Preclinical Implementation of matRadiomics: A Case Study for Early Malformation Prediction in Zebrafish Model
Abstract
:1. Introduction
2. Material and Methods
2.1. Improvements in matRadiomics
2.2. Resolution Analysis for Radiomics Feature Extraction
2.3. The Case Study
2.3.1. The Dataset
2.3.2. Performance Evaluation and Statistical Analysis
3. Results
3.1. Resolution Analysis for Radiomics Feature Extraction
3.2. Case Study
3.2.1. Feature Selection
3.2.2. Machine Learning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The Facts and the Challenges of Image Analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, I.; Gilardi, M.C. Radiomics: Is It Time to Compose the Puzzle? Clin. Transl. Imaging 2018, 6, 411–413. [Google Scholar] [CrossRef] [PubMed]
- Banna, G.L.; Anile, G.; Russo, G.; Vigneri, P.; Castaing, M.; Nicolosi, M.; Strano, S.; Gieri, S.; Spina, R.; Patanè, D.; et al. Predictive and Prognostic Value of Early Disease Progression by PET Evaluation in Advanced Non-Small Cell Lung Cancer. Oncology 2016, 92, 39–47. [Google Scholar] [CrossRef]
- Sala, E.; Mema, E.; Himoto, Y.; Veeraraghavan, H.; Brenton, J.D.; Snyder, A.; Weigelt, B.; Vargas, H.A. Unravelling Tumour Heterogeneity Using Next-Generation Imaging: Radiomics, Radiogenomics, and Habitat Imaging. Clin. Radiol. 2017, 72, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qiao, Z.; Zhao, X.; Li, X.; Wang, X.; Wu, T.; Chen, Z.; Fan, D.; Chen, Q.; Ai, L. Individualized Discrimination of Tumor Recurrence from Radiation Necrosis in Glioma Patients Using an Integrated Radiomics-Based Model. Eur. J. Nucl. Med. Mol. Imaging 2019, 18, 1400–1411. [Google Scholar] [CrossRef]
- Ugga, L.; Cuocolo, R.; Solari, D.; Guadagno, E.; D’Amico, A.; Somma, T.; Cappabianca, P.; del Basso de Caro, M.L.; Cavallo, L.M.; Brunetti, A. Prediction of High Proliferative Index in Pituitary Macroadenomas Using MRI-Based Radiomics and Machine Learning. Neuroradiology 2019, 61, 1365–1373. [Google Scholar] [CrossRef]
- Liberini, V.; Laudicella, R.; Balma, M.; Nicolotti, D.G.; Buschiazzo, A.; Grimaldi, S.; Lorenzon, L.; Bianchi, A.; Peano, S.; Bartolotta, T.V.; et al. Radiomics and Artificial Intelligence in Prostate Cancer: New Tools for Molecular Hybrid Imaging and Theragnostics. Eur. Radiol. Exp. 2022, 6, 27. [Google Scholar] [CrossRef]
- Leithner, D.; Schöder, H.; Haug, A.; Vargas, H.A.; Gibbs, P.; Häggström, I.; Rausch, I.; Weber, M.; Becker, A.S.; Schwartz, J.; et al. Impact of ComBat Harmonization on PET Radiomics-Based Tissue Classification: A Dual-Center PET/MRI and PET/CT Study. J. Nucl. Med. 2022, 63, 1611–1616. [Google Scholar] [CrossRef]
- Zhou, M.; Scott, J.; Chaudhury, B.; Hall, L.; Goldgof, D.; Yeom, K.W.; Iv, M.; Ou, Y.; Kalpathy-Cramer, J.; Napel, S.; et al. Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. Am. J. Neuroradiol. 2018, 39, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Loddo, A.; Usai, M.; Di Ruberto, C. Gastric Cancer Image Classification: A Comparative Analysis and Feature Fusion Strategies. J. Imaging 2024, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Corso, R.; Stefano, A.; Salvaggio, G.; Comelli, A. Shearlet Transform Applied to a Prostate Cancer Radiomics Analysis on MR Images. Mathematics 2024, 12, 1296. [Google Scholar] [CrossRef]
