Drivers and Barriers in the Production and Utilization of Second-Generation Bioethanol in India
Abstract
:1. Introduction
2. Different Generations of Biorefinery
3. Second-Generation Biorefinery in India and Other Leading Economies
4. Biofuel Policies and Regulations in India and Other Leading Economies
5. Challenges for Commercialization of Second-Generation Biorefineries
5.1. Supply Chain and Availability of Second-Generation Biomass
5.2. Efficiency of Pretreatment and Enzymatic Saccharification
5.3. Technology Scale-Up
6. Future Prospects and Recommendations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nanda, S.; Mohammad, J.; Reddy, S.N.; Kozinski, J.A.; Dalai, A.K. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers. Biorefin. 2014, 4, 157–191. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, J.H.; Sun, D.-Q. Untangling global levelised cost of electricity based on multi-factor learning curve for renewable energy: Wind, solar, geothermal, hydropower and bioenergy. J. Clean. Prod. 2021, 285, 124827. [Google Scholar] [CrossRef]
- Jha, S.; Okolie, J.A.; Nanda, S.; Dalai, A.K. A review of biomass resources and thermochemical conversion technologies. Chem. Eng. Technol. 2022, 45, 791–799. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fraceto, L.F.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; de Medeiros, G.A.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Forde, G.M.; Rainey, T.J.; Speight, R.; Batchelor, W.; Pattenden, L.K. Matching the biomass to the bioproduct: Summary of up-and downstream bioprocesses. Phys. Sci. Rev. 2016, 1, 20160046. [Google Scholar] [CrossRef]
- Loow, Y.L.; Wu, T.Y.; Yang, G.H.; Jahim, J.M.; Teoh, W.H.; Mohammad, A.W. Role of energy irradiation in aiding pretreatment of lignocellulosic biomass for improving reducing sugar recovery. Cellulose 2016, 23, 2761–2789. [Google Scholar] [CrossRef]
- Chai, W.S.; Bao, Y.; Jin, P.; Tang, G.; Zhou, L. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew. Sustain. Energy Rev. 2021, 147, 111254. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valoriz. 2021, 12, 2145–2169. [Google Scholar] [CrossRef]
- Patel, A.; Shah, A.R. Integrated lignocellulosic biorefinery: Gateway for production of second-generation ethanol and value-added products. J. Bioresour. Bioprod. 2021, 6, 108–128. [Google Scholar] [CrossRef]
- Pattnaik, F.; Patra, B.R.; Okolie, J.A.; Nanda, S.; Dalai, A.K.; Naik, S. A review of thermocatalytic conversion of biogenic wastes into crude biofuels and biochemical precursors. Fuel 2022, 320, 123857. [Google Scholar] [CrossRef]
- Yu, H.T.; Chen, B.Y.; Li, B.Y.; Tseng, M.C.; Han, C.C.; Shyu, S.G. Efficient pretreatment of lignocellulosic biomass with high recovery of solid lignin and fermentable sugars using Fenton reaction in a mixed solvent. Biotechnol. Biofuels 2018, 11, 287. [Google Scholar] [CrossRef]
- Okolie, J.A.; Rana, R.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Supercritical water gasification of biomass: A state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustain. Energy Fuels 2019, 3, 578–598. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Patel, A.K.; Pant, D.; Banu, J.R.; Rao, C.V.; Kim, Y.G.; Yang, Y.H. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 2020, 300, 122724. [Google Scholar] [CrossRef]
- Ponnusamy, V.K.; Nguyen, D.D.; Dharmaraja, J.; Shobana, S.; Banu, J.R.; Saratale, R.G.; Chang, S.W.; Kumar, G. A review on lignin structure, pre-treatments, fermentation reactions and biorefinery potential. Bioresour. Technol. 2019, 271, 462–472. [Google Scholar] [CrossRef]
- Zhao, C.; Qiao, X.; Shao, Q.; Hassan, M.; Ma, Z. Evolution of the lignin chemical structure during the bioethanol production process and its inhibition to enzymatic hydrolysis. Energy Fuels 2020, 34, 5938–5947. [Google Scholar] [CrossRef]
