Efficient Generative-Adversarial U-Net for Multi-Organ Medical Image Segmentation
Abstract
:1. Introduction
- Efficient Generative-Adversarial U-Net: We introduce a new medical image-segmentation framework designed for fast and accurate multi-organ segmentation. This model incorporates advanced feature processing modules that enhance the extraction of multi-scale spatial information and improve the model’s comprehension of this information. Additionally, the framework progressively refines these features using a generative-adversarial learning strategy, resulting in increased segmentation accuracy.
- Global Spatial-Channel Attention Mechanism: This mechanism enhances the model’s ability to perceive spatial information, enabling it to concentrate more effectively on specific areas of interest.
- Efficient Mapping Convolutional Block: This advanced block improves the network’s capability to gather multi-scale spatial information and uses a residual method to address issues associated with gradient descent and information loss.
- Training Strategy in Generative-Adversarial style: This proposed training approach significantly improves the prediction accuracy of the model generated using this technique. As a result, EGAUNet demonstrates superior segmentation performance compared to leading deep learning methods on publicly available multi-organ datasets, all while maintaining high efficiency.
2. Related Works
2.1. Classical Segmentation Networks in Medical Image Analysis
2.2. Generative-Adversarial Learning Methods
3. Proposed Method
3.1. Overall Framework of EGAUNet
3.2. Feature Extraction Module
3.2.1. GhostNet Bottleneck Layer
3.2.2. Global Spatial-Channel Attention
3.3. Decoder Module
Efficient Mapping Convolutional Block
3.4. Generative-Adversarial Learning Strategy
3.5. Loss Function
4. Experiment and Discussion
4.1. Datasets
4.2. Implementation Details
4.3. Experimental Results on Diverse Datasets
4.3.1. CHAOS T2SPIR Dataset
4.3.2. CHAOS T1DUAL Dataset
4.3.3. Brain MRI Dataset
4.3.4. Chest X-Ray Masks and Labels Dataset
4.4. Ablation Study
4.4.1. Results from Different Attention Mechanisms
4.4.2. Results from Diverse Modules
4.4.3. Hyperparameter Analysis
4.4.4. Effect of Residual Connections
4.5. Computational Costs
4.6. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wu, G.; Sun, X.; Hu, P.; Liu, Y. Attention-Based Multi-Kernelized and Boundary-Aware Network for lmage semantic segmentation. Neurocomputing 2024, 597, 127988. [Google Scholar] [CrossRef]
- Abdou, M.A. Literature review: Efficient deep neural networks techniques for medical image analysis. Neural Comput. Appl. 2022, 34, 5791–5812. [Google Scholar] [CrossRef]
- Liu, X.; Wu, G.; Liu, W. Refine Diagnostic Accuracy of Skin Cancer with A Hybrid Deep Network. In Proceedings of the 2023 International Conference on Machine Vision, Image Processing and Imaging Technology (MVIPIT), Hangzhou, China, 26–28 July 2023; IEEE: New York, NY, USA, 2023; pp. 191–195. [Google Scholar]
- Luo, Y.; Wu, G.; Liu, Y.; Liu, W.; Han, J. Towards High-Quality MRI Reconstruction With Anisotropic Diffusion-Assisted Generative Adversarial Networks And Its Multi-Modal Images Extension. IEEE J. Biomed. Health Inform. 2024. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Lorenzo, I.; Alonso-Burgos, A.; Friera Reyes, A.; Pacios Blanco, R.E.; de Benavides Bernaldo de Quiros, M.d.C.; Gallardo Madueño, G. Current Role of CT Pulmonary Angiography in Pulmonary Embolism: A State-of-the-Art Review. J. Imaging 2024, 10, 323. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Quan, R.; Xu, W.; Huang, Y.; Chen, X.; Liu, F. Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches. Bioengineering 2024, 11, 1034. [Google Scholar] [CrossRef] [PubMed]
