Life Cycle Assessment of Biochar from Residual Lignocellulosic Biomass Using Kon-Tiki Kilns: Applications in Soil Amendment and Wastewater Filtration
Abstract
:1. Introduction
The Context of This Research
2. Results and Discussion
2.1. Biochar Production, Characterization, and Emissions
Parameter | This Study * | Flesch et al. [34] | Novak et al. [33] | EBC Standard [40] | IBI Standard [41] | Mexican Standard [37] |
---|---|---|---|---|---|---|
Carbon (%) | 77.58 (1.55) | 80.4 | 88.5 | >50 | n.a. | n.a. |
Nitrogen (%) | 0.60 (0.03) | 0.79 | 0.49 | Declare | n.a. | n.a. |
Hydrogen (%) | 1.53 (0.00) | 0.87 | 1.64 | Declare | n.a. | n.a. |
Sulfur (%) | 0.07 (0.01) | n.r. | 0.011 | Declare | n.a. | n.a. |
Moisture (%) | 23.17 (4.03) | n.r. | n.r. | Declare | Declare | n.a. |
Ash (%) | 25.46 (2.11) | 17.7 | 3.46 | Declare | Declare | n.a. |
Volatile organic matter (%) | 22.47 (1.22) | n.r. | 10.8 | Declare | Declare | n.a. |
pH | 9.54 (0.10) | 8.5 | 7.8 | Declare | Declare | n.a. |
Electrical conductivity (µS) | 485 (77) | 617 | n.r. | Declare | Declare | n.a |
Average pore diameter (nm) | 2.13 | n.r. | n.r. | n.a. | Declare | n.a. |
Specific superficial area (m2/g) | 258 | 280 | n.r. | Declare | Declare | n.a. |
Water holding capacity (%) | 219.5 (16.4) | 149.1 | n.r. | Declare | n.r. | n.a. |
As (mg/kg) | 13.25 (1.06) | 13.25 (1.06) | <0.8 | 13 | 13 | 13–300 |
Ca (g/kg) | 35.63 (3.34) | 51 | n.r. | n.a. | Declare | n.a. |
Cd (mg/kg) | n.d. | <0.2 | n.r. | 1.5 | 1.4–39 | 39 |
Co (mg/kg) | n.d. | n.r. | n.r. | n.a. | 34–100 | n.a. |
Cr (mg/kg) | 0.75 (0.35) | <1 | n.r. | 90 | 93–1200 | 1200 |
Cu (mg/kg) | 8.25 (1.06) | 15 | n.r. | 100 | 143–6000 | 1500 |
K (mg/kg) | 3487 (502) | 9800 | n.r. | n.a. | Declare | n.a. |
Mg (mg/kg) | 988 (131) | 2500 | n.r. | n.a. | Declare | n.a. |
Na (mg/kg) | 417.5 (34.6) | 910 | n.r. | n.a. | Declare | n.a. |
Ni (mg/kg) | 1.25 (0.35) | <1 | n.r. | 50 | 47–420 | 420 |
Pb (mg/kg) | 29.5 (7.8) | <2 | n.r. | 120 | 121–300 | 300 |
Se (mg/kg) | 189.5 (17.7) | n.r. | n.r. | n.a. | 2–200 | n.a. |
Zn (mg/kg) | 8.5 (2.1) | 21 | n.r. | 400 | 416–7400 | 2800 |
Total P (g/kg) | 11.7 (0.21) | n.r. | n.r. | Declare | Declare | n.a. |
PAH ** (mg/kg) | n.r. | 5.3 | n.r | 12 | 6–300 | n.a |
Dioxins/furans (ng/kg) | n.r. | n.r | n.r. | 20 | 17 | n.a. |
Polychlorinated biphenyls (PCBs) (mg/kg) | n.r. | n.r. | n.r | 0.2 | 0.2–1 | n.a. |
Element (Wavelength in nm) | Quenching Water a (mg/L) | Well Water b (mg/L) | Net elemental Emission c (mg) |
---|---|---|---|
As (193.695) | 0.04 | 0.18 | −37.39 |
Ba (455.403) | 0.03 | 0.06 | −10.74 |
Ca (430.253) | 3.96 | 98.18 | −22,240 |
Cd (226.502) | 0.00 | 0.33 | −76.13 |
Co (340.512) | n.d. | n.d. | n.d. |
Cr (425.433) | n.d. | n.d. | n.d. |
Cu (324.754) | 0.01 | 0 | 1.04 |
Fe (371.993) | 0.29 | 0.19 | −13.82 |
K (766.491) | 12.2 | 4.62 | 193.8 |
Mg (279.553) | 0 | 13.24 | −3054 |
Mn (403.076) | 0 | 0 | 0.00 |
Na (588.995) | 89.6 | 76 | −8259 |
Ni (361.939) | n.d. | n.d. | n.d. |
Pb (368.346) | 0.59 | 0.29 | −5.84 |
Se (196.026) | 1.5 | 2.86 | −504.6 |
Zn (481.053) | 2.86 | 0.14 | 263.7 |
Total P | 0.35 | n.d. | 35.8 |
2.2. Biochar Production
2.3. Biochar as a Soil Amendment
2.4. Biochar as a Water Filter
2.5. Impact Factors of Both Biochar Applications
2.6. Sensitivity Analyses
2.6.1. Soil System
