Investigation of the Effectiveness of Barrier Layers to Inhibit Mutagenic Effects of Recycled LDPE Films, Using a Miniaturized Ames Test and GC-MS Analysis
Abstract
:1. Introduction
2. Results
2.1. FT-IR Spectroscopy and Light Microscopy
2.2. GC-MS
2.3. Miniaturized Ames Test
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Polymer Processing
3.2.2. FT-IR and Light Microscopy
3.2.3. Migration and Pre-Concentration
3.2.4. GC-MS
3.2.5. Criteria for Evaluating the GC-MS Analysis
3.2.6. Miniaturized Ames Test
3.2.7. Evaluation Criteria for the Miniaturized Ames Test
4. Discussion
5. Conclusions
- The recycled sample material F exhibited stronger mutagenic effects than the other recycled material T2 in both migrates (A and B) with a maximum n-fold induction of 28.
- The additional film layers can effectively reduce migration, but the migration of all toxicologically relevant substances could not be fully prevented. A combination of virgin LDPE and EVOH reduced the n-fold induction by about one third compared to material F, and virgin LDPE combined with G-polymer reduced the n-fold induction by about two thirds.
- In some of the samples, the addition of EVOH did not decrease the relative reduction of migrated substances, whereas with G-polymer, all samples showed a higher reduction (ranging from 64% to 100%).
- G-polymer demonstrated superior barrier properties compared to EVOH for 6 out of 11 chemicals that migrated from T2. Similar trends were observed in samples containing recycled material F, where G-polymer also outperformed EVOH for 13 out of 16 chemicals.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Chemical | Abbreviation | CAS No. | Supplier |
---|---|---|---|
Dimethyl sulfoxide | DMSO | 67-68-5 | Carl Roth |
Nutrient Broth No. 2 (CM0067) | - | - | Oxid |
Ampicillin sodium salt | - | 69-52-3 | Carl Roth |
Citric acid monohydrate ≥ 99.5% | - | 5949-29-1 | Carl Roth |
Magnesium sulfate heptahydrate ≥ 99% | MgSO4 ∙ 7 H2O | 100034-99-8 | Carl Roth |
Dipotassium hydrogen phosphate ≥ 98% | K2HPO4 | 7758-11-4 | Carl Roth |
Sodium ammonium hydrogen phosphate tetrahydrate ≥ 99% | NaNH4HPO4 ∙ 4 H2O | 7783-13-3 | Carl Roth |
D-glucose monohydrate | - | 77938-63-7 | Carl Roth |
D-biotin ≥ 98.5% | - | 58-85-5 | Carl Roth |
Bromocresol purple | - | 115-40-2 | Sigma Aldrich |
L-histidine ≥ 99% | - | 71-00-1 | Sigma Aldrich |
D-glucose-6-phosphat monosodium salt ≥ 98% | G-6-P | 54010-71-8 | Carl Roth |
NADP disodium salt ≥ 85% | NADP | 24292-60-2 | Carl Roth |
Magnesium chloride ≥ 98.5% | MgCl2 | 7786-30-3 | Carl Roth |
Potassium chloride ≥ 98.5% | KCl | 7783-13-3 | Carl Roth |
Sodium dihydrogen phosphate monohydrate ≥ 98% | NaH2PO4 ∙ H2O | 10049-21-5 | Carl Roth |
Disodium hydrogen phophate ≥ 98% | Na2HPO4 | 7558-79-4 | Carl Roth |
4-nitroquinoline-N-oxide ≥ 98% | 4-NQO | 56-57-5 | Sigma Aldrich |
2-aminoanthracene 96% | 2-AA | 613-13-8 | Sigma Aldrich |
2-nitrofluorene 98% | 2-NF | 153-78-6 | Sigma Aldrich |
Nr. | Name | LDPE | LDPE/EVOH | LDPE/G |
---|---|---|---|---|
1 | Unknown | nd | 0.234 | 0.269 |
2 | Arvin 4 | 0.066 | 0.058 | 0.066 |
3 | Ethyl dodecanoate | nd | nd | nd |
4 | Unknown | 0.100 | 0.252 | 0.276 |
5 | Diethyl terephthalate | nd | nd | nd |