- Stefano, A. Challenges and Limitations in Applying Radiomics to PET Imaging: Possible Opportunities and Avenues for Research. Comput. Biol. Med. 2024, 179, 108827. [Google Scholar] [CrossRef]
- Russo, G.; Stefano, A.; Alongi, P.; Comelli, A.; Catalfamo, B.; Mantarro, C.; Longo, C.; Altieri, R.; Certo, F.; Cosentino, S.; et al. Feasibility on the Use of Radiomics Features of 11[C]-MET PET/CT in Central Nervous System Tumours: Preliminary Results on Potential Grading Discrimination Using a Machine Learning Model. Curr. Oncol. 2021, 28, 5318–5331. [Google Scholar] [CrossRef]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuze, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. Lifex: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda-A Software Package for Image Texture Analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef]
- Pasini, G.; Bini, F.; Russo, G.; Comelli, A.; Marinozzi, F.; Stefano, A. MatRadiomics: A Novel and Complete Radiomics Framework, from Image Visualization to Predictive Model. J. Imaging 2022, 8, 221. [Google Scholar] [CrossRef]
- Pasini, G.; Stefano, A.; Mantarro, C.; Richiusa, S.; Comelli, A.; Russo, G.I.; Sabini, M.G.; Cosentino, S.; Ippolito, M.; Russo, G. A Robust [18F]-PSMA-1007 Radiomics Ensemble Model for Prostate Cancer Risk Stratification. J. Imaging Inform. Med. 2024. [Google Scholar] [CrossRef]
- Hu, Q.; Li, K.; Yang, C.; Wang, Y.; Huang, R.; Gu, M.; Xiao, Y.; Huang, Y.; Chen, L. The Role of Artificial Intelligence Based on PET/CT Radiomics in NSCLC: Disease Management, Opportunities, and Challenges. Front. Oncol. 2023, 13, 1133164. [Google Scholar] [CrossRef]
- Khanam, J.J.; Foo, S.Y. A Comparison of Machine Learning Algorithms for Diabetes Prediction. ICT Express 2021, 7, 432–439. [Google Scholar] [CrossRef]
- Benfante, V.; Stefano, A.; Comelli, A.; Giaccone, P.; Cammarata, F.P.; Richiusa, S.; Scopelliti, F.; Pometti, M.; Ficarra, M.; Cosentino, S.; et al. A New Preclinical Decision Support System Based on PET Radiomics: A Preliminary Study on the Evaluation of an Innovative 64Cu-Labeled Chelator in Mouse Models. J. Imaging 2022, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.J.; Ferdani, R. Copper-64 Radiopharmaceuticals for PET Imaging of Cancer: Advances in Preclinical and Clinical Research. Cancer Biother. Radiopharm. 2009, 24, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Castranova, D.; Samasa, B.; Venero Galanternik, M.; Gore, A.V.; Goldstein, A.E.; Park, J.S.; Weinstein, B.M. Long-Term Imaging of Living Adult Zebrafish. Development 2022, 149, dev199667. [Google Scholar] [CrossRef]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Ijurra, O.M.; Zhang, L.; Shen, D.; Wang, Q. CuRadiomics: A GPU-Based Radiomics Feature Extraction Toolkit. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2020; Volume 11991, pp. 44–52. [Google Scholar]
- Song, Y.; Zhang, J.; Zhang, Y.D.; Hou, Y.; Yan, X.; Wang, Y.; Zhou, M.; Yao, Y.F.; Yang, G. FeAture Explorer (FAE): A Tool for Developing and Comparing Radiomics Models. PLoS ONE 2020, 15, e0237587. [Google Scholar] [CrossRef] [PubMed]
- Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- MacRae, C.A.; Peterson, R.T. Zebrafish as Tools for Drug Discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef]
- Horzmann, K.A.; Freeman, J.L. Making Waves: New Developments in Toxicology with the Zebrafish. Toxicol. Sci. 2018, 163, 5–12. [Google Scholar] [CrossRef]