2.6.2. Water Filtration System
3. Materials and Methods
3.1. Goal and Scope
3.2. Life Cycle Inventory (LCI)
3.2.1. Biomass Procurement
3.2.2. Biochar Production, Characterization, and Emissions
3.2.3. Soil Amendment
3.2.4. Water Filtration
3.3. Impact Assessment
3.4. Uncertainty Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, K.-W.; Kim, K.; Jeong, T.-U.; Ahn, K.-H. Influence of Pyrolysis Temperature on Characteristics and Phosphate Adsorption Capability of Biochar Derived from Waste-Marine Macroalgae (Undaria Pinnatifida Roots). Bioresour. Technol. 2016, 200, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/Designer Biochar for Contaminant Removal/Immobilization from Soil and Water: Potential and Implication of Biochar Modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.A.; Paul, N.A.; Bird, M.I.; de Nys, R. Bioremediation for Coal-Fired Power Stations Using Macroalgae. J. Environ. Manag. 2015, 153, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Matuštík, J.; Hnátková, T.; Kočí, V. Life Cycle Assessment of Biochar-to-Soil Systems: A Review. J. Clean. Prod. 2020, 259, 120998. [Google Scholar] [CrossRef]
- Maya, M.; Gwenzi, W.; Chaukura, N. A Biochar-Based Point-of-Use Water Treatment System for the Removal of Fluoride, Chromium and Brilliant Blue Dye in Ternary Systems. Environ. Eng. Manag. J. 2020, 19, 143–156. [Google Scholar] [CrossRef]
- Saarela, T.; Lafdani, E.K.; Laurén, A.; Pumpanen, J.; Palviainen, M. Biochar as Adsorbent in Purification of Clear-Cut Forest Runoff Water: Adsorption Rate and Adsorption Capacity. Biochar 2020, 2, 227–237. [Google Scholar] [CrossRef]
- Faloye, O.T.; Ajayi, A.E.; Alatise, M.O.; Ewulo, B.S.; Horn, R. Nutrient Uptake, Maximum Yield Production, and Economic Return of Maize under Deficit Irrigation with Biochar and Inorganic Fertiliser Amendments. Biochar 2019, 1, 375–388. [Google Scholar] [CrossRef]
- Felber, R.; Leifeld, J.; Horák, J.; Neftel, A. Nitrous Oxide Emission Reduction with Greenwaste Biochar: Comparison of Laboratory and Field Experiments. Eur. J. Soil Sci. 2014, 65, 128–138. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, Soil and Land-Use Interactions That Reduce Nitrate Leaching and N2O Emissions: A Meta-Analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef] [PubMed]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of Biochar, Compost and Biochar–Compost for Soil Quality, Maize Yield and Greenhouse Gas Emissions in a Tropical Agricultural Soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Güereña, D.; Lehmann, J.; Hanley, K.; Enders, A.; Hyland, C.; Riha, S. Nitrogen Dynamics Following Field Application of Biochar in a Temperate North American Maize-Based Production System. Plant Soil 2013, 365, 239–254. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Ok, Y.S.; Awad, Y.M.; Lee, S.S.; Sung, J.-K.; Koutsospyros, A.; Moon, D.H. Impacts of Biochar Application on Upland Agriculture: A Review. J. Environ. Manag. 2019, 234, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Manolikaki, I.; Diamadopoulos, E. Positive Effects of Biochar and Biochar-Compost on Maize Growth and Nutrient Availability in Two Agricultural Soils. Commun. Soil Sci. Plant. Anal. 2019, 50, 512–526. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N.D. Biochar-Based Water Treatment Systems as a Potential Low-Cost and Sustainable Technology for Clean Water Provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Lübken, M. Biochar for Wastewater Treatment—Conversion Technologies and Applications. Appl. Sci. 2020, 10, 3492. [Google Scholar] [CrossRef]