- Rayed, M.E.; Islam, S.S.; Niha, S.I.; Jim, J.R.; Kabir, M.M.; Mridha, M. Deep learning for medical image segmentation: State-of-the-art advancements and challenges. Inform. Med. Unlocked 2024, 47, 101504. [Google Scholar] [CrossRef]
- Xie, X.; Pan, X.; Zhang, W.; An, J. A context hierarchical integrated network for medical image segmentation. Comput. Electr. Eng. 2022, 101, 108029. [Google Scholar] [CrossRef]
- Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 2010, 7, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, L.; Wu, G.; Xu, S.; Han, J. Tcgnet: Type-correlation guidance for salient object detection. IEEE Trans. Intell. Transp. Syst. 2023, 25, 6633–6644. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, P. A systematic literature analysis of multi-organ cancer diagnosis using deep learning techniques. Comput. Biol. Med. 2024, 179, 108910. [Google Scholar] [CrossRef] [PubMed]
- Skandarani, Y.; Jodoin, P.M.; Lalande, A. Gans for medical image synthesis: An empirical study. J. Imaging 2023, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, G.; Fontana, N.; Flori, A.; Santarelli, M.F.; Tucci, M.; Positano, V.; Barmada, S.; Frijia, F. Machine Learning for the Design and the Simulation of Radiofrequency Magnetic Resonance Coils: Literature Review, Challenges, and Perspectives. Sensors 2024, 24, 1954. [Google Scholar] [CrossRef]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical image analysis using convolutional neural networks: A review. J. Med. Syst. 2018, 42, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ruan, S.; Canu, S. A review: Deep learning for medical image segmentation using multi-modality fusion. Array 2019, 3, 100004. [Google Scholar] [CrossRef]
- Shahzad, K.; Mati, W. Advances in magnetic resonance imaging (MRI). In Advances in Medical and Surgical Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–142. [Google Scholar]
- de Araújo, A.S.; Pinho, M.S.; Marques da Silva, A.M.; Fiorentini, L.F.; Becker, J. A 2.5 D Self-Training Strategy for Carotid Artery Segmentation in T1-Weighted Brain Magnetic Resonance Images. J. Imaging 2024, 10, 161. [Google Scholar] [CrossRef]
- Crombé, A.; Buy, X.; Han, F.; Toupin, S.; Kind, M. Assessment of repeatability, reproducibility, and performances of T2 mapping-based radiomics features: A comparative study. J. Magn. Reson. Imaging 2021, 54, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Valindria, V.V.; Pawlowski, N.; Rajchl, M.; Lavdas, I.; Aboagye, E.O.; Rockall, A.G.; Rueckert, D.; Glocker, B. Multi-modal learning from unpaired images: Application to multi-organ segmentation in CT and MRI. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; IEEE: New York, NY, USA, 2018; pp. 547–556. [Google Scholar]
- Zhang, J.; Qin, Q.; Ye, Q.; Ruan, T. ST-unet: Swin transformer boosted U-net with cross-layer feature enhancement for medical image segmentation. Comput. Biol. Med. 2023, 153, 106516. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th international conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Xiao, X.; Lian, S.; Luo, Z.; Li, S. Weighted res-unet for high-quality retina vessel segmentation. In Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education (ITME), Hangzhou, China, 19–21 October 2018; IEEE: New York, NY, USA, 2018; pp. 327–331. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 2019, 39, 1856–1867. [Google Scholar] [CrossRef]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.W.; Wu, J. Unet 3+: A full-scale connected unet for medical image segmentation. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: New York, NY, USA, 2020; pp. 1055–1059. [Google Scholar]
- Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Johansen, D.; De Lange, T.; Halvorsen, P.; Johansen, H.D. Resunet++: An advanced architecture for medical image segmentation. In Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM), San Diego, CA, USA, 9–11 December 2019; IEEE: New York, NY, USA, 2019; pp. 225–2255. [Google Scholar]