- Agrawal, R.; Verma, A.; Singhania, R.R.; Varjani, S.; Di Dong, C.; Patel, A.K. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresour. Technol. 2021, 332, 125042. [Google Scholar] [CrossRef] [PubMed]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef] [PubMed]
- Medina, J.D.C.; Woiciechowski, A.; Filho, A.Z.; Nigam, P.S.; Ramos, L.P.; Soccol, C.R. Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach. Bioresour. Technol. 2016, 199, 173–180. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Sankaran, R.; Show, P.L.; Ibrahim, T.N.B.T.; Chew, K.W.; Culaba, A.; Chang, J.-S. Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges, and future prospects. Biofuel Res. J. 2021, 7, 1115–1127. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Awasthi, A.K.; Lukk, T.; Tuohy, M.G.; Gong, L.; Nguyen-Tri, P.; Goddard, A.D.; Bill, R.M.; Nayak, S.C.; et al. Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization. Renew. Sustain. Energy Rev. 2021, 148, 111258. [Google Scholar] [CrossRef]
- Raj, T.; Chandrasekhar, K.; Kumar, A.N.; Banu, J.R.; Yoon, J.; Bhatia, S.K.; Yang, Y.H.; Varjani, S.; Kim, S.H. Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. Bioresour. Technol. 2022, 344, 126292. [Google Scholar] [CrossRef] [PubMed]
- Kothari, R.; Vashishtha, A.; Singh, H.M.; Pathak, V.V.; Tyagi, V.V.; Yadav, B.C.; Ashokkumar, V.; Singh, D.P. Assessment of Indian bioenergy policy for sustainable environment and its impact for rural India: Strategic implementation and challenges. Environ. Technol. Innov. 2020, 20, 101078. [Google Scholar] [CrossRef]
- Velankar, H.R.; Thulluri, C.; Mattam, A.J. Development of second-generation ethanol technologies in India: Current status of commercialization. In Advanced Biofuel Technologies; Tuli, D., Kasture, S., Kuila, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 135–149. [Google Scholar]
- Sharma, A.; Srikavya, B.P.; Urade, A.D.; Joshi, A.; Narain, R.S.; Dwarakanath, V.; Alam, T.; Prasad, R.S. Economic and environmental impacts of biofuels in Indian context. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Takkellapati, S.; Li, T.; Gonzalez, M.A. An overview of biorefinery derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean. Technol. Environ. Policy 2018, 20, 1615–1630. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.; Berruti, F. A technical review of bioenergy and resource recovery from municipal solid waste. J. Hazard. Mater. 2021, 403, 123970. [Google Scholar] [CrossRef] [PubMed]
- Alalwan, H.A.; Alminshid, A.H.; Aljaafari, H.A.S. Promising evolution of biofuel generations. Subject review. Renew. Energy Focus 2019, 28, 127–139. [Google Scholar] [CrossRef]
- Mahapatra, S.; Kumar, D.; Singh, B.; Sachan, P.K. Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus 2021, 4, 100036. [Google Scholar] [CrossRef]
- Rodionova, M.; Poudyal, R.; Tiwari, I.; Voloshin, R.; Zharmukhamedov, S.; Nam, H.; Zayadan, B.; Bruce, B.; Hou, H.; Allakhverdiev, S. Biofuel production: Challenges and opportunities. Int. J. Hydrogen Energy 2017, 42, 8450–8461. [Google Scholar] [CrossRef]
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A review of thermochemical conversion of waste biomass to biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Sheldon, R.A. Enzymatic conversion of first-and second-generation sugars. In Biomass and Green Chemistry; Sílvio, V., Jr., Ed.; Springer: Cham, Switzerland, 2017; pp. 169–189. [Google Scholar]
- Gambelli, D.; Alberti, F.; Solfanelli, F.; Vairo, D.; Zanoli, R. Third generation biofuels in Italy by 2030: A scenario analysis using Bayesian networks. Energy Policy 2017, 103, 165–178. [Google Scholar] [CrossRef]