- Sipes, N.S.; Padilla, S.; Knudsen, T.B. Zebrafish—As an Integrative Model for Twenty-first Century Toxicity Testing. Birth Defects Res. C Embryo Today 2011, 93, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, Y.; Hu, N.; Long, D.; Cao, Y. The Uses of Zebrafish (Danio rerio) as an in Vivo Model for Toxicological Studies: A Review Based on Bibliometrics. Ecotoxicol. Environ. Saf. 2024, 272, 116023. [Google Scholar] [CrossRef]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Hoo, J.Y.; Kumari, Y.; Shaikh, M.F.; Hue, S.M.; Goh, B.H. Zebrafish: A Versatile Animal Model for Fertility Research. Biomed. Res. Int. 2016, 2016, 9732780. [Google Scholar] [CrossRef] [PubMed]
- Bar-Ilan, O.; Albrecht, R.M.; Fako, V.E.; Furgeson, D.Y. Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos. Small 2009, 5, 1897–1910. [Google Scholar] [CrossRef]
- Szabó, E.R.; Brand, M.; Hans, S.; Hideghéty, K.; Karsch, L.; Lessmann, E.; Pawelke, J.; Schürer, M.; Beyreuther, E. Radiobiological Effects and Proton RBE Determined by Wildtype Zebrafish Embryos. PLoS ONE 2018, 13, e0206879. [Google Scholar] [CrossRef]
- Panzica-Kelly, J.M.; Zhang, C.X.; Danberry, T.L.; Flood, A.; DeLan, J.W.; Brannen, K.C.; Augustine-Rauch, K.A. Morphological Score Assignment Guidelines for the Dechorionated Zebrafish Teratogenicity Assay. Birth Defects Res. B Dev. Reprod. Toxicol. 2010, 89, 382–395. [Google Scholar] [CrossRef]
- Brunner, S.; Tőkés, T.; Szabó, E.R.; Polanek, R.; Szabó, I.Z.; Reisz, Z.; Gubán, B.K.; Szijártó, A.L.; Brand, M.; Hans, S.; et al. Dose-Dependent Changes After Proton and Photon Irradiation in a Zebrafish Model. Anticancer Res. 2020, 40, 6123–6135. [Google Scholar] [CrossRef]
- Rosa, J.G.S.; Lima, C.; Lopes-Ferreira, M. Zebrafish Larvae Behavior Models as a Tool for Drug Screenings and Pre-Clinical Trials: A Review. Int. J. Mol. Sci. 2022, 23, 6647. [Google Scholar] [CrossRef]
- Peng, J.; Lu, F.; Huang, J.; Zhang, J.; Gong, W.; Hu, Y.; Wang, J. Development and Validation of a Pyradiomics Signature to Predict Initial Treatment Response and Prognosis during Transarterial Chemoembolization in Hepatocellular Carcinoma. Front Oncol 2022, 12, 853254. [Google Scholar] [CrossRef]
- Robnik-Šikonja, M.; Kononenko, I. Theoretical and Empirical Analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69. [Google Scholar] [CrossRef]
- Barone, S.; Cannella, R.; Comelli, A.; Pellegrino, A.; Salvaggio, G.; Stefano, A.; Vernuccio, F. Hybrid Descriptive-Inferential Method for Key Feature Selection in Prostate Cancer Radiomics. Appl. Stoch. Models Bus. Ind. 2021, 37, 961–972. [Google Scholar] [CrossRef]
- Kammer, M.; Dunkler, D.; Michiels, S.; Heinze, G. Evaluating Methods for Lasso Selective Inference in Biomedical Research: A Comparative Simulation Study. BMC Med. Res. Methodol. 2022, 22, 206. [Google Scholar] [CrossRef] [PubMed]
- Pasini, G.; Russo, G.; Mantarro, C.; Bini, F.; Richiusa, S.; Morgante, L.; Comelli, A.; Russo, G.I.; Sabini, M.G.; Cosentino, S.; et al. A Critical Analysis of the Robustness of Radiomics to Variations in Segmentation Methods in 18F-PSMA-1007 PET Images of Patients Affected by Prostate Cancer. Diagnostics 2023, 13, 3640. [Google Scholar] [CrossRef]
- Xue, J.H.; Titterington, D.M. Do Unbalanced Data Have a Negative Effect on LDA? Pattern Recognit. 2008, 41, 1558–1571. [Google Scholar] [CrossRef]