- Vaswani, A. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Jha, D.; Riegler, M.A.; Johansen, D.; Halvorsen, P.; Johansen, H.D. Doubleu-net: A deep convolutional neural network for medical image segmentation. In Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 28–30 July 2020; IEEE: New York, NY, USA, 2020; pp. 558–564. [Google Scholar]
- Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 2020, 121, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Lou, A.; Guan, S.; Loew, M. DC-UNet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation. In Proceedings of the Medical Imaging 2021: Image Processing, online, 15–19 February 2021; SPIE: San Francisco, CA, USA, 2021; Volume 11596, pp. 758–768. [Google Scholar]
- Dosovitskiy, A. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2022; pp. 205–218. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Chen, L.C. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Chaurasia, A.; Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; IEEE: New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180. [Google Scholar]
- Roth, H.R.; Lu, L.; Lay, N.; Harrison, A.P.; Farag, A.; Sohn, A.; Summers, R.M. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Med. Image Anal. 2018, 45, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.; Giganti, F.; Hu, Y.; Bonmati, E.; Bandula, S.; Gurusamy, K.; Davidson, B.; Pereira, S.P.; Clarkson, M.J.; Barratt, D.C. Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans. Med. Imaging 2018, 37, 1822–1834. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Shen, W.; Park, S.; Fishman, E.K.; Yuille, A.L. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med. Image Anal. 2019, 55, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Wang, G.; Li, Y.; Wang, H. Ma-net: A multi-scale attention network for liver and tumor segmentation. IEEE Access 2020, 8, 179656–179665. [Google Scholar] [CrossRef]
- Lei, T.; Sun, R.; Du, X.; Fu, H.; Zhang, C.; Nandi, A.K. SGU-Net: Shape-guided ultralight network for abdominal image segmentation. IEEE J. Biomed. Health Inform. 2023, 27, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Zhang, X.; Zhu, X.; Zhang, X.-Y.; Zhang, N.; Li, P.; Wang, L. Seggan: Semantic segmentation with generative adversarial network. In Proceedings of the 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), Xi’an, China, 13–16 September 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Yu, L.; Zhang, W.; Wang, J.; Yu, Y. Seqgan: Sequence generative adversarial nets with policy gradient. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Antipov, G.; Baccouche, M.; Dugelay, J.L. Face aging with conditional generative adversarial networks. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: New York, NY, USA, 2017; pp. 2089–2093. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Huang, X.; Li, Y.; Poursaeed, O.; Hopcroft, J.; Belongie, S. Stacked generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5077–5086. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589. [Google Scholar]
- Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Buda, M.; Saha, A.; Mazurowski, M.A. Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput. Biol. Med. 2019, 109, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Mazurowski, M.A.; Clark, K.; Czarnek, N.M.; Shamsesfandabadi, P.; Peters, K.B.; Saha, A. Radiogenomics of lower-grade glioma: Algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas data. J. Neuro-Oncol. 2017, 133, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, S.; Karargyris, A.; Candemir, S.; Folio, L.; Siegelman, J.; Callaghan, F.; Xue, Z.; Palaniappan, K.; Singh, R.K.; Antani, S.; et al. Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 2013, 33, 233–245. [Google Scholar] [CrossRef]