- Hayes, C.J.; Burgess, D.R., Jr.; Manion, J.A. Combustion pathways of biofuel model compounds: A review of recent research and current challenges pertaining to first-, second-, and third-generation biofuels. In Advances in Physical Organic Chemistry; Williams, I.H., Williams, N.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 49, pp. 103–187. [Google Scholar]
- Sarwer, A.; Hamed, S.M.; Osman, A.I.; Jamil, F.; Al-Muhtaseb, A.A.H.; Alhajeri, N.S.; Rooney, D.W. Algal biomass valorization for biofuel production and carbon sequestration: A review. Environ. Chem. Lett. 2022, 20, 2797–2851. [Google Scholar] [CrossRef]
- Richmond, A.; Hu, Q. Handbook of Microalgal Culture, 2nd ed.; John Wiley & Sons: Oxford, UK, 2013. [Google Scholar]
- Saravana, P.S.; Ummat, V.; Bourke, P.; Tiwari, B.K. Emerging green cell disruption techniques to obtain valuable compounds from macro and microalgae: A review. Crit. Rev. Biotechnol. 2023, 43, 904–919. [Google Scholar] [CrossRef]
- Zhou, W.G.; Chen, P.; Min, M.; Ma, X.C.; Wang, J.H.; Griffith, R.; Hussain, F.; Peng, P.; Xie, Q.L.; Li, Y.; et al. Environment-enhancing algal biofuel production using wastewaters. Renew. Sustain. Energy Rev. 2014, 36, 256–269. [Google Scholar] [CrossRef]
- Shah, S.H.; Raja, I.A.; Rizwan, M.; Rashid, N.; Mahmood, Q.; Shah, F.A.; Pervez, A. Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan. Renew. Sustain. Energy Rev. 2018, 81, 76–92. [Google Scholar] [CrossRef]
- Azizi, K.; Moraveji, M.K.; Najafabadi, H.A. A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 2018, 82, 3046–3059. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, B.; Chen, H.; Ww, S.; Jin, Y.; Xiao, H. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnol. Biofuels 2021, 14, 205. [Google Scholar] [CrossRef]
- Huang, C.; Jiang, X.; Shen, X.; Hu, J.; Tang, W.; Wu, X.; Ragauskas, A.; Jameel, H.; Meng, X.; Yong, Q. Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew. Sustain. Energy Rev. 2022, 154, 111822. [Google Scholar] [CrossRef]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-Gallegos, A.C. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem. Mol. Sci. 2021, 3, 100047. [Google Scholar] [CrossRef] [PubMed]
- Okolie, J.A.; Mukherjee, A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Next-generation biofuels and platform biochemicals from lignocellulosic biomass. Int. J. Energy Res. 2021, 45, 14145–14169. [Google Scholar] [CrossRef]
- Sarker, T.R.; Pattnaik, F.; Nanda, S.; Dalai, A.K.; Meda, V.; Naik, S. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere 2021, 284, 131372. [Google Scholar] [CrossRef]
- Yahyazadeh, A.; Bot, A.; Nanda, S.; Dalai, A.K. Technological insights on glycerol valorization into propanediol through thermocatalytic and synthetic biology approaches. Fermentation 2023, 9, 894. [Google Scholar] [CrossRef]
- Galbe, M.; Wallberg, O. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol. Biofuels 2019, 12, 294. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, G.D.; Sarmah, A.K.; Sen, R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour. Technol. 2018, 247, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Singhania, R.R.; Nigam, P.S.; Dong, C.D.; Patel, A.K.; Puri, M. Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresour. Technol. 2022, 344, 126415. [Google Scholar] [CrossRef] [PubMed]
- Patra, B.R.; Nanda, S.; Dalai, A.K.; Meda, V. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products. Chemosphere 2021, 285, 131431. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.P.; Nguyen, L.N.; Vu, M.T.; Johir, M.A.H.; McLaughlan, R.; Nghiem, L.D. A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Sci. Total Environ. 2020, 743, 140630. [Google Scholar] [CrossRef]
