Remote Sensing Target Tracking Method Based on Super-Resolution Reconstruction and Hybrid Networks
Abstract
:1. Introduction
2. Overall Framework of Remote Sensing Target Tracking System
3. Main Algorithms
3.1. Super-Resolution Reconstruction Algorithm
3.1.1. Residual Block
3.1.2. Upsampling Block
3.1.3. Loss Function
3.2. Motion Estimation
3.2.1. Estimation Model
3.2.2. Hybrid Neural Network
3.3. Data Association
4. Experiments and Analysis
4.1. Selection and Preprocessing of the Dataset
4.2. Experimental Platform and Parameter Settings
4.3. Results and Analysis of Super-Resolution Reconstruction
4.4. Analysis of Target Tracking Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, P.G.; Cherstvy, A.G.; Seckler, H.; Hering, R.; Blaum, N.; Jeltsch, F.; Metzler, R. Directedeness, correlations, and daily cycles in springbok motion: From data via stochastic models to movement prediction. Phys. Rev. Res. 2023, 5, 043129. [Google Scholar] [CrossRef]
- Wang, X.; Lu, W. Super-Resolution Reconstruction of Remote Sensing Images Based on Symmetric Local Fusion Blocks. Int. J. Inf. Secur. Priv. (IJISP) 2023, 17, 1–14. [Google Scholar] [CrossRef]
- Sakthivel, S.S.K.; Moorthy, S.; Arthanari, S.; Jeong, J.H.; Joo, Y.H. Learning a Context-Aware Environmental Residual Correlation Filter via Deep Convolution Features for Visual Object Tracking. Mathematics 2024, 12, 2279. [Google Scholar] [CrossRef]
- Rong, Y.; Jia, M.; Zhan, Y.; Zhou, L. SR-RDFAN-LOG: Arbitrary-scale logging image super-resolution re-construction based on residual dense feature aggregation. Geoenergy Sci. Eng. 2024, 240, 213042. [Google Scholar] [CrossRef]
- Bian, J.; Liu, Y.; Chen, J. Lightweight Super-Resolution Reconstruction Vision Transformers of Remote Sensing Image Based on Structural Re-Parameterization. Appl. Sci. 2024, 14, 917. [Google Scholar] [CrossRef]
- Zhang, T.; Du, Y.; Lu, F. Super-Resolution Reconstruction of Remote Sensing Images Using Multiple-Point Statistics and Isometric Mapping. Remote Sens. 2017, 9, 724. [Google Scholar] [CrossRef]
- Zhu, H.; Gao, X.; Tang, X.; Xie, J.; Song, W.; Mo, F.; Jia, D. Super-Resolution Reconstruction and Its Application Based on Multilevel Main Structure and Detail Boosting. Remote Sens. 2018, 10, 2065. [Google Scholar] [CrossRef]
- Yue, X.; Liu, D.; Wang, L.; Benediktsson, J.A.; Meng, L.; Deng, L. IESRGAN: Enhanced U-Net Structured Generative Adversarial Network for Remote Sensing Image Super-Resolution Reconstruction. Remote Sens. 2023, 15, 3490. [Google Scholar] [CrossRef]
- Zhang, X. Superresolution Reconstruction of Remote Sensing Image Based on Middle-Level Supervised Convolutional Neural Network. J. Sens. 2022, 2022, 2603939. [Google Scholar] [CrossRef]
- Deepthi, K.; Shastry, A.K.; Naresh, E. A novel deep unsupervised approach for super-resolution of remote sensing hyperspectral image using gompertz-function convergence war accelerometric-optimization generative adversarial network (GF-CWAO-GAN). Sci. Rep. 2024, 14, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xie, J.; Chi, K.; Zhang, Y.; Dong, Y. Feature Intensification Using Perception-Guided Regional Classification for Remote Sensing Image Super-Resolution. Remote Sens. 2024, 16, 4201. [Google Scholar] [CrossRef]
- Ren, W.; Wang, Z.; Xia, M.; Lin, H. MFINet: Multi-Scale Feature Interaction Network for Change Detection of High-Resolution Remote Sensing Images. Remote Sens. 2024, 16, 1269. [Google Scholar] [CrossRef]
- Ji, X.; Tang, L.; Chen, L.; Hao, L.Y.; Guo, H. Toward efficient and lightweight sea–land segmentation for remote sensing images. Eng. Appl. Artif. Intell. 2024, 135, 108782. [Google Scholar] [CrossRef]