- Candemir, S.; Jaeger, S.; Palaniappan, K.; Musco, J.P.; Singh, R.K.; Xue, Z.; Karargyris, A.; Antani, S.; Thoma, G.; McDonald, C.J. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 2013, 33, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Liu, Y.; Shao, Z.; Hoffmann, N. Global attention mechanism: Retain information to enhance channel-spatial interactions. arXiv 2021, arXiv:2112.05561. [Google Scholar]
- Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 603–612. [Google Scholar]
- Roy, A.G.; Navab, N.; Wachinger, C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; Proceedings, Part I. Springer: Berlin/Heidelberg, Germany, 2018; pp. 421–429. [Google Scholar]
Module | Layer Settings | Output Size |
---|---|---|
input 1; output 16 | 128 × 128 | |
1st layer: input 16; output 16 | 128 × 128 | |
Encoder | 2nd layer: input 16; output 24 | 64 × 64 |
3rd layer: input 24; output 40 | 32 × 32 | |
4th layer: input 40; output 112 | 16 × 16 | |
5th layer: input 112; output 160 | 8 × 8 | |
1st layer: input 160; output 112 | 16 × 16 | |
Decoder | 2nd layer: input 224; output 40 | 32 × 32 |
3rd layer: input 80; output 24 | 64 × 64 | |
4th layer: input 48; output 16 | 128 × 128 | |
5th layer: input 32; output 8 | 256 × 256 | |
input 8; output class numbers | 256 × 256 |
Methods | Accuracy/% | Jaccard/% | Dice/% | Recall/% | Precision/% | Model Size/MB |
---|---|---|---|---|---|---|
U-Net [22] | 99.241 | 81.4906 | 89.5248 | 85.5202 | 94.5099 | 93.268 |
U-Net++ [24] | 99.273 | 81.4303 | 89.4413 | 86.9528 | 92.8613 | 99.540 |
DeepLabV3+ [37] | 99.2 | 79.4703 | 87.543 | 86.5181 | 89.4392 | 85.653 |
DeepLabV3 [36] | 99.1906 | 79.4616 | 87.8887 | 87.0126 | 90.4709 | 99.268 |
FPN [35] | 99.0856 | 77.8403 | 86.6493 | 85.6116 | 88.491 | 88.374 |
PSPNet [34] | 99.1414 | 77.0972 | 86.0903 | 84.7043 | 88.5407 | 81.896 |
PAN [39] | 99.2099 | 79.111 | 87.3738 | 84.5139 | 91.2465 | 81.972 |
LinkNet [38] | 90.2008 | 80.1587 | 88.5952 | 86.3175 | 91.9858 | 83.103 |
MA-Net [43] | 99.2258 | 81.0168 | 89.2562 | 85.431 | 94.2853 | 121.307 |
TransUnet [32] | 99.1924 | 80.4445 | 88.8427 | 86.5871 | 91.8494 | 401.783 |
Swin-Unet [33] | 98.7621 | 80.8076 | 89.0952 | 87.2299 | 91.6879 | 159.942 |
EGAUNet | 99.2712 | 82.7481 | 90.3579 | 87.406 | 94.0992 | 13.687 |
Methods | Accuracy/% | Jaccard/% | Dice/% | Recall/% | Precision/% | Model Size/MB |
---|---|---|---|---|---|---|
U-Net [22] | 98.7695 | 71.1743 | 81.8562 | 78.4352 | 87.4716 | 93.268 |
U-Net++ [24] | 98.7683 | 72.5626 | 82.9347 | 80.0251 | 87.7143 | 99.540 |
DeepLabV3+ [37] | 98.8295 | 70.8224 | 81.4241 | 81.0444 | 83.9067 | 85.653 |
DeepLabV3 [36] | 98.8085 | 72.6485 | 83.0298 | 80.1389 | 90.5594 | 99.268 |
FPN [35] | 98.7923 | 69.0447 | 79.4689 | 73.7402 | 88.5001 | 88.374 |
PSPNet [34] | 98.6957 | 69.5157 | 80.6271 | 75.0415 | 90.8589 | 81.896 |
PAN [39] | 98.8128 | 71.7114 | 82.6195 | 79.5785 | 88.3801 | 81.972 |
MA-Net [43] | 98.7847 | 66.8831 | 77.8886 | 73.0551 | 85.8648 | 121.307 |
LinkNet [38] | 98.6854 | 69.837 | 81.0474 | 78.4861 | 85.529 | 83.103 |
TransUnet [32] | 98.8216 | 72.3102 | 83.06 | 81.5979 | 85.8489 | 401.783 |
Swin-Unet [33] | 98.0135 | 68.7503 | 80.6263 | 77.4063 | 86.037 | 159.942 |
EGAUNet | 98.8731 | 72.5935 | 83.0767 | 81.2664 | 86.1776 | 13.687 |
Methods | Accuracy/% | Jaccard/% | Dice/% | Recall/% | Precision/% |
---|---|---|---|---|---|
U-Net [22] | 99.1921 | 70.0793 | 73.9475 | 73.2199 | 78.4849 |
U-Net++ [24] | 99.222 | 70.684 | 73.9475 | 73.2199 | 78.4849 |
DeepLabV3+ [37] | 99.2099 | 70.6161 | 73.8614 | 73.9679 | 77.5365 |
DeepLabV3 [36] | 99.2552 | 71.5492 | 74.826 | 75.2761 | 77.5441 |
FPN [35] | 99.264 | 71.0808 | 74.5197 | 74.3894 | 78.5029 |
PSPNet [34] | 99.2063 | 70.1365 | 72.8361 | 73.1024 | 75.1314 |