- Seo, M.W.; Lee, S.H.; Nam, H.; Lee, D.; Tokmurzin, D.; Wang, S.; Park, Y.K. Recent advances of thermochemical conversion processes for biorefinery. Bioresour. Technol. 2022, 343, 126109. [Google Scholar] [CrossRef]
- Ang, A.F.; Ashaari, Z.; Lee, S.H.; Tahir, P.M.; Halis, R. Lignin-based copolymer adhesives for composite wood panels—A review. Int. J. Adhes. Adhes. 2019, 95, 102408. [Google Scholar] [CrossRef]
- Pattnaik, F.; Tripathi, S.; Patra, B.R.; Nanda, S.; Kumar, V.; Dalai, A.K.; Naik, S. Catalytic conversion of lignocellulosic polysaccharides to commodity biochemicals: A review. Environ. Chem. Lett. 2021, 19, 4119–4136. [Google Scholar] [CrossRef]
- Giuliano, A.; Poletto, M.; Barletta, D. Process design of a multi-product lignocellulosic biorefinery. Comp. Aided Eng. 2015, 37, 1313–1318. [Google Scholar]
- Aron, N.S.M.; Khoo, K.S.; Chew, K.W.; Show, P.L.; Chen, W.H.; Nguyen, T.H.P. Sustainability of the four generations of biofuels—A review. Int. J. Energy Res. 2020, 44, 9266–9282. [Google Scholar] [CrossRef]
- Chauhan, A.; Upadhyay, S.; Saini, G.; Senthilkumar, N. Agricultural Crop Residue Based Biomass in India: Potential Assessment, Methodology and Key Issues. Sustain. Energy Technol. Assess. 2022, 53, 102552. [Google Scholar] [CrossRef]
- Alves, E.P.R.; Salcedo-Puerto, O.; Nuncira, J.; Emebu, S.; Mendoza-Martinez, C. Renewable energy potential and CO2 performance of main biomasses used in Brazil. Energies 2023, 16, 3959. [Google Scholar] [CrossRef]
- Ndayisenga, F.; Yu, Z.S.; Zheng, J.Z.; Wang, B.B.; Liang, H.X.; Phulpoto, I.A.; Habiyakare, T.; Zhou, D.D. Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization. Renew. Sustain. Energy Rev. 2021, 145, 111078. [Google Scholar] [CrossRef]
- Ayog, N. Ministry of Petroleum and Natural Gas. Roadmap for Ethanol Blending in India 2020–25; Government of India: New Delhi, India, 2021.
- BlueWeave Consulting. India Ethanol Market—By Source (Sugar & Molasses-Based, Grain-Based, Second Generation); By Purity (Denatured, Undenatured); By Application (Industrial Solvents, Fuel & Fuel Additives, Beverages, Disinfectant, Personal Care, Others); By Region (North India, South India, East India, West India), Trend Analysis, Competitive Landscape & Forecast, 2019–2029. 2023. Available online: https://www.blueweaveconsulting.com/report/india-ethanol-market#:~:text=India%20ethanol%20market%20size%20was,USD%204.15%20billion%20by%202029 (accessed on 5 January 2024).
- Koundal, A.; ETEnergyWorld. Economic Times. India’s Hydrogen Generation Market to Reach $21.9 bn by 2030: Report. 2023. Available online: https://energy.economictimes.indiatimes.com/news/renewable/indias-hydrogen-generation-market-to-reach-21-9-bn-by-2030-report/103572968 (accessed on 5 January 2024).
- Gupta, U.; ETEnergyWorld. Why the Biogas Sector Presents a Compelling Case for Growth of Clean Energy and Startups. 2023. Available online: https://energy.economictimes.indiatimes.com/news/oil-and-gas/why-the-biogas-sector-presents-a-compelling-case-for-growth-of-clean-energy-and-startups/103050670 (accessed on 5 January 2024).
- Holmgren, J. India: Potential for Developing Agricultural Residues to Sustainable Ethanol. Available online: https://www.indianchemicalnews.com/opinion/india-potential-for-developing-agricultural-residues-to-sustainable-ethanol-13316#:~:text=According%20to%20the%20Ministry%20of,(depending%20on%20moisture%20level) (accessed on 16 November 2023).
- Renewable Fuels Association. World Fuel Ethanol Production by Region. Available online: https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production (accessed on 23 October 2023).
- Statista. Production of Ethanol Used as a Fuel in India from 2013 to 2021, with a Forecast for 2023. Available online: https://www.statista.com/statistics/1321862/india-ethanol-fuel-production/ (accessed on 16 November 2023).
