Muralidharan, N.; Li, J.; Essehli, R.; Belharouak, I. Sustainable Direct Recycling of Lithium-Ion Batteries via Solvent Recovery of Electrode Materials. ChemSusChem 2020, 13, 5664–5670. [Google Scholar] [CrossRef]
- Widijatmoko, S.D.; Gu, F.; Wang, Z.; Hall, P. Selective Liberation in Dry Milled Spent Lithium-Ion Batteries. Sustain. Mater. Technol. 2020, 23, e00134. [Google Scholar] [CrossRef]
- US9156038B2 - Magnetic Separation of Electrochemical Cell Materials - Google Patents. Available online: https://patents.google.com/patent/US9156038B2/en (accessed on 30 April 2023).
- Wu, X.; Ma, J.; Wang, J.; Zhang, X.; Zhou, G.; Liang, Z. Progress, Key Issues, and Future Prospects for Li-Ion Battery Recycling. Glob. Chall. 2022, 6, 2200067. [Google Scholar] [CrossRef]
- Beaudet, A.; Larouche, F.; Amouzegar, K.; Bouchard, P.; Zaghib, K. Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials. Sustainability 2020, 12, 5837. [Google Scholar] [CrossRef]
- Zhan, R.; Oldenburg, Z.; Pan, L. Recovery of Active Cathode Materials from Lithium-Ion Batteries Using Froth Flotation. Sustain. Mater. Technol. 2018, 17, e00062. [Google Scholar] [CrossRef]
- Yang, J.; Gu, F.; Guo, J.; Chen, B. Comparative Life Cycle Assessment of Mobile Power Banks with Lithium-Ion Battery and Lithium-Ion Polymer Battery. Sustainability 2019, 11, 5148. [Google Scholar] [CrossRef]
- Sivaramkrishnan, M.; Agenya, R.; Santhi Mary Antony, A.; Baskar, R.; Prakash, R.B.R.; Ramya, D.; Sabarimuthu, M.; Golie, W.M.; Brucely, Y. A Certain Investigation of Nanomaterial-Based Li-Ion Batteries for Electrical Vehicles. J. Nanomater. 2022, 2022, 2700050. [Google Scholar] [CrossRef]
- Pagliaro, M.; Meneguzzo, F. Lithium Battery Reusing and Recycling: A Circular Economy Insight. Heliyon 2019, 5, e01866. [Google Scholar] [CrossRef]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Costa, C.M.; Barbosa, J.C.; Gonçalves, R.; Castro, H.; Campo, F.J.D.; Lanceros-Méndez, S. Recycling and Environmental Issues of Lithium-Ion Batteries: Advances, Challenges and Opportunities. Energy Storage Mater. 2021, 37, 433–465. [Google Scholar] [CrossRef]
- Makwarimba, C.P.; Tang, M.; Peng, Y.; Lu, S.; Zheng, L.; Zhao, Z.; Zhen, A. gang Assessment of Recycling Methods and Processes for Lithium-Ion Batteries. iScience 2022, 25, 104321. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Elliott, R.J.R.; Nguyen-Tien, V. The EV Revolution: The Road Ahead for Critical Raw Materials Demand. Appl. Energy 2020, 280, 115072. [Google Scholar] [CrossRef] [PubMed]
- Tesla Charts a Battery-Powered Future: Key Takeaways from 2023 Investor Day. Available online: https://source.benchmarkminerals.com/article/tesla-charts-a-battery-powered-future-key-takeaways-from-2023-investor-day (accessed on 3 March 2023).