6 | Unknown | nd | 0.010 | 0.006 |
7 | Arvin 6 | 0.115 | 0.098 | 0.082 |
8 | 1-octadecene | nd | nd | nd |
9 | Arvin 7 | 0.026 | 0.027 | 0.022 |
10 | Isopropyl myristate | nd | nd | nd |
11 | Unknown | 1.514 | 1.752 | 1.480 |
12 | Unknown | 0.080 | 0.418 | 0.754 |
13 | Unknown | 0.007 | 0.130 | 0.177 |
14 | Methyl hexadecanoate | nd | nd | nd |
15 | Dibutyl phthalate | nd | nd | nd |
16 | Ethyl hexadecanoate | 0.025 | 0.020 | 0.014 |
17 | Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, ethyl ester | 0.445 | 3.326 | 4.845 |
18 | Tributyl aconitate | nd | nd | nd |
19 | Ethyl cis-9-octadecenoate | nd | nd | nd |
20 | Butyl citrate | nd | nd | nd |
21 | Ethyl octadecanoate | nd | 0.013 | 0.010 |
22 | Unknown | 0.022 | 0.049 | 0.056 |
23 | Tributyl acetylcitrate | nd | nd | nd |
24 | Bis(2-ethylhexyl) adipate | nd | nd | nd |
25 | 1-tetracosene | 0.043 | 0.047 | 0.067 |
26 | Cyclohexane, 1,3,5-triphenyl- | nd | nd | nd |
27 | Di(2-ethylhexyl) phthalate | nd | nd | <0.005 |
28 | Unknown | nd | nd | nd |
29 | Bumetrizole | nd | nd | nd |
30 | Di-(2-ethylhexyl) terephthalate | nd | nd | nd |
31 | Erucamide | nd | nd | nd |
32 | P168 | nd | nd | 0.093 |
33 | P168-ox | nd | 0.110 | 0.346 |
34 | AO1076 | nd | 0.008 | 0.018 |
35 | POSH | 1.8 | 1.9 | 2.5 |
36 | Total non POSH | 2.4 | 6.6 | 8.6 |
37 | Total amount | 4.3 | 8.5 | 11.1 |
Nr. | Name | T2 | LDPE/T2 | LDPE/EVOH/T2 | LDPE/G/T2 |
---|---|---|---|---|---|
1 | Unknown | 0.057 | 0.047 | 0.291 | 0.385 |
2 | Arvin 4 | 0.125 | 0.060 | 0.062 | 0.069 |
3 | Ethyl dodecanoate | 0.020 | 0.009 | 0.012 | 0.007 |
4 | Unknown | 0.120 | 0.150 | 0.254 | 0.309 |
5 | Diethyl terephthalate | nd | nd | nd | nd |
6 | Unknown | 0.010 | 0.013 | 0.015 | 0.013 |
7 | Arvin 6 | 0.126 | 0.110 | 0.095 | 0.083 |
8 | 1-octadecene | 0.089 | 0.048 | 0.040 | 0.032 |
9 | Arvin 7 | 0.029 | 0.027 | 0.028 | 0.024 |
10 | Isopropyl myristate | nd | nd | nd | nd |
11 | Unknown | 2.024 | 1.969 | 1.470 | 1.354 |
12 | Unknown | 0.130 | 0.164 | 0.555 | 0.980 |
13 | Unknown | 0.032 | 0.049 | 0.088 | 0.192 |
14 | Methyl hexadecanoate | nd | nd | nd | nd |
15 | Dibutyl phthalate | 0.021 | 0.008 | 0.007 | nd |
16 | Ethyl hexadecanoate | 0.067 | 0.042 | 0.036 | 0.030 |
17 | Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, ethyl ester | 0.862 | 1.377 | 3.776 | 5.655 |
18 | Tributyl aconitate | 0.017 | 0.007 | nd | nd |
19 | Ethyl cis-9-octadecenoate | nd | nd | nd | nd |
20 | Butyl citrate | 0.018 | nd | nd | nd |
21 | Ethyl octadecanoate | 0.044 | 0.021 | 0.023 | 0.020 |
22 | Unknown | 0.030 | 0.032 | 0.052 | 0.062 |
23 | Tributyl acetylcitrate | 0.133 | 0.044 | 0.016 | 0.010 |
24 | Bis(2-ethylhexyl) adipate | 0.047 | 0.012 | nd | nd |
25 | 1-tetracosene | 0.217 | 0.102 | 0.125 | 0.088 |
26 | Cyclohexane, 1,3,5-triphenyl- | 0.012 | <0.005 | nd | nd |
27 | Di(2-ethylhexyl) phthalate | 0.068 | 0.023 | 0.022 | 0.016 |
28 | Unknown | nd | nd | nd | nd |
29 | Bumetrizole | 0.047 | 0.014 | 0.013 | 0.008 |
30 | Di-(2-ethylhexyl) terephthalate | 0.112 | 0.031 | 0.030 | 0.017 |
31 | Erucamide | 0.047 | nd | nd | nd |
32 | P168 | nd | nd | <0.005 | 0.046 |
33 | P168-ox | 0.714 | 0.220 | 0.499 | 0.323 |
34 | AO1076 | 0.085 | 0.027 | 0.048 | 0.040 |