- Press Information Bureau. Pradhan Mantri Jaiv Indhan—Vatavaran Anukool Fasal Awashesh Nivaran Yojana. Available online: https://static.pib.gov.in/WriteReadData/specificdocs/documents/2022/jun/doc202262266901.pdf (accessed on 17 November 2023).
- Business Today. Mukesh Ambani’s RIL to Make Biofuel Out of Algae Soon; Check Details Here. Available online: https://www.businesstoday.in/latest/corporate/story/mukesh-ambanis-ril-to-make-biofuel-out-of-algae-soon-check-details-here-337565-2022-06-14 (accessed on 23 October 2023).
- Biofuels International. TATA Projects Wins Order for Bioethanol Plant in India. Available online: https://biofuels-news.com/news/tata-projects-wins-order-for-bioethanol-plant-in-india/ (accessed on 23 October 2023).
- Adani Group. Available online: https://www.adani.com/newsroom/media-release/adani-and-totalenergies-to-create-the-worlds-largest-green-hydrogen-ecosystem (accessed on 23 October 2023).
- Chandel, A.K.; Garlapati, V.K.; Singh, A.K.; Antunes, F.A.F.; da Silva, S.S. The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 2018, 264, 370–381. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2019. Available online: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 23 October 2023).
- Grangeia, C.; Santos, L.; Lazaro, L.L.B. The Brazilian biofuel policy (RenovaBio) and its uncertainties: An assessment of technical, socioeconomic, and institutional aspects. Energy Convers. Manag. X 2022, 13, 100156. [Google Scholar] [CrossRef]
- Strzalka, R.; Schneider, D.; Eicker, U.J.R. Current status of bioenergy technologies in Germany. Renew. Sustain. Energy Rev. 2017, 72, 801–820. [Google Scholar] [CrossRef]
- Li, M.; Zhang, W.; Hayes, D.; Arthur, R.; Yang, Y.; Wang, X. China’s new nationwide E10 ethanol mandate and its global implications. CARD Agri. Policy Rev. 2017, 2017, 3–13. [Google Scholar]
- Ebadian, M.; van Dyk, S.; McMillan, J.D.; Saddler, J. Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy 2020, 147, 111906. [Google Scholar] [CrossRef]
- Mohan, S.V.; Dahiya, S.; Amulya, K.; Katakojwala, R.; Vanitha, T.K. Can circular bioeconomy be fueled by waste biorefineries—A closer look. Bioresour. Technol. Rep. 2019, 7, 100277. [Google Scholar]
- Kumar, B.; Verma, P. Biomass-based biorefineries: An important architype towards a circular economy. Fuel 2021, 288, 119622. [Google Scholar] [CrossRef]
- Sorda, G.; Banse, M.; Kemfert, C. An overview of biofuel policies across the world. Energy Policy 2010, 38, 6977–6988. [Google Scholar] [CrossRef]
- Purohit, P.; Dhar, S. Lignocellulosic biofuels in India: Current perspectives, potential issues and future prospects. AIMS Energy 2018, 6, 453–486. [Google Scholar] [CrossRef]
- Saravanan, A.P.; Mathimani, T.; Deviram, G.; Rajendran, K.; Pugazhendhi, A. Biofuel policy in India: A review of policy barriers in sustainable marketing of biofuel. J. Clean. Prod. 2018, 193, 734–747. [Google Scholar] [CrossRef]
- Mookherjee, P. The Implications of India’s Revised Roadmap for Biofuels: A Lifecycle Perspective; Observer Research Foundation: New Delhi, India, 2022. [Google Scholar]
- Jain, A. India’s Aim to Cover Entire Nation with E20 Fuel by 2025: PM Modi. Available online: https://www.livemint.com/news/india/indias-aim-to-cover-entire-nation-with-e20-fuel-by-2025-pm-modi-11690000951830.html (accessed on 16 November 2023).
- Karp, S.G.; Schmitt, C.C.; Moreira, R.; Penha, R.O.; Murawski de Mello, A.F.; Herrmann, L.W.; Soccol, C.R. Sugarcane biorefineries: Status and perspectives in bioeconomy. Bio Energy Res. 2022, 15, 1842–1853. [Google Scholar] [CrossRef]
- Datta, A.; Emmanuel, M.A.; Ram, N.K.; Dhingra, S. Crop Residue Management: Solution to Achieve Better Air Quality. Available online: https://www.teriin.org/policy-brief/crop-residue-management-solution-achieve-better-air-quality (accessed on 16 November 2023).