Material | Lithiation Potential (V) | Delithiation Potential (V) | DLi (cm2 s−1) | Ref. |
---|---|---|---|---|
Graphite | 0.07, 0.10, 0.19 0.08, 0.11, 0.20 | 0.1, 0.14, 0.23 0.11, 0.15, 0.22 | 10−11–10−7 | [95,96,97,98,99,100] |
LTO | 1.55 | 1.58 | 10−12–10−11 | [101,102,103,104] |
Si | 0.05, 0.21 0.07, 0.22 | 0.31, 0.47 0.3, 0.49 | 10−13–10−11 | [105,106,107,108] |
Ge | 0.2, 0.3, 0.5 | 0.5,0.62 | 10−12–10−10 | [109,110,111] |
Sn | 0.4, 0.57, 0.69 | 0.58, 0.7, 0.78 | 10−16–10−13 | [112,113,114] |
Al | 0.19 | 0.45 | - | [115] |
Ga | 0.025, 0.52, 0.82 | 0.25, 0.73, 0.90 | - | [116] |
Zn | 0.06, 0.19, 0.21 | 0.16, 0.22, 0.25 | - | [117] |
P | 0.61, 0.71, 0.8 | 0.99, 1.16 | - | [118] |
Sb | 0.78, 0.83 | 0.99 | - | [119] |
Ag | 0.04, 0.12 | 0.04, 0.26, 0.38 | - | [120] |
Mg | 0.05 | 0.24 | - | [121] |
Bi | 0.73, 0.78 | 0.85 | - | [122] |
Crystal Structure | Compound | Potential vs. Li/Li+ (V) | Specific Capacity (mAh/g) | Ref. |
---|---|---|---|---|
Layered | LiCoO2 | 3.9 | 274/155/140 | [155,161,162] |
LiMnO2 | 3.3 | 285/140 | [163,164] | |
LiTiS2 | 1.9 | 239/210 | [165] | |
Li2MnO3 | 3.8 | 458/180 | [166] | |
LiNiO2 | 3.8 | 275/150 | [167] | |
Olivine | LiFePO4 | 3.4 | 150/160/170 | [168,169,170] |
LiCoPO4 | 4.2 | 167/125 | [171] | |
LiMnPO4 | 3.8 | 171/168 | [172] | |
Spinel | LiMn2O4 | 3.9 | 148/120 | [173,174] |
LiCO2O4 | 4.0 | 142/84 | [175] |
Electrolyte Properties | Ionic Conductivity | Contact Properties | Thermal Stability | Electrochemical Stability | Safety | Ref. |
---|---|---|---|---|---|---|
Liquid | High | Good | Poor | Poor | Poor | [208,209] |
Solid | Low | Poor | Good | Good | Good | [209] |
Gel | Medium | Medium | Poor | Poor | Medium | [209] |
Electrolyte | Toxicity | Low-Temperature Performance | Thermal Stability | Ion Conductivity | Ref. |
---|---|---|---|---|---|
Organic | Medium/High | Relatively good | Poor | High | [248,249] |
Aqueous | Low | Poor | - | High | [205,249] |
Water-in-salt | Low | Good | Low | - | [250,251] |
Ionic liquid | Low | Poor | High | Good | [205,248,249] |
Solid polymer | Low | Poor | Excellent | Low | [248,252] |
Gel polymer | - | High | Good | High | [205,248] |
Inorganic solid | - | - | High | High | [253] |
Types | Can Type | WCell (g) | VCell (l) | Specific Energy (Wh/kg) | Energy Density (Wh/l) | Specific Power (Wh/kg) | Power Density (W/l) | Ref. |
---|---|---|---|---|---|---|---|---|
Cylindrical (18,650) | Steel | 42.3 | 0.0165 | 166 | 425 | 168 | 430 | [274] |
Prismatic (103,450) | Al | 38.5 | 0.017 | 173 | 391 | 171 | 387 | [274] |
Components | Nominal Voltage (V) | Cycle | Applications |
---|---|---|---|
Lithium–iron phosphate batteries (FeLiO4P); phosphate as a cathode | 3.2 | 2000+ | Electric vehicles, drones, power backup |
Lithium cobaltate (LiCoO2 or CoLiO2); a cobalt oxide cathode and a graphite carbon anode | 3.6 | 1000+ | Cameras, tablets, laptops, and smartphones |
