Experimental Investigation and Statistical Analysis of Recycled Asphalt Pavement Mixtures Incorporating Nanomaterials
Abstract
:1. Introduction
Response Surface Method (RSM)
2. Materials and Methodology
2.1. Materials
2.1.1. Asphalt Binder
2.1.2. Warm Mix Asphalt Additive
2.1.3. Natural Aggregate and RAP Material
2.1.4. Nanosilica (NS)
2.1.5. Nanoclay (NC)
2.2. Methods
2.3. Experimental Plan
2.4. Marshall Stability and Flow Value
2.4.1. Indirect Tensile Strength (ITS)
2.4.2. Tensile Strength Ratio (TSR)
2.4.3. Wheel Rut Test (WRT)
3. Results and Discussion
3.1. Marshall Properties
3.2. Indirect Tensile Strength (ITS)
3.3. Tensile Strength Ratio (TSR)
3.4. Wheel Rut Test (WRT)
4. Conclusions
- Based on these response surfaces, the results show that the variability in the recycled asphalt mixture was reduced by the binder quantity. Therefore, to avoid uncertainties regarding the strength parameters and volumetric qualities of recycled asphalt mixtures, an appropriate proportion of total binder content (additional bitumen and aged binder from RAP) might be employed.
- It was found that the RAP content had the biggest impact on the stability of the recycled asphalt mixtures. On the contrary, nanomaterials and the total binder content had the most significant effects on the flow values and volume properties.
- The effects of the nanomaterial on the recycled asphalt mixture were evaluated through indirect tensile strength (ITS) and tensile strength ratio tests. The test results indicate that the nanomaterial enhanced the moisture susceptibility and low-temperature cracking resistance of the recycled asphalt mixture.
- The high rut resistance of the recycled asphalt mixture is expected due to its densely packed aggregate structure formed with greater dispersion of nanomaterial in the binder (VG-30 and PMB 40) sufficient to have interparticle contact in the asphalt matrix.
- In recycled asphalt mixtures with nanomaterials, the optimum asphalt content is considered. However, RAP materials and mixture (HMA/WMA) types should be estimated for their threshold value to avoid lubrication between the aggregate matrix and binders prone to severe rut depth.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tavva, T.L.; Reddy, K.S. A mechanistic-empirical approach to estimate the degree of Reclaimed Asphalt Pavement (RAP) bitumen activity. Constr. Build. Mater. 2023, 400, 132912. [Google Scholar] [CrossRef]
- Bueche, N.; Probst, S.; Eskandarsefat, S. Warm-Mix Asphalt Containing Reclaimed Asphalt Pavement: A Case Study in Switzerland. Infrastructures 2024, 9, 79. [Google Scholar] [CrossRef]
- Konieczna, K.; Król, J. Investigation of the influence of bitumen emulsion and Reclaimed Asphalt Pavement content on the mechanical properties of Bitumen Stabilised Materials with high fine particle content. Transp. Res. Procedia 2023, 74, 547–554. [Google Scholar] [CrossRef]
- Bardella, N.; Facchin, M.; Fabris, E.; Baldan, M.; Beghetto, V. Waste Cooking Oil as Eco-Friendly Rejuvenator for Reclaimed Asphalt Pavement. Materials 2024, 17, 1477. [Google Scholar] [CrossRef] [PubMed]