- Soltaninejad, S.; Keshani, M.; Tajeripour, F. Lung Nodule Detection by KNN Classifier and Active Contour Modelling and 3D Visualization. In Proceedings of the 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012), Shiraz, Iran, 2–3 May 2012; pp. 440–445. [Google Scholar] [CrossRef]
- Keshani, M.; Azimifar, Z.; Tajeripour, F.; Boostani, R. Lung Nodule Segmentation and Recognition Using SVM Classifier and Active Contour Modeling: A Complete Intelligent System. Comput. Biol. Med. 2013, 43, 287–300. [Google Scholar] [CrossRef]
- Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.W.L.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: The Process and the Challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [Google Scholar] [CrossRef] [PubMed]
- Pucci, G.; Forte, G.I.; Cavalieri, V. Evaluation of Epigenetic and Radiomodifying Effects during Radiotherapy Treatments in Zebrafish. Int. J. Mol. Sci. 2021, 22, 9053. [Google Scholar] [CrossRef]
- Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an Emerging Model for Studying Complex Brain Disorders. Trends Pharmacol. Sci. 2014, 35, 63–75. [Google Scholar] [CrossRef]
- Pucci, G.; Savoca, G.; Iacoviello, G.; Russo, G.; Forte, G.I.; Cavalieri, V. Curcumin’s Radioprotective Effects on Zebrafish Embryos. Antioxidants 2024, 13, 1281. [Google Scholar] [CrossRef]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of Embryonic Development of the Zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef] [PubMed]
- Carreira, M.J.; Vila-Blanco, N.; Cabezas-Sainz, P.; Sánchez, L. Zftool: A Software for Automatic Quantification of Cancer Cell Mass Evolution in Zebrafish. Appl. Sci. 2021, 11, 7721. [Google Scholar] [CrossRef]
- Xie, H.; Li, M.; Kang, Y.; Zhang, J.; Zhao, C. Zebrafish: An Important Model for Understanding Scoliosis. Cell. Mol. Life Sci. 2022, 79, 506. [Google Scholar] [CrossRef]
- Novorol, C.; Burkhardt, J.; Wood, K.J.; Iqbal, A.; Roque, C.; Coutts, N.; Almeida, A.D.; He, J.; Wilkinson, C.J.; Harris, W.A. Microcephaly Models in the Developing Zebrafish Retinal Neuroepithelium Point to an Underlying Defect in Metaphase Progression. Open Biol. 2013, 3, 130065. [Google Scholar] [CrossRef]
- Narumanchi, S.; Wang, H.; Perttunen, S.; Tikkanen, I.; Lakkisto, P.; Paavola, J. Zebrafish Heart Failure Models. Front. Cell Dev. Biol. 2021, 9, 662583. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.A.; Huang, S.Y. Increasing Transparency in Machine Learning through Bootstrap Simulation and Shapely Additive Explanations. PLoS ONE 2023, 18, e0281922. [Google Scholar] [CrossRef]
- Piccinini, F.; Tazzari, M.; Tumedei, M.M.; Stellato, M.; Remondini, D.; Giampieri, E.; Martinelli, G.; Castellani, G.; Carbonaro, A. Data Science for Health Image Alignment: A User-Friendly Open-Source ImageJ/Fiji Plugin for Aligning Multimodality/Immunohistochemistry/Immunofluorescence 2D Microscopy Images. Sensors 2024, 24, 451. [Google Scholar] [CrossRef] [PubMed]
- Peirsman, A.; Blondeel, E.; Ahmed, T.; Anckaert, J.; Audenaert, D.; Boterberg, T.; Buzas, K.; Carragher, N.; Castellani, G.; Castro, F.; et al. MISpheroID: A Knowledgebase and Transparency Tool for Minimum Information in Spheroid Identity. Nat. Methods 2021, 18, 1294–1303. [Google Scholar] [CrossRef]
- Huang, A.A.; Huang, S.Y. Computation of the Distribution of Model Accuracy Statistics in Machine Learning: Comparison between Analytically Derived Distributions and Simulation-based Methods. Health Sci. Rep. 2023, 6, e1214. [Google Scholar] [CrossRef]