- Reddy, K.R.; Xie, T.; Dastgheibi, S. Evaluation of Biochar as a Potential Filter Media for the Removal of Mixed Contaminants from Urban Storm Water Runoff. J. Environ. Eng. 2014, 140, 04014043. [Google Scholar] [CrossRef]
- Chen, W.; Meng, J.; Han, X.; Lan, Y.; Zhang, W. Past, Present, and Future of Biochar. Biochar 2019, 1, 75–87. [Google Scholar] [CrossRef]
- Godlewska, P.; Ok, Y.S.; Oleszczuk, P. The Dark Side of Black Gold: Ecotoxicological Aspects of Biochar and Biochar-Amended Soils. J. Hazard. Mater. 2021, 403, 123833. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, E.; Curaqueo, G.; Cea, M.; Vera, L.; Navia, R. Environmental Hotspots in the Life Cycle of a Biochar-Soil System. J. Clean. Prod. 2017, 158, 1–7. [Google Scholar] [CrossRef]
- Owsianiak, M.; Cornelissen, G.; Hale, S.E.; Lindhjem, H.; Sparrevik, M. Influence of Spatial Differentiation in Impact Assessment for LCA-Based Decision Support: Implementation of Biochar Technology in Indonesia. J. Clean. Prod. 2018, 200, 259–268. [Google Scholar] [CrossRef]
- Peters, J.F.; Iribarren, D.; Dufour, J. Biomass Pyrolysis for Biochar or Energy Applications? A Life Cycle Assessment. Environ. Sci. Technol. 2015, 49, 5195–5202. [Google Scholar] [CrossRef]
- Rajabi Hamedani, S.; Kuppens, T.; Malina, R.; Bocci, E.; Colantoni, A.; Villarini, M. Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium. Energies 2019, 12, 2166. [Google Scholar] [CrossRef]
- Thompson, K.A.; Shimabuku, K.K.; Kearns, J.P.; Knappe, D.R.U.; Summers, R.S.; Cook, S.M. Environmental Comparison of Biochar and Activated Carbon for Tertiary Wastewater Treatment. Environ. Sci. Technol. 2016, 50, 11253–11262. [Google Scholar] [CrossRef] [PubMed]
- Quispe, J.I.B.; Campos, L.C.; Mašek, O.; Bogush, A. Use of Biochar-Based Column Filtration Systems for Greywater Treatment: A Systematic Literature Review. J. Water Process Eng. 2022, 48, 102908. [Google Scholar] [CrossRef]
- Gu, H.; Bergman, R.; Anderson, N.; Alanya-Rosenbaum, S. Life-Cycle Assessment of Activated Caron From Woody Biomass. Wood Fiber Sci. 2018, 50, 229–243. [Google Scholar] [CrossRef]
- Bess-Ouko, C. Development of a LCA Screening Tool: Assessment of Biochar in the Removal of Organic Carbon in SAGD Produced Water. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 2014. [Google Scholar]
- Delgado-Carranza, C.; Bautista, F.; Ihl, T.J.; Palma-López, D. Duración Del Periodo de Lluvias y Aptitud de Tierras Para La Agricultura de Temporal. Ecosistemas Recur. Agropecu. 2017, 4, 485. [Google Scholar] [CrossRef]
- Palma-López, D.J.; Bautista, F. Technology and Local Wisdom: The Maya Soil Classification App. Boletín Soc. Geológica Mex. 2019, 71, 249–260. [Google Scholar] [CrossRef]
- SEMARNAT. Informe de La Situación Del Medio Ambiente En México 2018; CDMX, Mexico, 2018; Available online: https://apps1.semarnat.gob.mx:8443/dgeia/informe18/index.html (accessed on 20 October 2024).
- SIAP Estadística de Producción Agrícola. Available online: http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php (accessed on 8 October 2024).