- Tang, W.; He, F.; Bashir, A.K.; Shao, X.; Cheng, Y.; Yu, K. A remote sensing image rotation object detection approach for real-time environmental monitoring. Sustain. Energy Technol. Assess. 2023, 57, 103270. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, H.; Du, C.; Wang, Z.; Tian, Y.; Yao, X.; Cheng, Z.; Fan, S.; Wu, J. Tracking Multiple Vehicles with a Flexible Life Cycle Strategy Based on Roadside LiDAR Sensors. J. Transp. Eng. Part A Syst. 2024, 150, 04024010. [Google Scholar] [CrossRef]
- Jenefa, A.; Bessy, M.K.; Edward Naveen, V.; Lincy, A. EDSR: Empowering super-resolution algorithms with high-quality DIV2K images. Intell. Decis. Technol. 2023, 17, 1249–1263. [Google Scholar]
- Guo, Y.; Wang, X.; Han, M.; Xin, J.; Hou, Y.; Gong, Z.; Wang, L.; Fan, D.; Feng, L.; Han, D. Detection and Localization of Albas Velvet Goats Based on YOLOv4. Animals 2023, 13, 3242. [Google Scholar] [CrossRef]
- Khan, S.D.; Alarabi, L.; Basalamah, S. An Encoder–Decoder Deep Learning Framework for Building Footprints Extraction from Aerial Imagery. Arab. J. Sci. Eng. 2023, 48, 1273–1284. [Google Scholar] [CrossRef]
- Pekmezci, M.; Genc, Y. Evaluation of SSIM loss function in RIR generator GANs. Digit. Signal Process. 2024, 154, 104685. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhao, H.; Zhang, Y.; Chen, L. STVDNet: Spatio-temporal interactive video de-raining network. Vis. Comput. 2024, 1–16. [Google Scholar] [CrossRef]
- Yao, S.; Wang, H.; Su, Y.; Li, Q.; Sun, T.; Liu, C.; Li, Y.; Cheng, D. A Renovated Framework of a Convolution Neural Network with Transformer for Detecting Surface Changes from High-Resolution Remote-Sensing Images. Remote Sens. 2024, 16, 1169. [Google Scholar] [CrossRef]
- Moctezuma, L.A.; Suzuki, Y.; Furuki, J.; Molinas, M.; Abe, T. GRU-powered sleep stage classification with permutation-based EEG channel selection. Sci. Rep. 2024, 14, 17952. [Google Scholar] [CrossRef]
- Mulindwa, D.B.; Du, S. An n-Sigmoid Activation Function to Improve the Squeeze-and-Excitation for 2D and 3D Deep Networks. Electronics 2023, 12, 911. [Google Scholar] [CrossRef]
- Tao, P.; Yang, D. RSC-WSRGAN super-resolution reconstruction based on improved generative adversarial network. Signal Image Video Process. 2024, 18, 7833–7845. [Google Scholar] [CrossRef]
- Wang, X.; Ao, Z.; Li, R.; Fu, Y.; Xue, Y.; Ge, Y. Super-Resolution Image Reconstruction Method between Sentinel-2 and Gaofen-2 Based on Cascaded Generative Adversarial Networks. Appl. Sci. 2024, 14, 5013. [Google Scholar] [CrossRef]
Models | Residual Block | Upsample Block | Loss Function | PSNR | SSIM |
---|---|---|---|---|---|
EDSR | ─ | ─ | ─ | 27.71 | 0.742 |
Improvement 1 | √ | ─ | ─ | 28.09 | 0.828 |
Improvement 2 | √ | √ | ─ | 28.32 | 0.833 |
Improvement 3 | √ | √ | √ | 28.88 | 0.862 |
Model | MOTA | IDF1 |
---|---|---|
SORT | 41.8% | 0.389 |
DeepSORT | 57.3% | 0.564 |
CNN-GRU | 63.5% | 0.625 |
Super-resolution Reconstruction Network + CNN-GRU | 67.8% | 0.656 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, H.; Xu, S.; Yang, Y.; Li, Y. Remote Sensing Target Tracking Method Based on Super-Resolution Reconstruction and Hybrid Networks. J. Imaging 2025, 11, 29. https://doi.org/10.3390/jimaging11020029
Wan H, Xu S, Yang Y, Li Y. Remote Sensing Target Tracking Method Based on Super-Resolution Reconstruction and Hybrid Networks. Journal of Imaging. 2025; 11(2):29. https://doi.org/10.3390/jimaging11020029
Chicago/Turabian StyleWan, Hongqing, Sha Xu, Yali Yang, and Yongfang Li. 2025. "Remote Sensing Target Tracking Method Based on Super-Resolution Reconstruction and Hybrid Networks" Journal of Imaging 11, no. 2: 29. https://doi.org/10.3390/jimaging11020029
APA StyleWan, H., Xu, S., Yang, Y., & Li, Y. (2025). Remote Sensing Target Tracking Method Based on Super-Resolution Reconstruction and Hybrid Networks. Journal of Imaging, 11(2), 29. https://doi.org/10.3390/jimaging11020029