35 | POSH | 4.2 | 3.1 | 3.1 | 1.9 |
36 | Total non POSH | 5.3 | 4.6 | 7.6 | 9.8 |
37 | Total amount | 9.5 | 7.6 | 10.7 | 11.7 |
Nr. | Name | F | LDPE/EVOH/F | LDPE/G/F |
---|---|---|---|---|
1 | Unknown | 0.200 | 0.268 | 0.350 |
2 | Arvin 4 | 0.093 | 0.080 | 0.065 |
3 | Ethyl dodecanoate | 0.061 | 0.015 | 0.011 |
4 | Unknown | 0.289 | 0.336 | 0.389 |
5 | Diethyl terephthalate | 2.534 | 0.019 | 0.260 |
6 | Unknown | 0.044 | 0.029 | 0.020 |
7 | Arvin 6 | 0.102 | 0.079 | 0.070 |
8 | 1-octadecene | 0.111 | 0.063 | 0.045 |
9 | Arvin 7 | 0.026 | 0.024 | 0.019 |
10 | Isopropyl myristate | 0.120 | 0.060 | 0.047 |
11 | Unknown | 0.759 | 0.996 | 0.980 |
12 | Unknown | 0.876 | 1.361 | 1.892 |
13 | Unknown | 0.159 | 0.174 | 0.171 |
14 | Methyl hexadecanoate | 0.052 | 0.020 | nd |
15 | Dibutyl phthalate | 0.051 | 0.020 | 0.013 |
16 | Ethyl hexadecanoate | 0.799 | 0.217 | 0.153 |
17 | Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, ethyl ester | 4.292 | 5.744 | 7.267 |
18 | Tributyl aconitate | 0.112 | 0.046 | 0.029 |
19 | Ethyl cis-9-octadecenoate | 1.246 | 0.297 | 0.266 |
20 | Butyl citrate | 0.012 | nd | nd |
21 | Ethyl octadecanoate | 0.334 | 0.095 | 0.081 |
22 | Unknown | 0.077 | 0.082 | 0.083 |
23 | Tributyl acetylcitrate | 0.275 | 0.073 | 0.040 |
24 | Bis(2-ethylhexyl) adipate | 0.280 | 0.091 | 0.043 |
25 | 1-tetracosene | 0.830 | 0.493 | 0.259 |
26 | Cyclohexane, 1,3,5-triphenyl- | 0.134 | 0.050 | 0.033 |
27 | Di(2-ethylhexyl) phthalate | 1.517 | 0.493 | 0.303 |
28 | Unknown | 0.270 | 0.111 | 0.072 |
29 | Bumetrizole | 0.013 | 0.005 | <0.005 |
30 | Di-(2-ethylhexyl) terephthalate | 1.072 | 0.425 | 0.239 |
31 | Erucamide | 0.028 | nd | nd |
32 | P168 | nd | 0.014 | 0.044 |
33 | P168-ox | 0.993 | 0.691 | 0.331 |
34 | AO1076 | 0.063 | 0.046 | 0.026 |
35 | POSH | 15.5 | 10.8 | 5.7 |
36 | Total non POSH | 17.8 | 12.5 | 13.5 |
37 | Total amount | 33.3 | 23.3 | 19.2 |
References
- Jung, H.; Shin, G.; Kwak, H.; Hao, L.T.; Jegal, J.; Kim, H.J.; Jeon, H.; Park, J.; Oh, D.X. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. Chemosphere 2023, 320, 138089. [Google Scholar] [CrossRef] [PubMed]
- Directorate-General for Environment, The European Commission. Proposal Packaging and Packaging Waste; The European Commission: Brussels, Belgium, 2022. [Google Scholar]
- The European Commission. Commission Regulation (EU) 2022/1616 of 15 September 2022 on Recycled Plastic Materials and Articles Intended to Come into Contact with Foods, and Repealing Regulation (EC) No 282/2008; The European Commission: Brussels, Belgium, 2022. [Google Scholar]
- The European Commission. Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food Text with EEA Relevance; The European Commission: Brussels, Belgium, 2011; Volume 012. [Google Scholar]
- The European Commission. Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on Materials and Articles Intended to Come into Contact with Food and Repealing Directives 80/590/EEC and 89/109/EEC; The European Commission: Brussels, Belgium, 2004; Volume 338. [Google Scholar]