PAN [39] | 99.2041 | 70.0225 | 72.6904 | 72.513 | 76.0798 |
MA-Net [43] | 99.2188 | 71.0317 | 74.0247 | 74.2834 | 77.2081 |
LinkNet [38] | 99.2272 | 70.6377 | 74.4036 | 76.3936 | 77.3731 |
TransUnet [32] | 99.2383 | 70.8217 | 73.8083 | 73.0028 | 77.9385 |
Swin-Unet [33] | 99.3482 | 72.0496 | 75.797 | 75.9722 | 79.0336 |
EGAUNet | 99.3067 | 72.4873 | 75.8443 | 76.2431 | 78.7209 |
Methods | Accuracy/% | Jaccard/% | Dice/% | Recall/% | Precision/% |
---|---|---|---|---|---|
U-Net++ [24] | 98.1561 | 92.7387 | 96.1274 | 95.3239 | 97.2012 |
Linknet [38] | 98.1659 | 92.7697 | 96.1624 | 95.322 | 97.235 |
PAN [39] | 98.0818 | 92.44 | 95.9733 | 94.9952 | 97.2226 |
DeepLabV3+ [37] | 98.2201 | 92.7515 | 96.1572 | 95.8293 | 96.6959 |
FPN [35] | 98.1623 | 92.7661 | 96.1662 | 95.9995 | 96.542 |
TransUnet [32] | 98.1856 | 92.786 | 96.1703 | 95.672 | 96.8906 |
Swin-Unet [33] | 97.5572 | 92.6014 | 96.0786 | 95.3826 | 96.9877 |
EGAUNet | 98.1811 | 92.8105 | 96.1954 | 95.6684 | 96.9125 |
Attention Mechanisms | Accuracy/% | Jaccard/% | Dice/% | Recall/% | Precision/% |
---|---|---|---|---|---|
CBAM [63] | 99.2427 | 82.1369 | 89.8077 | 87.7827 | 92.881 |
GCnet [64] | 98.2424 | 81.7871 | 89.6564 | 87.3808 | 92.5535 |
GAM [65] | 98.9573 | 80.3427 | 88.6592 | 83.8494 | 94.6779 |
CCnet [66] | 99.1597 | 81.7218 | 86.8582 | 82.4949 | 89.4902 |
SCSE [67] | 99.2125 | 81.6256 | 89.6042 | 87.4182 | 92.6259 |
GSCA | 99.2712 | 82.7481 | 90.3579 | 87.406 | 94.0992 |
GSCA | EMCB | GAL | Accuracy/% | Jaccard/% | Dice/% | Recall/% | Precision/% |
---|---|---|---|---|---|---|---|
× | × | × | 99.081 | 80.9021 | 89.325 | 86.8637 | 91.021 |
✓ | × | × | 99.2439 | 81.3664 | 89.9033 | 87.0575 | 92.6582 |
× | ✓ | × | 99.0958 | 81.1127 | 89.6771 | 87.067 | 91.3626 |
✓ | ✓ | × | 99.2615 | 81.4386 | 89.0968 | 87.2611 | 92.7406 |
✓ | ✓ | ✓ | 99.2712 | 82.7481 | 90.3579 | 87.406 | 94.0992 |
Accuracy/% | Jaccard/% | Dice/% | Recall/% | Precision/% | |
---|---|---|---|---|---|
0.03 | 99.2357 | 82.384 | 90.1588 | 87.2477 | 93.699 |
0.02 | 99.2359 | 82.5644 | 90.2338 | 89.0517 | 91.9896 |
0.015 | 99.2626 | 82.548 | 90.1384 | 89.6218 | 91.0939 |
0.01 | 99.2712 | 82.7481 | 90.3579 | 87.406 | 94.0992 |
0.005 | 99.1796 | 81.1614 | 89.3579 | 88.3616 | 91.0004 |
Methods | Accuracy/% | Jaccard/% | Dice/% | Recall/% | Precision/% |
---|---|---|---|---|---|
Res | 99.197 | 81.0099 | 89.1963 | 87.0337 | 91.9229 |
Res | 99.2712 | 82.7481 | 90.3579 | 87.406 | 94.0992 |
Methods | Model Size/MB | GFLOPs | Iter/s |
---|---|---|---|
U-Net [22] | 93.268 | 124.13 | 1.16 |
U-Net++ [24] | 99.540 | 293.36 | 1.15 |
DeepLabV3+ [37] | 85.653 | 124.77 | 1.13 |
DeepLabV3 [36] | 99.268 | 435.41 | 1.30 |
FPN [35] | 88.374 | 108.30 | 1.13 |
PSPNet [34] | 81.896 | 36.20 | 1.10 |
PAN [39] | 81.972 | 117.60 | 1.13 |
MA-Net [43] | 83.103 | 85.58 | 1.13 |
LinkNet [38] | 121.307 | 132.19 | 1.13 |
TransUnet [32] | 401.783 | 615.67 | 1.42 |
Swin-Unet [33] | 159.942 | 143.09 | 1.19 |
EGAUNet | 13.687 | 15.26 | 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wu, G.; Liu, Y. Efficient Generative-Adversarial U-Net for Multi-Organ Medical Image Segmentation. J. Imaging 2025, 11, 19. https://doi.org/10.3390/jimaging11010019
Wang H, Wu G, Liu Y. Efficient Generative-Adversarial U-Net for Multi-Organ Medical Image Segmentation. Journal of Imaging. 2025; 11(1):19. https://doi.org/10.3390/jimaging11010019
Chicago/Turabian StyleWang, Haoran, Gengshen Wu, and Yi Liu. 2025. "Efficient Generative-Adversarial U-Net for Multi-Organ Medical Image Segmentation" Journal of Imaging 11, no. 1: 19. https://doi.org/10.3390/jimaging11010019
APA StyleWang, H., Wu, G., & Liu, Y. (2025). Efficient Generative-Adversarial U-Net for Multi-Organ Medical Image Segmentation. Journal of Imaging, 11(1), 19. https://doi.org/10.3390/jimaging11010019