- Caputo, P.; Eskandarsefat, S.; Porto, M.; Loise, V.; Abe, A.A.; Calandra, P.; Venturini, L.; Rossi, C.O. Effect and Mechanism of Rejuvenation of Field-Aged Bitumen Extracted from Reclaimed Asphalt Pavement. Transp. Res. Procedia 2023, 69, 863–870. [Google Scholar] [CrossRef]
- Sun, M.; Wang, J.; Sun, H.; Hong, B. Feasibility Analysis of Polyurethane-Prepolymer-Modified Bitumen Used for Fully Reclaimed Asphalt Pavement (FRAP). Materials 2023, 16, 5686. [Google Scholar] [CrossRef]
- Karimi, F.; Roohollah Mousavi, S.; Miri, M. Tensile-Tear cracking resistance of RAP incorporated asphalt Mixtures, enhanced by Warm mix asphalt additive and nano calcium carbonate. Theor. Appl. Fract. Mech. 2024, 132, 104467. [Google Scholar] [CrossRef]
- Rondinella, F.; Oreto, C.; Abbondati, F.; Baldo, N. Laboratory Investigation and Machine Learning Modeling of Road Pavement Asphalt Mixtures Prepared with Construction and Demolition Waste and RAP. Sustainability 2023, 15, 16337. [Google Scholar] [CrossRef]
- Preethi, S.; Tangadagi, B.R.; Manjunatha, M.; Bharath, A. Sustainable Effect of Chemically Treated Aggregates on Bond Strength of Bitumen. J. Green Eng. 2020, 10, 5076–5089. [Google Scholar]
- Yang, J.; Tighe, S. A Review of Advances of Nanotechnology in Asphalt Mixtures. Procedia Soc. Behav. Sci. 2013, 96, 1269–1276. [Google Scholar] [CrossRef]
- Al-Mansoori, T.; Norambuena-Contreras, J.; Garcia, A. Effect of capsule addition and healing temperature on the self-healing potential of asphalt mixtures. Mater. Struct. Constr. 2018, 51, 53. [Google Scholar] [CrossRef]
- Shafabakhsh, G.A.; Sadeghnejad, M.; Alizadeh, S. Engineering the Effect of Nanomaterials on Bitumen and Asphalt Mixture Properties. A Review. Balt. J. Road Bridg. Eng. 2023, 18, 1–31. [Google Scholar] [CrossRef]
- Di Mino, G.; Vijayan, V.; Eskandarsefat, S.; Venturini, L.; Mantalovas, K. Investigating the Multi-Recyclability of Recycled Plastic-Modified Asphalt Mixtures. Infrastructures 2023, 8, 84. [Google Scholar] [CrossRef]
- Wan Azahar, W.N.A.; Bujang, M.; Putra Jaya, R.; Hainin, M.R.; Aziz, M.M.A.; Ngadi, N. Application of Nanotechnology in Asphalt Binder: A Conspectus and Overview. J. Teknol. 2015, 76, 85–89. [Google Scholar] [CrossRef]
- Farias, L.G.A.T.; Leitinho, J.L.; Amoni, B.d.C.; Bastos, J.B.S.; Soares, J.B.; Soares, S.d.A.; de Sant’Ana, H.B. Effects of nanoclay and nanocomposites on bitumen rheological properties. Constr. Build. Mater. 2016, 125, 873–883. [Google Scholar] [CrossRef]
- Ashish, P.; Singh, D. Investigation on influence of nanoclay addition on rheological performance of asphalt binder. Road Mater. Pavement Des. 2016, 18, 1007–1026. [Google Scholar] [CrossRef]
- Mahdi, L.M.J.; Muniandy, R.; Yunus, R.B.; Hasham, S.; Aburkaba, E. Effect of Short Term Aging on Organic Montmorillonite Nanoclay Modified Asphalt. Indian J. Sci. Technol. 2013, 6, 5434–5442. [Google Scholar] [CrossRef]
- Ghaffarpour Jahromi, S.; Ahmadi, N.A.; Mortazavi, S.M.; Vossough, S. Rutting and fatigue behavior of nanoclay modified bitumen. Iran. J. Sci. Technol. Trans. B Eng. 2011, 35, 277–281. [Google Scholar]