- Kroes, R.; Renwick, A.G.; Cheeseman, M.; Kleiner, J.; Mangelsdorf, I.; Piersma, A.; Schilter, B.; Schlatter, J.; van Schothorst, F.; Vos, J.G.; et al. Structure-based thresholds of toxicological concern (TTC): Guidance for application to substances present at low levels in the diet. Food Chem. Toxicol. 2004, 42, 65–83. [Google Scholar] [CrossRef] [PubMed]
- EFSA Scientific Committe; More, S.J.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.I.; Hernández-Jerez, A.F.; Bennekou, S.H.; Koutsoumanis, K.P.; Machera, K.; et al. Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFSA J. 2019, 17, e05708. [Google Scholar] [CrossRef]
- Mayrhofer, E.; Prielinger, L.; Sharp, V.; Rainer, B.; Kirchnawy, C.; Rung, C.; Gruner, A.; Juric, M.; Springer, A. Safety Assessment of Recycled Plastics from Post-Consumer Waste with a Combination of a Miniaturized Ames Test and Chromatographic Analysis. Recycling 2023, 8, 87. [Google Scholar] [CrossRef]
- Severin, I.; Souton, E.; Dahbi, L.; Chagnon, M.C. Use of bioassays to assess hazard of food contact material extracts: State of the art. Food Chem. Toxicol. 2017, 105, 429–447. [Google Scholar] [CrossRef] [PubMed]
- Koster, S.; Bani-Estivals, M.H.; Bonuomo, M.; Bradley, E.; Chagnon, M.C.; Garcia, M.L.; Godts, F.; Gude, T.; Helling, R.; Paseiro-Losada, P.; et al. Guidance on Best Practices on the Risk Assessment of Non Intentionally Added Substances (NIAS) in Food Contact Materials and Articles; ILSI Europe: Brussels, Belgium, 2015. [Google Scholar]
- Rainer, B.; Pinter, E.; Czerny, T.; Riegel, E.; Kirchnawy, C.; Marin-Kuan, M.; Schilter, B.; Tacker, M. Suitability of the Ames test to characterise genotoxicity of food contact material migrates. Food Addit. Contam. Part A 2018, 35, 2230–2243. [Google Scholar] [CrossRef] [PubMed]
- Rainer, B.; Mayrhofer, E.; Redl, M.; Dolak, I.; Mislivececk, D.; Czerny, T.; Kirchnawy, C.; Marin-Kuan, M.; Schilter, B.; Tacker, M. Mutagenicity assessment of food contact material migrates with the Ames MPF assay. Food Addit. Contam. Part A 2019, 36, 1419–1432. [Google Scholar] [CrossRef]
- OECD. Test No. 471: Bacterial Reverse Mutation Test; Organisation for Economic Co-Operation and Development: Paris, France, 2020. [Google Scholar]
- Schilter, B.; Burnett, K.; Eskes, C.; Geurts, L.; Jacquet, M.; Kirchnawy, C.; Oldring, P.; Pieper, G.; Pinter, E.; Tacker, M.; et al. Value and limitation of in vitro bioassays to support the application of the threshold of toxicological concern to prioritise unidentified chemicals in food contact materials. Food Addit. Contam. Part A 2019, 36, 1903–1936. [Google Scholar] [CrossRef] [PubMed]
- Flückiger-Isler, S.; Baumeister, M.; Braun, K.; Gervais, V.; Hasler-Nguyen, N.; Reimann, R.; Van Gompel, J.; Wunderlich, H.-G.; Engelhardt, G. Assessment of the performance of the Ames IITM assay: A collaborative study with 19 coded compounds. Mutat. Res. Toxicol. Environ. Mutagen. 2004, 558, 181–197. [Google Scholar] [CrossRef]
- Flückiger-Isler, S.; Kamber, M. Direct comparison of the Ames microplate format (MPF) test in liquid medium with the standard Ames pre-incubation assay on agar plates by use of equivocal to weakly positive test compounds. Mutat. Res. Toxicol. Environ. Mutagen. 2012, 747, 36–45. [Google Scholar] [CrossRef]