- Schmidt, H.-P.; Taylor, P. Kon-Tiki Flame Curtain Pyrolysis for the Democratization of Biochar Production. Biochar J. 2014, 2014, 14–24. [Google Scholar]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Schmidt, H.P.; Cornelissen, G. Biochar from “Kon Tiki” Flame Curtain and Other Kilns: Effects of Nutrient Enrichment and Kiln Type on Crop Yield and Soil Chemistry. PLoS ONE 2017, 12, e0176378. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.M.; Sigua, G.C.; Ducey, T.F.; Watts, D.W.; Stone, K.C. Designer Biochars Impact on Corn Grain Yields, Biomass Production, and Fertility Properties of a Highly-Weathered Ultisol. Environments 2019, 6, 64. [Google Scholar] [CrossRef]
- Flesch, F.; Berger, P.; Robles-Vargas, D.; Santos-Medrano, G.E.; Rico-Martínez, R. Characterization and Determination of the Toxicological Risk of Biochar Using Invertebrate Toxicity Tests in the State of Aguascalientes, México. Appl. Sci. 2019, 9, 1706. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Howe, K.J.; Hand, D.W.; Crittenden, J.C.; Tchobanoglous, G. Principles of Water Treatment; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- SEGOB. NORMA Oficial Mexicana NOM-004-SEMARNAT-2002, Protección Ambiental.-Lodos y Biosólidos.-Especificaciones y Límites Máximos Permisibles de Contaminantes Para Su Aprovechamiento y Disposición Final; CDMX, Mexico, 2003; Available online: https://dof.gob.mx/nota_detalle.php?codigo=691939&fecha=15/08/2003#gsc.tab=0 (accessed on 20 October 2024).
- Sparrevik, M.; Adam, C.; Martinsen, V.; Jubaedah; Cornelissen, G. Emissions of Gases and Particles from Charcoal/Biochar Production in Rural Areas Using Medium-Sized Traditional and Improved “Retort” Kilns. Biomass Bioenergy 2015, 72, 65–73. [Google Scholar] [CrossRef]
- Cornelissen, G.; Pandit, N.R.; Taylor, P.; Pandit, B.H.; Sparrevik, M.; Schmidt, H.P. Emissions and Char Quality of Flame-Curtain “Kon Tiki” Kilns for Farmer-Scale Charcoal/Biochar Production. PLoS ONE 2016, 11, e0154617. [Google Scholar] [CrossRef]
- European Biochar Certificate. European Biochar Certificate—Guidelines for a Sustainable Production of Biochar. 2022. Available online: https://www.european-biochar.org/en/ct/2-EBC-and-WBC-guidelines-documents (accessed on 6 December 2024).
- The International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. 2015. Available online: https://biochar-international.org/wp-content/uploads/2020/06/IBI_Biochar_Standards_V2.1_Final2.pdf (accessed on 6 December 2024).
- Smebye, A.B.; Sparrevik, M.; Schmidt, H.P.; Cornelissen, G. Life-Cycle Assessment of Biochar Production Systems in Tropical Rural Areas: Comparing Flame Curtain Kilns to Other Production Methods. Biomass Bioenergy 2017, 101, 35–43. [Google Scholar] [CrossRef]
- Marzeddu, S.; Cappelli, A.; Ambrosio, A.; Décima, M.A.; Viotti, P.; Boni, M.R. A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy. Land 2021, 10, 1256. [Google Scholar] [CrossRef]
- Moreira, M.T.; Noya, I.; Feijoo, G. The Prospective Use of Biochar as Adsorption Matrix—A Review from a Lifecycle Perspective. Bioresour. Technol. 2017, 246, 135–141. [Google Scholar] [CrossRef]
- Navarro-Pineda, F.S.; Handler, R.; Sacramento Rivero, J.C. Conceptual Design of a Dedicated-crop Biorefinery for Jatropha Curcas Using a Systematic Sustainability Evaluation. Biofuels Bioprod. Biorefining 2019, 13, 86–106. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- Cayuela, M.L.; van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s Role in Mitigating Soil Nitrous Oxide Emissions: A Review and Meta-Analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Method 10: Determination of Carbon Monoxide Emissions from Stationary Sources; In 40 CFR Part 60, Appendix A; U.S. Environmental Protection Agency: Washington, DC, USA, 2017. Available online: https://www.epa.gov/sites/default/files/2017-08/documents/method_10.pdf (accessed on 6 December 2024).
- U.S. Environmental Protection Agency. Method 7E: Determination of Nitrogen Oxide Emissions from Stationary Sources; In 40 CFR Part 60, Appendix A; U.S. Environmental Protection Agency: Washington, DC, USA, 2020. Available online: https://www.epa.gov/sites/default/files/2020-12/documents/method_7e_2.pdf (accessed on 6 December 2024).