Lithium manganese oxide batteries (LiMn2O4); lithium manganese oxide cathode | 3.6 | 1000+ | Medical equipment, portable power tools, and certain hybrid and electric cars |
Lithium nickel manganese cobalt oxide batteries (LiNiMnCoO2); cathode made of nickel, manganese, and cobalt | 3.7 | 500–1000 | Power tools as well as e-bikes, scooters, and certain electric vehicle powertrains |
Lithium nickel cobalt aluminum oxide (NCA) batteries (LiNi0.8Co0.15Al0.05O2) | 3.6 | 2000+ | Tesla favors NCA batteries for applications involving electrical power transmission and grid storage |
Lithium titanate (Li2TiO3) has a rapid recharge time as a result of its better nanotechnology | 3.6 | 2000+ | Electric cars and charging stations, constant power sources, energy storage for the sun and wind, solar-powered streetlights, telecommunications systems, and aerospace and defense technology |
Pyrometallurgical Procedure | Product and Productivity | Importance |
---|---|---|
Slag system: MnO-SiO2-Al2O3; Smelting condition: 1475 °C, 30 min | Lithium-containing Mn-rich slag and the alloy Co-Ni-Cu-Fe; 99.79%, 99.30%, and 99.30% recovery efficiencies for Co, Ni, and Cu, respectively. 79.86% and 94.85% of Mn and Li were leached, respectively | Mn and Li are recovered preferentially using a new slag method |
SiO2-CaO-Al2O3-Li2O make up the simulated slag; 1000 °C for 90 min of roasting | LiCl; Li recovery rates from slag: 97.45% | Novel pyrometallurgical technology for recycling lithium from slag |
1000 °C for 30 min of oxygen-free roasting; wet magnetic separation | Co, Li2CO3, and C and graphite recovery efficiency: 95.72%, 98.93%, and 91.05% | Cobalt, Li2CO3, and graphite are recycled in-place in an LCO/C battery system. |
973 K for 30 min with a 1 kPa vacuum | Li2CO3; Li purity and recovery efficiency: 81.90% and 99.7% | Li2CO3 recycling in situ from used LCO, LMO, and NMC |
Roasting without oxygen: 1073 K, 45 min | Li2CO3 and Mn3O4; Li recovery efficiency was 91.30%, while Mn purity was 95.11%. | In situ recycling of Li2CO3 and Mn3O4 in LMO/C battery system |
Reduction roasting: 650 °C, 3 h, 19.9% carbon dose; acid and carbonated water leaching | Li2CO3, NiSO4, CoSO4, and MnSO4; efficiency of Li in water leaching: 84.7%; Ni, Mn, and Co acid leaching efficiency: >99% | An easy and effective method of recovering an NMC/C battery system is through reduction roasting. |
Roasting temperature 350 °C, | Li2CoO2–NH4Cl,1 mol L−1 oxalic acid, temperature 60 °C, time 1 h, and n(H2C2O4): n(Co2+) = 1.05:1 | With water leaching at a solid–liquid ratio of 100 g/L, Li and Co had leaching efficiencies of 99.18% and 99.3%, respectively. |
Vacuum pyrolysis, temperature range from 623 to 823 K | LiCoO2, solid-state reaction between Co3O4 and Li2CO3 at a Li/Co ratio of 1.05 at 1123 K for 13 h, and the ramping rate was 2 K/min | Vacuum pyrolysis, process performed at 673–723 K peel the electroactive materials off from the current collectors, leaving behind near-fresh Al and Cu foils, carbothermal reduction—the graphite to reduce and break down LiCoO2, producing Li2CO3 and Co or CoO |