- Rainer, B.; Pinter, E.; Prielinger, L.; Coppola, C.; Marin-Kuan, M.; Schilter, B.; Apprich, S.; Tacker, M. Direct Comparison of the Lowest Effect Concentrations of Mutagenic Reference Substances in Two Ames Test Formats. Toxics 2021, 9, 152. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.V.; DeMarini, D.M.; Stankowski, L.F.; Escobar, P.A.; Zeiger, E.; Howe, J.; Elespuru, R.; Cross, K.P. Are all bacterial strains required by OECD mutagenicity test guideline TG471 needed? Mutat. Res. Toxicol. Environ. Mutagen. 2019, 848, 503081. [Google Scholar] [CrossRef] [PubMed]
- Katsara, K.; Kenanakis, G.; Viskadourakis, Z.; Papadakis, V.M. Polyethylene Migration from Food Packaging on Cheese Detected by Raman and Infrared (ATR/FT-IR) Spectroscopy. Materials 2021, 14, 3872. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-H.; Pan, Y.-J.; Liu, C.-F.; Huang, C.-L.; Hsieh, C.-T.; Chen, C.-K.; Lin, Z.-I.; Lou, C.-W. Preparation and Compatibility Evaluation of Polypropylene/High Density Polyethylene Polyblends. Materials 2015, 8, 8850–8859. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, M.; Ballard, N.; Gonzalez, E.; Hamzehlou, S.; Sardon, H.; Calderon, M.; Paulis, M.; Tomovska, R.; Dupin, D.; Bean, R.H.; et al. Polymer Colloids: Current Challenges, Emerging Applications, and New Developments. Macromolecules 2023, 56, 2579–2607. [Google Scholar] [CrossRef] [PubMed]
- Roosen, M.; Mys, N.; Kusenberg, M.; Billen, P.; Dumoulin, A.; Dewulf, J.; Van Geem, K.M.; Ragaert, K.; De Meester, S. Detailed Analysis of the Composition of Selected Plastic Packaging Waste Products and Its Implications for Mechanical and Thermochemical Recycling. Environ. Sci. Technol. 2020, 54, 13282–13293. [Google Scholar] [CrossRef] [PubMed]
- European Commission (Joint Research Centre). Guidance for the Identification of Polymers in Multilayer Films Used in Food Contact Materials: User Guide of Selected Practices to Determine the Nature of Layers; Publications Office: Luxembourg, 2016. [Google Scholar]
- The Switzerland Federal Department of Home Affairs. Verordnung des EDI über Materialien und Gegenstände, die dazu Bestimmt sind, mit Lebensmitteln in Berührung zu Kommen; The Switzerland Federal Department of Home Affairs: Bern, Switzerland, 2016; Volume 817.023.21. [Google Scholar]
- European Chemical Agency REACH. Candidate List of Substances of Very High Concern for Authorisation Grows; ECHA: Helsinki, Finland, 2010.
- Jeliazkova, N.; Martinov, M.; Tcheremenskaia, O.J.K.; Networks, M.; Rydberg, P.; Avramova, S.; Kochev, N.; Jeliazkov, V.; Iliev, L. Toxtree–Toxtree-Toxic Hazard Estimation by Decision Tree Approach. Available online: https://toxtree.sourceforge.net/ (accessed on 13 May 2024).
- Patlewicz, G.; Jeliazkova, N.; Safford, R.J.; Worth, A.P.; Aleksiev, B. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ. Res. 2008, 19, 495–524. [Google Scholar] [CrossRef] [PubMed]
- Xenometrix. Ames MPFTM Penta 2. Microplate Format Mutagenicity Assay. S.typhimuriumTA98, TA100, TA1535, TA1537 and E. coli WP2 uvrA[pKM101]. Instructions for Use. 2.0; Xenometrix: Allschwil, Switzerland, 2018. [Google Scholar]
- ISO 11350:2012; Water Quality—Determination of the Genotoxicity of Water and Waste Water—Salmonella/Microsome Fluctuation Test (Ames Fluctuation Test). ISO: Geneva, Switzerland, 2012.