- Secretaría de Comercio y Fomento Industrial. Determinación de las Emisiones de Gases Contaminantes de Fuentes Fijas. Norma NMX-AA-055-1979. 1979. Available online: http://legismex.mty.itesm.mx/normas/aa/aa055.pdf (accessed on 6 December 2024).
- ASTM C1301-95-14; Standard Test Method for Major and Trace Elements in Limestone and Lime by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP) and Atomic Absorption. ASTM International: West Conshohocken, PA, USA, 2014.
- Secretaría de Comercio y Fomento Industrial. Análisis de Aguas—Determinación de Fósforo Total en Aguas Naturales, Residuales y Residuales Tratadas—Metodología de Prueba. Norma NMX-AA-029-SCFI. 2005. Available online: https://www.gob.mx/cms/uploads/attachment/file/166773/NMX-AA-029-SCFI-2001.pdf (accessed on 6 December 2024).
- Steiner, C. Biochar: A Guide to Analytical Methods; Singh, B., Camps-Arbestain, M., Lehmann, J., Eds.; CRC Press: Boca Raton, FL, USA, 2018; Volume 34. [Google Scholar]
- Nemecek, T.; Schnetzer, J. Methods of Assessment of Direct Field Emissions for LCIs of Agricultural Production Systems; Agroscope Reckenholz-Tänikon Research Station ART, 2012; Available online: https://www.researchgate.net/profile/Freddy_Navarro-Pineda/post/How_to_easily_predict_the_leaching_of_heavy_metals_from_soils/attachment/59d61f9d79197b807797e0dc/AS%3A285638185242630%401445112858480/download/ART+2012+-+Methods+of+assessment+of+direct+field+emissions+for+agricultural+systems.pdf (accessed on 20 October 2024).
- Roberts, K.L.; Eate, V.M.; Eyre, B.D.; Holland, D.P.; Cook, P.L.M. Hypoxic Events Stimulate Nitrogen Recycling in a Shallow Salt-wedge Estuary: The Yarra River Estuary, Australia. Limnol. Oceanogr. 2012, 57, 1427–1442. [Google Scholar] [CrossRef]
- Werner, S.; Kätzl, K.; Wichern, M.; Buerkert, A.; Steiner, C.; Marschner, B. Agronomic Benefits of Biochar as a Soil Amendment after Its Use as Waste Water Filtration Medium. Environ. Pollut. 2018, 233, 561–568. [Google Scholar] [CrossRef]
Reference/Method | AP (kg SO2eq) | EP (kg PO43−eq) | GWP (kg CO2eq) | POCP (kg C2H4eq) | HTP (kg 1,4-DBeq) |
---|---|---|---|---|---|
[21]/CML-IA | 0.82 | 0.29 | −499.4 | n.r. | n.r. |
[22]/CML-IA | 0.89 | 2.66 | −2089 | −0.03 | 97.42 |
[19]/ReCiPe | n.r. | −0.004 | −2736 | n.r. | −4.7 |
Impact Category (Units) | This Study | [22] | [43] | [19] |
---|---|---|---|---|
ADP (mg Sbeq) | −60 | n.r. | −280 | n.r. |
ADP-FF (MJ) | −374.3 | −16,830 | −90,758 | n.r. |
GWP (kg CO2eq) | −801.3 | −2063 | −8267 | −2736 |
HTP (kg 1,4-DBeq) | 8.74 | n.r. | −1109 | −4.7 |
POCP (kg C2H4eq) | 0.76 | 0.01 | −0.51 | n.r. |
AP (kg SO2eq) | −0.40 | 0.91 | −28.37 | n.r. |
EP (g PO43−eq) | −120 | 580 | −7140 | −1.23 |
Potential Impact Category | Soil Amendment | Wastewater Filtering |
---|---|---|
ADP (g Sbeq) | −0.064 | 0.132 |
ADP-FF (MJ) | −374.3 | 2980.26 |
GWP (kg CO2eq) | −801.3 | −444.72 |
HTP (kg 1,4-DBeq) | 8.74 | 72.01 |
POCP (kg C2H4eq) | 0.76 | 0.80 |
AP (kg SO2eq) | −0.40 | 3.61 |
EP (kg PO43−eq) | −0.12 | 1.04 |
Concept | Type | Amount | Units | Source |
---|---|---|---|---|
Biochar production in Kon Tiki kiln | ||||
Biochar | Product | 1 | t | Reference flow |
Water from well | Material input | 1840 | L | Measured |
Electricity for water pumping (Mexico mix) | Energy input | 0.261 | kWh | Measured |
CO2 (biogenic) | Emission to air | 6002 | kg | Measured |
CO (biogenic) | Emission to air | 15.7 | kg | Measured |
NMVOC | Emission to air | 6 | kg | [39] |