- Junqueira, T.L.; Cavalett, O.; Bonomi, A. The virtual sugarcane biorefinery-a simulation tool to support public policies formulation in bioenergy. Ind. Biotechnol. 2016, 12, 62–67. [Google Scholar] [CrossRef]
- Sarker, T.R.; Nanda, S.; Meda, V.; Dalai, A.K. Densification of waste biomass for manufacturing solid biofuel pellets: A review. Environ. Chem. Lett. 2023, 21, 231–264. [Google Scholar] [CrossRef]
- Nunes, L.; Causer, T.; Ciolkosz, D. Biomass for energy: A review on supply chain management models. Renew. Sustain. Energy Rev. 2020, 120, 109658. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Yang, M.; Singh, S.; Cheng, G. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. Bioresour. Technol. 2021, 322, 124522. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nizetic, S.; Ong, H.C.; Chong, C.T.; Atabani, A.E.; Pham, V.V. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. J. Environ. Manag. 2021, 296, 113194. [Google Scholar] [CrossRef]
- Yoo, C.G.; Meng, X.; Pu, Y.; Ragauskas, A.J. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresour. Technol. 2020, 301, 122784. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renew. Sustain. Energy Rev. 2019, 101, 590–599. [Google Scholar] [CrossRef]
- Islam, M.K.; Wang, H.; Rehman, S.; Dong, C.; Hsu, H.Y.; Lin, C.S.K.; Leu, S.Y. Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery. Bioresour. Technol. 2020, 298, 122558. [Google Scholar] [CrossRef] [PubMed]
- Saini, J.K.; Singhania, R.R.; Satlewal, A.; Saini, R.; Gupta, R.; Tuli, D.; Mathur, A.; Adsul, M. Improvement of wheat straw hydrolysis by cellulolytic blends of two Penicillium spp. Renew. Energy 2016, 98, 43–50. [Google Scholar] [CrossRef]
- Saini, J.K.; Patel, A.K.; Adsul, M.; Singhania, R.R. Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass. Renew. Energy 2016, 98, 29–42. [Google Scholar] [CrossRef]
- Ubando, A.T.; Felix, C.B.; Chen, W.H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresour. Technol. 2020, 299, 122585. [Google Scholar] [CrossRef]
- Adsul, M.; Sandhu, S.K.; Singhania, R.R.; Gupta, R.; Puri, S.K.; Mathur, A. Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme Microb. Technol. 2020, 133, 109442. [Google Scholar] [CrossRef] [PubMed]
- Singhania, R.R.; Sukumaran, R.K.; Patel, A.K.; Larroche, C.; Pandey, A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 2010, 46, 541–549. [Google Scholar] [CrossRef]
- Saini, R.; Saini, J.K.; Adsul, M.; Patel, A.K.; Mathur, A.; Tuli, D.K.; Singhania, R.R. Enhanced cellulase production by Penicillium oxalicum for bioethanol application. Bioresour. Technol. 2015, 188, 240–246. [Google Scholar] [CrossRef]
- Singhania, R.R.; Ruiz, H.A.; Awasthi, M.K.; Dong, C.-D.; Chen, C.-W.; Patel, A.K. Challenges in cellulase bioprocess for biofuel applications. Renew. Sustain. Energy Rev. 2021, 151, 111622. [Google Scholar] [CrossRef]
- Siqueira, J.G.W.; Rodrigues, C.; Vandenberghe, L.P.D.S.; Woiciechowski, A.L.; Soccol, C.R. Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. Biomass Bioenergy 2020, 132, 105419. [Google Scholar] [CrossRef]