Resampling | Bin Count = 1 | Bin Count = 64 |
---|---|---|
Total average error | 16.04% | 38.22% |
Preprocessing | Resampling Technique | Bin Count |
---|---|---|
Resampling, 2.5 factor | Stick-nearest neighbor | 1 |
Features with Error > 2% |
---|
“original_firstorder_Energy” |
“original_firstorder_Kurtosis” |
“original_firstorder_Skewness” |
“original_firstorder_TotalEnergy” |
“original_gldm_DependenceNonUniformity” |
“original_gldm_DependenceVariance” |
“original_gldm_GrayLevelNonUniformity” |
“original_glrlm_GrayLevelNonUniformity” |
“original_glrlm_LongRunEmphasis” |
“original_glrlm_LongRunHighGrayLevelEmphasis” |
“original_glrlm_LongRunLowGrayLevelEmphasis” |
“original_glrlm_RunEntropy” |
“original_glrlm_RunLengthNonUniformity” |
“original_glrlm_RunVariance” |
“original_glszm_GrayLevelNonUniformity” |
“original_glszm_LargeAreaEmphasis” |
“original_glszm_LargeAreaHighGrayLevelEmphasis” “original_glszm_LargeAreaLowGrayLevelEmphasis” “original_glszm_SizeZoneNonUniformity” |
“original_glszm_ZoneEntropy” |
“original_glszm_ZoneVariance” |
Mask Type | Selected FEATURES |
---|---|
All masks | original_glszm_ZoneVariance |
All_fish | original_shape_SurfaceArea. |
Eye | original_gldm_DependenceNonUniformityNormalized |
Head | original_shape_MinorAxisLength |
Heart | original_glrlm_GrayLevelNonUniformity |
Length | original_glszm_ZoneVariance, original_shape_MeshVolume |
Yolk | original_shape_MinorAxisLength |
Mask Type | LDA | KNN | SVM |
---|---|---|---|
All masks except all_fish | AUC: 0.568 Acc: 0.582 | AUC: 0.576 Acc: 0.558 | AUC: 0.464 Acc: 0.591 |
All_fish | AUC: 0.720 Acc: 0.679 | AUC: 0.684 Acc: 0.628 | AUC: 0.723 Acc: 0.72 |
Eye | AUC: 0.702 Acc: 0.658 | AUC: 0.686 Acc: 0.608 | AUC: 0.706 Acc: 0.629 |
Head | AUC: 0.692 Acc: 0.663 | AUC: 0.708 Acc: 0.651 | AUC: 0.683 Acc: 0.650 |
Heart | AUC: 0.704 Acc: 0.670 | AUC: 0.696 Acc: 0.671 | AUC: 0.677 Acc: 0.670 |
Length | AUC: 0.712 Acc: 0.692 | AUC: 0.670 Acc: 0.638 | AUC: 0.718 Acc: 0.693 |
Yolk | AUC: 0.693 Acc: 0.665 | AUC: 0.613 Acc: 0.622 | AUC: 0.623 Acc: 0.629 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bini, F.; Missori, E.; Pucci, G.; Pasini, G.; Marinozzi, F.; Forte, G.I.; Russo, G.; Stefano, A. Preclinical Implementation of matRadiomics: A Case Study for Early Malformation Prediction in Zebrafish Model. J. Imaging 2024, 10, 290. https://doi.org/10.3390/jimaging10110290
Bini F, Missori E, Pucci G, Pasini G, Marinozzi F, Forte GI, Russo G, Stefano A. Preclinical Implementation of matRadiomics: A Case Study for Early Malformation Prediction in Zebrafish Model. Journal of Imaging. 2024; 10(11):290. https://doi.org/10.3390/jimaging10110290
Chicago/Turabian StyleBini, Fabiano, Elisa Missori, Gaia Pucci, Giovanni Pasini, Franco Marinozzi, Giusi Irma Forte, Giorgio Russo, and Alessandro Stefano. 2024. "Preclinical Implementation of matRadiomics: A Case Study for Early Malformation Prediction in Zebrafish Model" Journal of Imaging 10, no. 11: 290. https://doi.org/10.3390/jimaging10110290
APA StyleBini, F., Missori, E., Pucci, G., Pasini, G., Marinozzi, F., Forte, G. I., Russo, G., & Stefano, A. (2024). Preclinical Implementation of matRadiomics: A Case Study for Early Malformation Prediction in Zebrafish Model. Journal of Imaging, 10(11), 290. https://doi.org/10.3390/jimaging10110290