- Hamel, A.; Roy, M.; Proudlock, R. The Bacterial Reverse Mutation Test. In Genetic Toxicology Testing; Proudlock, R., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 79–138. ISBN 978-0-12-800764-8. [Google Scholar]
- Spiliotopoulos, D.; Koelbert, C.; Audebert, M.; Barisch, I.; Bellet, D.; Constans, M.; Czich, A.; Finot, F.; Gervais, V.; Khoury, L.; et al. Assessment of the performance of the Ames MPFTM assay: A multicenter collaborative study with six coded chemicals. Mutat. Res. Toxicol. Environ. Mutagen. 2024, 893, 503718. [Google Scholar] [CrossRef]
- Spalding, M.A.; Garcia-Meitin, E.I.; Kodjie, S.L.; Campbell, G.A.; Womer, T.W. Troubleshooting and mitigating gels in polyethylene film products. J. Plast. Film Sheeting 2018, 34, 300–323. [Google Scholar] [CrossRef]
- Adahchour, M.; Vreuls, J.J.; van Hattum, A.G.M. Concentration Techniques for Genotoxicity Testing of Effluents; IVM Report; Institute for Environmental Studies: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Ma, X.; Sui, H.; Sun, X.; Ali, M.M.; Debrah, A.A.; Du, Z. A risk classification strategy for migrants of food contact material combined with three (Q)SAR tools in silico. J. Hazard. Mater. 2021, 419, 126422. [Google Scholar] [CrossRef]
- Djelassi, I.; Lancia, P.; Thuillier, I.; Ginestar, J.; Fioravanzo, E.; Baleydier, A. Strategy proposal using QSAR models to approach mutagenicity assessment of non intentionally added substances in recycled plastic resins. Food Chem. Toxicol. 2024, 187, 114597. [Google Scholar] [CrossRef] [PubMed]
- The European Commission. Proposal for a Regulation of the European Parliament and of the Council on Packaging and Packaging Waste, Amending Regulation (EU) 2019/1020 and Directive (EU) 2019/904, and Repealing Directive 94/62/EC; The European Commission: Brussels, Belgium, 2022. [Google Scholar]
Relative Reduction (%) from T2 | ||||
---|---|---|---|---|
Nr. | Name | LDPE/T2 | LDPE/EVOH/T2 | LDPE/G/T2 |
3 | Ethyl dodecanoate | −54% | −41% | −64% |
8 | 1-octadecene | −46% | −55% | −64% |
15 | Dibutyl phthalate | −61% | −66% | −100% |
18 | Tributyl aconitate | −58% | −100% | −100% |
20 | Butyl citrate | −100% | −100% | −100% |
23 | Tributyl acetylcitrate | −67% | −88% | −93% |
24 | Bis(2-ethylhexyl) adipate | −74% | −100% | −100% |
26 | Cyclohexane, 1,3,5-triphenyl- | −100% | −100% | −100% |
29 | Bumetrizole | −71% | −73% | −83% |
30 | Di-(2-ethylhexyl) terephthalate | −73% | −73% | −85% |
31 | Erucamide | −100% | −100% | −100% |
Relative Reduction (%) from F | |||
---|---|---|---|
Nr. | Name | LDPE/EVOH/F | LDPE/G/F |
3 | Ethyl dodecanoate | −76% | −82% |
5 | Diethyl terephthalate | −99% | −90% |
8 | 1-octadecene | −43% | −60% |
10 | Isopropyl myristate | −50% | −61% |
14 | Methyl hexadecanoate | −61% | −100% |
15 | Dibutyl phthalate | −61% | −74% |
18 | Tributyl aconitate | −59% | −74% |
19 | Ethyl cis-9-octadecenoate | −76% | −79% |
20 | Butyl citrate | −100% | −100% |
23 | Tributyl acetylcitrate | −73% | −85% |
24 | Bis(2-ethylhexyl) adipate | −68% | −85% |
26 | Cyclohexane, 1,3,5-triphenyl- | −63% | −75% |
28 | Unknown | −59% | −73% |
29 | Bumetrizole | −61% | −100% |