CH4 (biogenic) | Emission to air | 57 | kg | [39] |
PM10 | Emission to air | 15.4 | kg | [39] |
NOX | Emission to air | 5.4 | kg | Measured |
Total P (in quenching water) | Emission to water | 0.02 | mg | Measured |
Zn (in quenching water) | Emission to water | 17.4 | mg | Measured |
Cu (in quenching water) | Emission to water | 0.1 | mg | Measured |
K (in quenching water) | Emission to water | 12.1 | mg | Measured |
Polypropylene (for bags) | Material input | 1.26 | kg | Interview |
Electricity for bag production (Mexico mix) | Energy input | 1.38 | kWh | Interview |
Soil amendment scenario | ||||
N from avoided DAP application | Input | −0.23 | kg | [11] |
P from avoided DAP application | Input | −0.58 | kg | [11] |
N from avoided urea application | Input | −4.52 | kg | Estimated |
C storage in BC, as CO2 | Emission to air | −2258 | kg | Estimated |
N2O (abatement) | Emission to air | −98.3 | g | [9,47] |
N2O (from avoided fertilizer) | Emission to air | −0.09 | kg | [45] |
NOX (from avoided fertilizer) | Emission to air | −0.03 | kg | [45] |
CO2 (from avoided fertilizer) | Emission to air | −15.43 | kg | [45] |
NO3− (leaching abatement) | Emission to water | −0.30 | kg | [9] |
NO3− (from avoided fertilizer) | Emission to water | −0.16 | kg | [45] |
Total P (from avoided fertilizer) | Emission to water | −0.77 | µg | [45] |
Cd (from avoided fertilizer) | Emission to water | −0.48 | µg | [45] |
Zn (from avoided fertilizer) | Emission to water | −0.04 | µg | [45] |
Zn (from avoided fertilizer) | Emission to soil | −0.07 | µg | [45] |
Pb (from avoided fertilizer) | Emission to soil | −0.05 | µg | [45] |
Ni (from avoided fertilizer) | Emission to soil | −0.02 | µg | [45] |
Water filtration scenario | ||||
Biochar transportation | Transport | 34 | tkm | Estimated |
Water from well | Material input | 7.18 | m3 | Measured |
Electricity for water pump (Mexico mix) | Energy input | 380.4 | kWh | Estimated from pump characteristics (1 hp) |
C storage in BC, as CO2 | Emission to air | −2258 | kg CO2eq | Estimated |
Filtered wastewater | Product | 3.59 | m3 | Measured |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez López, R.P.; Cabañas Vargas, D.; Aguilera-Cauich, E.A.; Sacramento Rivero, J.C. Life Cycle Assessment of Biochar from Residual Lignocellulosic Biomass Using Kon-Tiki Kilns: Applications in Soil Amendment and Wastewater Filtration. Recycling 2024, 9, 125. https://doi.org/10.3390/recycling9060125
Ramírez López RP, Cabañas Vargas D, Aguilera-Cauich EA, Sacramento Rivero JC. Life Cycle Assessment of Biochar from Residual Lignocellulosic Biomass Using Kon-Tiki Kilns: Applications in Soil Amendment and Wastewater Filtration. Recycling. 2024; 9(6):125. https://doi.org/10.3390/recycling9060125
Chicago/Turabian StyleRamírez López, Roxanna Pamela, Diana Cabañas Vargas, Erick Alberto Aguilera-Cauich, and Julio César Sacramento Rivero. 2024. "Life Cycle Assessment of Biochar from Residual Lignocellulosic Biomass Using Kon-Tiki Kilns: Applications in Soil Amendment and Wastewater Filtration" Recycling 9, no. 6: 125. https://doi.org/10.3390/recycling9060125
APA StyleRamírez López, R. P., Cabañas Vargas, D., Aguilera-Cauich, E. A., & Sacramento Rivero, J. C. (2024). Life Cycle Assessment of Biochar from Residual Lignocellulosic Biomass Using Kon-Tiki Kilns: Applications in Soil Amendment and Wastewater Filtration. Recycling, 9(6), 125. https://doi.org/10.3390/recycling9060125