Method for Augmenting Side-Scan Sonar Seafloor Sediment Image Dataset Based on BCEL1-CBAM-INGAN
Abstract
:1. Introduction
2. Materials and Methods
2.1. InGAN Model
2.2. Residual Block Based on CBAM
2.3. Discriminator Based on BCEL1 Loss Function
3. Experimental and Results
3.1. Evaluation Index
3.2. Experimental Design
3.2.1. Validity Verification of Amplified Images
3.2.2. Ablation Experiment and Evaluation
3.2.3. Classification Model Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ku, A.; Zhou, X.; Peng, C. The Research on Development of Side-scan Sonar Detection Technology. Hydrogr. Surv. Charting 2018, 38, 50–54. [Google Scholar]
- Vehicle, U. Marine Science and Engineering. J. Mar. Sci. Eng. 2020, 8, 557. [Google Scholar]
- Chen, E.; Guo, J. Real Time Map Generation Using Sidescan Sonar Scanlines for Unmanned Underwater Vehicles. Ocean Eng. 2014, 91, 252–262. [Google Scholar] [CrossRef]
- Buscombe, D. Shallow Water Benthic Imaging and Substrate Characterization Using Recreational-grade Sidescan-sonar. Environ. Model. Softw. 2017, 89, 1–18. [Google Scholar] [CrossRef]
- Yang, F. Fusing and Classifying Multi-Beam Sonar and Side-Scan Sonar Data. Ph.D. Dissertation, Wuhan University, Wuhan, China, 2003. [Google Scholar]
- Zhang, W.; Liang, S.; Yang, R. Application of Side-scanning Sonar and Shallow Stratum Profiler in Surface Silt Detection of Colombo Offshore Seabed. Port Eng. Technol. 2014, 51, 86–91. [Google Scholar]
- Xu, Y.; Wang, Y.; Huang, J.; Fang, P. Influence of Seabed Sediment on Sonar Detection Performance. Ship Electron. Eng. 2017, 37, 123–125. [Google Scholar]
- Lou, Z.; Zou, C.; Wu, C. Advances and challenges in seabed substrate classification. In Proceedings of the 2020 China Earth Science Joint Academic Conference (26th)—Special Session 76: Deep Mineral Resource Exploration Technology and Application, Special Session 77: Rock Physics and In-Well Detection Frontiers, Special Session 78: In-Well Geophysics and Deep Drilling, Wuhan, China, 18–21 October 2020; Beijing Botong Electronic Publishing House: Beijing, China, 2020; pp. 158–159. [Google Scholar]
- Zhang, K.; Yuan, F.; Cheng, E. Analysis on Influence of Bottom Sediment Types on Side-scan Sonar Imaging Properties. Int. J. Math. Models Methods Appl. Sci. 2018, 12, 60–66. [Google Scholar]
- Zhu, P.; Isaacs, J.; Fu, B.; Ferrari, S. Deep Learning Feature Extraction for Target Recognition and Classifcation in Underwater Sonar Images. In Proceedings of the IEEE 56th Annual Conference on Decision and Control, Melbourne, Australia, 12–15 December 2017; Volume 12, pp. 12–15. [Google Scholar]
- Feldens, P.; Darr, A.; Feldens, A.; Tauber, F. Detection of Boulders in Side Scan Sonar Mosaics bya Neural Network. Geosciences 2019, 9, 159. [Google Scholar] [CrossRef]
- Huo, G.; Yang, S.X.; Li, Q.; Zhou, Y. A Robust and Fast Method for Sidescan SonarImage Segmentation Using Nonlocal Despeckling and Active Contour Model. IEEE Trans. Cybern. 2016, 47, 855–872. [Google Scholar] [CrossRef] [PubMed]
- Coiras, E.; Mignotte, P.Y.; Petillot, Y.; Bell, J.; Lebart, K. Supervised target detection and classification by training on augmented reality data. IET Radar Sonar Navig. 2007, 1, 83–90. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, L.; Yu, D.; Li, H.; Liu, M.; Zhang, W. CSLS-CycleGAN based side-scan sonar sample augmentation method for underwater target image. Syst. Eng. Electron. 2024, 46, 1514–1524. [Google Scholar]
- Zhang, Q.; Zhao, J.; Li, S.; Zhang, H. Seabed Sediment Classification Using Spatial Statistical Characteristics. J. Mar. Sci. Eng. 2022, 10, 691. [Google Scholar] [CrossRef]
- Shocher, A.; Bagon, S.; Isola, P.; Irani, M. InGAN: Capturing and Remapping the “DNA” of a Natural Image. Computer Vision and Pattern Recognition. arXiv 2019, arXiv:1812.00231. [Google Scholar]