30 | Di-(2-ethylhexyl) terephthalate | −60% | −78% |
31 | Erucamide | −100% | −100% |
Sample | Film Structure | Migrate | TA98 | TA100 | ||
---|---|---|---|---|---|---|
−S9 | +S9 | −S9 | +S9 | |||
1 | LDPE | A | - | - | - | - |
B | - | - | - | - | ||
2 | LDPE/EVOH | A | - | - | - | - |
B | - | - | - | - | ||
3 | LDPE/G-polymer | A | - | - | - | - |
B | - | - | - | - | ||
4 | T2 | A | - | + (25%) | - | - |
B | - | + (50%) | - | - | ||
5 | LDPE/T2 | A | - | + (50%) | - | - |
B | - | - | - | - | ||
6 | LDPE/EVOH/T2 | A | - | - | - | - |
B | - | + (50%) | - | - | ||
7 | LDPE/G-Polymer/T2 | A | - | - | - | - |
B | - | + (100%) | - | - | ||
8 | F | A | + (100%) | + (6.25%) | - | - |
B | - | + (12.5%) | - | - | ||
9 | LDPE/EVOH/F | A | - | + (12.5%) | - | - |
B | + (100%) | + (12.5%) | - | - | ||
10 | LDPE/G-polymer/F | A | - | + (12.5%) | - | - |
B | + (50%) | - | - |
No. | Code Assigned | Film Structure | Thickness Distribution (µm) |
---|---|---|---|
1 | LDPE | 100% LDPE virgin mono reference | 60 |
2 | LDPE/EVOH | LDPE/tie/EVOH/tie/LDPE/LDPE/LDPE | 15/3/3/3/6/15/15 |
3 | LDPE/G-polymer | LDPE/tie/G/tie/LDPE/LDPE/LDPE | 15/3/3/3/6/15/15 |
4 | T2 | 100% recycled mono LDPE (Type 2) | 60 |
5 | LDPE/T2 | LDPE/LDPE/T2/T2/T2/LDPE/LDPE | 7.5/7.5/10/10/10/7.5/7.5 |
6 | LDPE/EVOH/T2 | LDPE/tie/EVOH/tie/T2/T2/LDPE | 15/3/3/3/6/15/15 |
7 | LDPE/G-Polymer/T2 | LDPE/tie/G/tie/T2/T2/LDPE | 15/3/3/3/6/15/15 |
8 | F | 100% recycled mono LDPE (Type F) | 60 |
9 | LDPE/EVOH/F | LDPE/tie/EVOH/tie/F/F/LDPE | 15/3/3/3/6/15/15 |
10 | LDPE/G-polymer/F | LDPE/tie/G/tie/F/F/LDPE | 15/3/3/3/6/15/15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prielinger, L.; Bandyopadhyay, S.; Ortner, E.; Novak, M.; Radusin, T.; Annfinsen, S.; Sharmin, N.; Rainer, B.; Pettersen, M.K. Investigation of the Effectiveness of Barrier Layers to Inhibit Mutagenic Effects of Recycled LDPE Films, Using a Miniaturized Ames Test and GC-MS Analysis. Recycling 2024, 9, 57. https://doi.org/10.3390/recycling9040057
Prielinger L, Bandyopadhyay S, Ortner E, Novak M, Radusin T, Annfinsen S, Sharmin N, Rainer B, Pettersen MK. Investigation of the Effectiveness of Barrier Layers to Inhibit Mutagenic Effects of Recycled LDPE Films, Using a Miniaturized Ames Test and GC-MS Analysis. Recycling. 2024; 9(4):57. https://doi.org/10.3390/recycling9040057
Chicago/Turabian StylePrielinger, Lukas, Smarak Bandyopadhyay, Eva Ortner, Martin Novak, Tanja Radusin, Steffen Annfinsen, Nusrat Sharmin, Bernhard Rainer, and Marit Kvalvåg Pettersen. 2024. "Investigation of the Effectiveness of Barrier Layers to Inhibit Mutagenic Effects of Recycled LDPE Films, Using a Miniaturized Ames Test and GC-MS Analysis" Recycling 9, no. 4: 57. https://doi.org/10.3390/recycling9040057
APA StylePrielinger, L., Bandyopadhyay, S., Ortner, E., Novak, M., Radusin, T., Annfinsen, S., Sharmin, N., Rainer, B., & Pettersen, M. K. (2024). Investigation of the Effectiveness of Barrier Layers to Inhibit Mutagenic Effects of Recycled LDPE Films, Using a Miniaturized Ames Test and GC-MS Analysis. Recycling, 9(4), 57. https://doi.org/10.3390/recycling9040057