- Abdel-Jaber, M.; Al-shamayleh, R.A.; Ibrahim, R.; Alkhrissat, T.; Alqatamin, A. Mechanical properties evaluation of asphalt mixtures with variable contents of reclaimed asphalt pavement (RAP). Results Eng. 2022, 14, 100463. [Google Scholar] [CrossRef]
- Mashaan, N.; Chegenizadeh, A.; Nikraz, H. Performance of PET and nano-silica modified stone mastic asphalt mixtures. Case Stud. Constr. Mater. 2022, 16, e01044. [Google Scholar] [CrossRef]
- Mashaan, N.; Chegenizadeh, A.; Nikraz, H. Laboratory Properties of Waste PET Plastic-Modified Asphalt Mixes. Recycling 2021, 6, 49. [Google Scholar] [CrossRef]
- Chegenizadeh, A.; Tokoni, L.; Nikraz, H.; Dadras, E. EVA Effect on Stone Mastic Asphalt (SMA) Behaviour. In Recycled Materials in Geotechnical and Pavement Applications; Springer: Cham, Switzerland, 2022; pp. 1–18. [Google Scholar] [CrossRef]
- Xiao, F.; Amirkhanian, A.N.; Amirkhanian, S.N. Long-term ageing influence on rheological characteristics of asphalt binders containing carbon nanoparticles. Int. J. Pavement Eng. 2011, 12, 533–541. [Google Scholar] [CrossRef]
- Yusoff, N.I.M.; Breem, A.A.S.; Alattug, H.N.M.; Hamim, A.; Ahmad, J. The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Constr. Build. Mater. 2014, 72, 139–147. [Google Scholar] [CrossRef]
- You, Z.; Mills-Beale, J.; Foley, J.M.; Roy, S.; Odegard, G.M.; Dai, Q.; Goh, S.W. Nanoclay-modified asphalt materials: Preparation and characterization. Constr. Build. Mater. 2011, 25, 1072–1078. [Google Scholar] [CrossRef]
- Ameri, M.; Kouchaki, S.; Roshani, H. Laboratory evaluation of the effect of nano-organosilane anti-stripping additive on the moisture susceptibility of HMA mixtures under freeze–thaw cycles. Constr. Build. Mater. 2013, 48, 1009–1016. [Google Scholar] [CrossRef]
- Mostafa, E.A. Examining the Performance of Hot Mix Asphalt Using Nano-Materials. IOSR J. Eng. 2016, 06, 2–25. [Google Scholar]
- Afonso, M.L.; Dinis-Almeida, M.; Fael, C.S. Characterization of the Skid Resistance and Mean Texture Depth in a Permeable Asphalt Pavement. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 022029. [Google Scholar] [CrossRef]
- Fiore, N.; Bruno, S.; Del Serrone, G.; Iacobini, F.; Giorgi, G.; Rinaldi, A.; Moretti, L.; Duranti, G.M.; Peluso, P.; Vita, L.; et al. Experimental Analysis of Hot-Mix Asphalt (HMA) Mixtures with Reclaimed Asphalt Pavement (RAP) in Railway Sub-Ballast. Materials 2023, 16, 1335. [Google Scholar] [CrossRef]
- Doyle, J.; Mejias-Santiago, M.; Brown, E.; Howard, I.L. Performance of high RAP-WMA surface mixtures. Asph. Paving Technol. Assoc. Asph. Paving Technol. Technol. Sess. 2011, 80, 419–453. [Google Scholar]
- You, Z.; Hamzah, M.O.; Wang, H.; Diab, A.; Dai, Q.; Wang, H. Advanced Pavement Materials for Sustainable Transportation Infrastructure. Adv. Mater. Sci. Eng. 2018, 2018, 475–480. [Google Scholar] [CrossRef]
- Rochishnu, E.; Ramesh, A.; Venkat Ramayya, V. Sustainable pavement technologies—Performance of high RAP in WMA surface mixture containing nano glass fibers. Mater. Today Proc. 2020, 43, 1009–1017. [Google Scholar] [CrossRef]