- Karnaouri, A.; Antonopoulou, I.; Zerva, A.; Dimarogona, M.; Topakas, E.; Rova, U.; Christakopoulos, P. Thermophilic enzyme systems for efficient conversion of lignocellulose to valuable products: Structural insights and future perspectives for esterases and oxidative catalysts. Bioresour. Technol. 2019, 279, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Cao, R.; Zhou, X.; Xu, Y. An integrated biorefinery process for adding values to corncob in co-production of xylooligosaccharides and glucose starting from pretreatment with gluconic acid. Bioresour. Technol. 2020, 307, 123200. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Yu, Y.; Chen, H.; Zhou, J.; Tan, Z.; He, S.; Zhu, X.; Shi, H.; Liu, P.; Bilal, M.; et al. Improved lignocellulose degradation efficiency by fusion of beta-glucosidase, exoglucanase, and carbohydrate-binding module from Caldicellulosiruptor saccharolyticus. Bioresources 2019, 14, 6767–6780. [Google Scholar] [CrossRef]
- Nizami, A.S.; Rehan, M.; Waqas, M.; Naqvi, M.; Ouda, O.K.M.; Shahzad, K.; Miandad, R.; Khan, M.Z.; Syamsiro, M.; Ismail, I.M.I.; et al. Waste biorefineries: Enabling circular economies in developing countries. Bioresour. Technol. 2017, 241, 1101–1117. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Larroche, C.; Dussap, C.G. Comprehensive assessment of second-generation bioethanol production. Bioresour. Technol. 2020, 313, 123630. [Google Scholar] [CrossRef]
- Oh, Y.K.; Hwang, K.R.; Kim, C.; Kim, J.R.; Lee, J.S. Recent developments and key barriers to advanced biofuels: A short review. Bioresour. Technol. 2018, 257, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.G.; Alencar, A.C. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review. Int. J. Hydrogen Energy 2020, 45, 18114–18132. [Google Scholar] [CrossRef]
- Chang, Y.J.; Chang, J.S.; Lee, D.J. Gasification of biomass for syngas production: Research update and stoichiometry diagram presentation. Bioresour. Technol. 2023, 387, 129535. [Google Scholar] [CrossRef]
Company | Expected Plant Capacity (Kiloliters/Day) | Proposed Location |
---|---|---|
BPCL | 100 | Bargarh, Odisha |
BPCL | 100 | Sagar, Madhya Pradesh |
BPCL | 100 | Maharashtra |
HPCL | 100 | Bathinda, Punjab |
HPCL | 100 | Budaun, Uttar Pradesh |
HPCL | 100 | Supaul, Bihar |
HPCL | 100 | West Godavari, Andhra Pradesh |
IOCL | 100 | Panipat, Haryana |
IOCL | 100 | Gorakhpur, Uttar Pradesh |
IOCL | 100 | Dahej, Gujarat |
MRPL | 60 | Davangere, Karnataka |
NRL | 187 | Numaligarh, Assam |
Methods | Mechanism | Advantages | Disadvantages |
---|---|---|---|
Biological pretreatment | |||
|
|
|
|
Chemical pretreatment | |||
|
|
|
|
Physicochemical pretreatment | |||
|
|
|
|
Strengths | Weaknesses |
---|---|
|
|
Opportunities | Threats |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pattnaik, F.; Patra, B.R.; Nanda, S.; Mohanty, M.K.; Dalai, A.K.; Rawat, J. Drivers and Barriers in the Production and Utilization of Second-Generation Bioethanol in India. Recycling 2024, 9, 19. https://doi.org/10.3390/recycling9010019
Pattnaik F, Patra BR, Nanda S, Mohanty MK, Dalai AK, Rawat J. Drivers and Barriers in the Production and Utilization of Second-Generation Bioethanol in India. Recycling. 2024; 9(1):19. https://doi.org/10.3390/recycling9010019
Chicago/Turabian StylePattnaik, Falguni, Biswa R. Patra, Sonil Nanda, Mahendra K. Mohanty, Ajay K. Dalai, and Jaya Rawat. 2024. "Drivers and Barriers in the Production and Utilization of Second-Generation Bioethanol in India" Recycling 9, no. 1: 19. https://doi.org/10.3390/recycling9010019
APA StylePattnaik, F., Patra, B. R., Nanda, S., Mohanty, M. K., Dalai, A. K., & Rawat, J. (2024). Drivers and Barriers in the Production and Utilization of Second-Generation Bioethanol in India. Recycling, 9(1), 19. https://doi.org/10.3390/recycling9010019