Cathodes | Reductant | Leaching Agent | Leaching | Conditions | Ref. | |
---|---|---|---|---|---|---|
Li | Co | |||||
LiCoO2 | Ethanol | H2SO4 | 99% | 99% | 90 °C in 160 min, 3 mol/L H2SO4 solution with 5 vol% ethanol, at a S/L ratio of 20 g/L | [317] |
LiCoO2, Li2CoMn3O8, (Li0.85Ni0.05) (NiO2) | 1M H2SO4 and 0.075 M NaHSO3 | Diluted H2SO4 (96%) | ~96.7% | 91.6% | Heating at 250–300 °C for 30 min | [318] |
LiCoO2 | H2O2 | H3PO4 | 99% | 99% | 40 °C (T), 60 min (t), 4 vol.% H2O2, 20 mL·g−1 (L/S) and 0.7 mol/L H3PO4 | [319] |
LiCoO2 | H2O2 | HNO3 | 75–85% | 40–85% | 75 °C; 0.5 h; 1 M; 20 g L−1 | [320] |
LiCoO2 | H2O2 | H2SO4 | 94% | 93% | 100 g L−1, 2 M H2SO4, 5 vol.% H2O2, with a leaching time 30 min and a temperature 75 °C | [321] |
LiCoO2 | H2O2 | H2SO4 | 95% | 80% | 65 °C; 1 h; 6 %; 33 g L−1 | [322] |
LiCoO2, LiCo1/3Ni1/3Mn1/3O2, and LiMn2O4 | H2O2 | Citric acid (C6H8O7) | 99.1% | 99.8% | 90 °C; 1 h; 0.5 M; 20 g L−1 | [323] |
LiCo1/3Ni1/3Mn1/3O2 | H2O2 | Citric acid (H3Cit) and H2O2 | 99% | 95% | Citric acid concentration of 2 mol L−1, at a temperature of 80 °C 90 min, liquid–solid ratio of 30 mL g−1, and 2 vol. % H2O | [324] |
LiCoO2 | - | 5 wt.% NaOH solution, 4 M H2SO4 + 10% v/v H2O2 | 96% | 95% | 85 °C for 120 min | [325] |
LiCoO2 | 5% H2O2 | Diluted sulfuric acid | 93.4% | 66.2% | 368 K and 50 g/L pulp density for 240 min | [326] |
LiNi1/3Co1/3Mn1/3O2 | Ascorbic acid and flavonoids | Citrus fruit juice (CJ) | ~100% | 94% | 90 °C; 0.5 h; 50 g L−1 | [327] |
LiNi1/3Co1/3Mn1/3O2 | H2O2 | Acetic acid and metallic acid | 98.39% | 97.72% | H2O2 | [328] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afroze, S.; Reza, M.S.; Kuterbekov, K.; Kabyshev, A.; Kubenova, M.M.; Bekmyrza, K.Z.; Azad, A.K. Emerging and Recycling of Li-Ion Batteries to Aid in Energy Storage, A Review. Recycling 2023, 8, 48. https://doi.org/10.3390/recycling8030048
Afroze S, Reza MS, Kuterbekov K, Kabyshev A, Kubenova MM, Bekmyrza KZ, Azad AK. Emerging and Recycling of Li-Ion Batteries to Aid in Energy Storage, A Review. Recycling. 2023; 8(3):48. https://doi.org/10.3390/recycling8030048
Chicago/Turabian StyleAfroze, Shammya, Md Sumon Reza, Kairat Kuterbekov, Asset Kabyshev, Marzhan M. Kubenova, Kenzhebatyr Z. Bekmyrza, and Abul K. Azad. 2023. "Emerging and Recycling of Li-Ion Batteries to Aid in Energy Storage, A Review" Recycling 8, no. 3: 48. https://doi.org/10.3390/recycling8030048
APA StyleAfroze, S., Reza, M. S., Kuterbekov, K., Kabyshev, A., Kubenova, M. M., Bekmyrza, K. Z., & Azad, A. K. (2023). Emerging and Recycling of Li-Ion Batteries to Aid in Energy Storage, A Review. Recycling, 8(3), 48. https://doi.org/10.3390/recycling8030048