- Zhang, W.; Bahadori, A.; Shen, S.; Wu, S.; Muhunthan, B.; Mohammad, L. Comparison of Laboratory and Field Asphalt Aging for Polymer-Modified and Warm-Mix Asphalt Binders. J. Mater. Civ. Eng. 2018, 30, 04018150. [Google Scholar] [CrossRef]
- Buczy’nski, B.B.; Šrámek, P.; Mazurek, J.; Canestrari, F.; Hesp, S.; Buczy´nski, P.; Buczy´nski, B.; Šrámek, J.; Mazurek, G. The Influence of Recycled Materials on Cold Mix with Foamed Bitumen Properties. Materials 2023, 16, 1208. [Google Scholar] [CrossRef] [PubMed]
- Antunes, V.; Neves, J.; Freire, A.C. Performance Assessment of Reclaimed Asphalt Pavement (RAP) in Road Surface Mixtures. Recycling 2021, 6, 32. [Google Scholar] [CrossRef]
- Pomoni, M.; Plati, C. Skid Resistance Performance of Asphalt Mixtures Containing Recycled Pavement Materials under Simulated Weather Conditions. Recycling 2022, 7, 47. [Google Scholar] [CrossRef]
- Rema, A.; Swamy, A.K. Response Surface–Based Approach to Quantify Variability in Recycled-Asphalt Concrete Mixtures. J. Mater. Civ. Eng. 2022, 34, 04022315. [Google Scholar] [CrossRef]
- Ghabchi, R.; Singh, D.; Zaman, M.; Hossain, Z. Micro-Structural Analysis of Moisture-Induced Damage Potential of Asphalt Mixes Containing RAP. J. Test. Eval. 2016, 44, 194–205. [Google Scholar] [CrossRef]
- Steenackers, G.; Presezniak, F.; Guillaume, P. Development of an adaptive response surface method for optimization of computation-intensive models. Comput. Ind. Eng. 2009, 57, 847–855. [Google Scholar] [CrossRef]
- Kasina, M.M.; Joseph, K.; John, M.; Kasina, M.M.; Joseph, K.; John, M. Application of Central Composite Design to Optimize Spawns Propagation. Open J. Optim. 2020, 9, 47–70. [Google Scholar] [CrossRef]
- Hamzah, M.O.; Gungat, L.; Golchin, B. Estimation of optimum binder content of recycled asphalt incorporating a wax warm additive using response surface method. Int. J. Pavement Eng. 2017, 18, 682–692. [Google Scholar] [CrossRef]
- Khodaii, A.; Haghshenas, H.F.; Kazemi Tehrani, H. Effect of grading and lime content on HMA stripping using statistical methodology. Constr. Build. Mater. 2012, 34, 131–135. [Google Scholar] [CrossRef]
- IS:73-2013; Indian Standard PAVING BITUMEN—SPECIFICATION. Bureau of Indian Standards: New Delhi, India, 2013.
- Wang, R.; Xiong, Y.; Yue, M.; Hao, M.; Yue, J. Investigating the effectiveness of carbon nanomaterials on asphalt binders from hot storage stability, thermodynamics, and mechanism perspectives. J. Clean. Prod. 2020, 276, 124180. [Google Scholar] [CrossRef]
- MoRTH: Specifications for Road and Bridge Work. 2013. Available online: https://law.resource.org/pub/in/bis/irc/mort.250.2013.pdf (accessed on 31 August 2024).
- Preethi, S.; Ravichandran, P.T. Laboratory Investigation on Nanomaterial Modified Bituminous Concrete Mixes with Reclaimed Asphalt Pavement. Int. J. Pavement Res. Technol. 2024, 1–15. [Google Scholar] [CrossRef]
- ASTM D6931-12; Standard Test Method for Indirect Tensile (IDT) Strength of Bituminous Mixtures. ASTM International: West Conshohocken, PA, USA, 2007; pp. 1–5.
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Research Institute of Highway Ministry of Transport: Beijing, China, 2011.