- Li, B.Q.; Huang, H.N.; Liu, J.Y.; Li, Y. Optical Image-to-Underwater Small Target Synthetic Aperture Sonar Image Translation Algorithm Based on Improved CycleGAN. Acta Electron. Sin. 2021, 49, 1746–1753. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Conference and Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar]
- Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least Squares Generative Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Computer Vision—ECCV 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Commun. Acm 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Shaham, T.R.; Dekel, T.; Michaeli, T. Singan: Learning a Generative Model from a Single Natural Image. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
Substrate | Training Sample | Generated Sample | |||
---|---|---|---|---|---|
Muddy sand | |||||
Sandy mud | |||||
Fine sand | |||||
Coarse sand | |||||
Gravel 1 | |||||
Gravel 2 | |||||
Bedrock 1 | |||||
Bedrock 2 | |||||
Bedrock 3 |
Group | Entropy of Gray Co-Occurrence Matrix | FID | MMD | IS | PSNR | SSIM |
---|---|---|---|---|---|---|
Muddy sand | 11.9461 | 448.58 | 1.023 | 1.2474 ± 0.1040 | 14.32 | 0.19 |
Sandy mud | 13.2604 | 403.44 | 1.022 | 1.2379 ± 0.0602 | 9.52 | 0.06 |
Fine sand | 11.6167 | 284.60 | 1.017 | 1.1847 ± 0.1110 | 9.44 | 0.11 |
Coarse sand | 14.2414 | 902.46 | 1.017 | 1.6031 ± 0.2075 | 6.67 | 0.02 |
Gravel 1 | 13.8789 | 1001.79 | 1.020 | 1.4307 ± 0.1345 | 8.12 | 0.10 |
Gravel 2 | 13.5145 | 686.24 | 1.020 | 1.4044 ± 0.1315 | 10.19 | 0.09 |
Bedrock 1 | 13.4833 | 1024.62 | 1.033 | 1.4070 ± 0.1720 | 6.49 | 0.03 |
Bedrock 2 | 12.3735 | 987.43 | 1.020 | 1.4499 ± 0.1658 | 10.13 | 0.09 |
Bedrock 3 | 13.8416 | 576.86 | 1.015 | 1.3268 ± 0.0914 | 9.00 | 0.18 |
Model | CBAM Model | BCEL1 Loss | FID | MMD | IS | PSNR | SSIM |
---|---|---|---|---|---|---|---|
1 | — | — | 877.12 | 1.035 | 1.2711 ± 0.1176 | 7.10 | 0.069 |
2 | — | √ | 895.29 | 1.033 | 1.3861 ± 0.1671 | 7.03 | 0.065 |
3 | √ | — | 944.60 | 1.033 | 1.3667 ± 0.0935 | 7.25 | 0.066 |
4 | √ | √ | 1024.62 | 1.033 | 1.4070 ± 0.1720 | 6.44 | 0.058 |
Sandy Mud | Muddy Sand | Sand | Gravel | Bedrock | |
---|---|---|---|---|---|
Example diagram | |||||
Quantity | 5123 | 5851 | 7126 | 4406 | 4696 |
Total | 27,202 | ||||
Size | 256 × 256 |
Training Parameters | Parameter Settings |
---|---|
Training Epochs | 100 |
batch_size | 32 |
Learning Rate | 0.0001 |
Model | Training Duration (min) | Validation Accuracy Curve |
---|---|---|
AlexNet | 121.8 | |
GoogleNet | 129.1 | |
VggNet | 161.9 | |
ResNet | 124.3 | |
DenseNet | 135.6 |
Group | CBAM Model | BCEL1 Loss | Generated Image Bedrock Recognition Rate |
---|---|---|---|
1 | — | — | 90.50% |
2 | — | √ | 93.60% |
3 | √ | — | 92.20% |
4 | √ | √ | 97.30% |
5 | Original dataset | 92.60% |
Group | Original Image | Images Augmented Using the Proposed Method | Images Augmented Using the Simple Method |
---|---|---|---|
1 | 260 | — | — |
2 | 200 | 60 | — |
3 | 200 | — | 60 |
Accuracy | |
---|---|
AlexNet-1 | 82.50% |
AlexNet-2 | 87.70% |
AlexNet-3 | 85.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, H.; Cui, Y.; Jin, S.; Bian, G.; Zhang, W.; Peng, C. Method for Augmenting Side-Scan Sonar Seafloor Sediment Image Dataset Based on BCEL1-CBAM-INGAN. J. Imaging 2024, 10, 233. https://doi.org/10.3390/jimaging10090233
Xia H, Cui Y, Jin S, Bian G, Zhang W, Peng C. Method for Augmenting Side-Scan Sonar Seafloor Sediment Image Dataset Based on BCEL1-CBAM-INGAN. Journal of Imaging. 2024; 10(9):233. https://doi.org/10.3390/jimaging10090233
Chicago/Turabian StyleXia, Haixing, Yang Cui, Shaohua Jin, Gang Bian, Wei Zhang, and Chengyang Peng. 2024. "Method for Augmenting Side-Scan Sonar Seafloor Sediment Image Dataset Based on BCEL1-CBAM-INGAN" Journal of Imaging 10, no. 9: 233. https://doi.org/10.3390/jimaging10090233
APA StyleXia, H., Cui, Y., Jin, S., Bian, G., Zhang, W., & Peng, C. (2024). Method for Augmenting Side-Scan Sonar Seafloor Sediment Image Dataset Based on BCEL1-CBAM-INGAN. Journal of Imaging, 10(9), 233. https://doi.org/10.3390/jimaging10090233