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% recycled hot mix asphalt: A review and analysis. Resour. Conserv. Recycl. 2014, 92, 230–245. [Google Scholar] [CrossRef]
- Huang, S.-C.; Turner, T.F. Aging Characteristics of RAP Blend Binders: Rheological Properties. J. Mater. Civ. Eng. 2013, 26, 966–973. [Google Scholar] [CrossRef]
- Ranieri, V.; Berloco, N.; Garofalo, F.; He, L.; Intini, P.; Kowalski, K.J. Effects of Reclaimed Asphalt, Wax Additive, and Compaction Temperature on Characteristics and Mechanical Properties of Porous Asphalt. Balt. J. Road Bridg. Eng. 2022, 17, 187–213. [Google Scholar] [CrossRef]
- Moniri, A.; Ziari, H.; Aliha, M.R.M.; Saghafi, Y. Laboratory study of the effect of oil-based recycling agents on high RAP asphalt mixtures. Int. J. Pavement Eng. 2021, 22, 1423–1434. [Google Scholar] [CrossRef]
- Rasheed, S.S.; Nsaif, M.H.; Abduljabbar, A.S. Experimental study of improving hot mix asphalt reinforced with carbon fibers. Open Eng. 2024, 14, 20220507. [Google Scholar] [CrossRef]
- Geraldin, J.; Makmur, A. Experimental Study on the Effects of Reclaimed Asphalt Pavement towards Marshall Parameters on Asphalt Course-Wearing Course. IOP Conf. Ser. Earth Environ. Sci. 2020, 498, 012025. [Google Scholar] [CrossRef]
- Sefidmazgi, N.R.; Tashman, L.; Bahia, H. Internal structure characterization of asphalt mixtures for rutting performance using imaging analysis. Road Mater. Pavement Des. 2012, 13, 21–37. [Google Scholar] [CrossRef]
Property Tested | Results Obtained | IS 73-2013 Requirements for VG-30 Bitumen | |
---|---|---|---|
VG-30 | RAP | ||
Penetration at 25 °C | 62 | 47 | 45 Minimum |
Softening point | 58 | 60.2 | 47 Minimum |
Flash Point, °C | 310 | -- | >220 |
Ductility at 25 °C | 75 | 67 | 75 Minimum |
Specific gravity at 27 °C | 1.01 | 1.07 | 0.99 Minimum |
Kinematic viscosity at 135 °C | 452 | 551 | 350 Minimum |
Properties | Test Results |
---|---|
Specific gravity | 0.97 |
Appearance | Liquid |
Color | Pale-yellow |
Flash point | 90 °C |
Freezing point | 5 °C |
Property | Natural Aggregate | RAP Aggregate |
---|---|---|
Specific gravity | 2.65 | 2.63 |
Los Angeles abrasion (%) | 20 | 23 |
Impact value (%) | 18 | 22 |
Crushing value (%) | 20 | 23 |
Combined F&E (%) | 21 | 26 |
Water absorption (%) | 1.2 | 1.8 |
Description | Purity | Surface Area (m2/g) | Appearance (Color and Form) | Melting Point | Density (g/cm3) |
---|---|---|---|---|---|
Remark | >82% | 325 | White and crystal | 1700 | 2.1 |
Constituent | SiO2 | Al2O3 | Fe2O3 | MgO | CaO | TiO2 | K2O |
---|---|---|---|---|---|---|---|
% | 99.86 | 0.02 | 0.05 | 0.04 | 0.03 | - | - |
Description | Montmorillonite (%) | Colour | pH | Liquid Limit (%) | Plastic Limit (%) | Shrinkage Limit (%) |
---|---|---|---|---|---|---|
Remark | >80 | Grey | 9.5 | 280 | 45 | 29 |
Constituent | Al2O3 | SiO2 | Fe2O3 | CaO | MgO | TiO2 | K2O |
---|---|---|---|---|---|---|---|
% | 21.1 | 69.9 | 2.58 | 0.59 | 4.23 | 0.49 | 0.34 |
Properties | NCMB | NSMB | WMA | PMB |
---|---|---|---|---|
Penetration at 25 °C | 51 | 59 | 67 | 46 |
Softening point, °C | 58 | 57 | 54 | 55 |
Ductility at 25 °C | 81 | 85 | 70 | 72 |
Kinematic Viscosity at 135 °C | 775 | 763 | 471 | 540 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shylaja, P.; Ravichandran, P.T. Experimental Investigation and Statistical Analysis of Recycled Asphalt Pavement Mixtures Incorporating Nanomaterials. Recycling 2024, 9, 100. https://doi.org/10.3390/recycling9050100
Shylaja P, Ravichandran PT. Experimental Investigation and Statistical Analysis of Recycled Asphalt Pavement Mixtures Incorporating Nanomaterials. Recycling. 2024; 9(5):100. https://doi.org/10.3390/recycling9050100
Chicago/Turabian StyleShylaja, Preethi, and P. T. Ravichandran. 2024. "Experimental Investigation and Statistical Analysis of Recycled Asphalt Pavement Mixtures Incorporating Nanomaterials" Recycling 9, no. 5: 100. https://doi.org/10.3390/recycling9050100
APA StyleShylaja, P., & Ravichandran, P. T. (2024). Experimental Investigation and Statistical Analysis of Recycled Asphalt Pavement Mixtures Incorporating Nanomaterials. Recycling, 9(5), 100. https://doi.org/10.3390/recycling9050100