Machine Learning-Based Approaches for Breast Density Estimation from Mammograms: A Comprehensive Review
Abstract
:1. Introduction
2. Methods
- Google Scholar;
- IEEE Explore;
- arXiv;
- Springer;
- Science Direct;
- PubMed.
3. Results
3.1. Visual Methods
- Fatty (I): nearly no fibro-glandular tissue; almost entirely composed of fat;
- Scattered areas (II): relatively small amount of fibro-glandular tissue;
- Heterogeneously dense (III): large amount (>50%) of fibro-glandular tissue;
- Extremely dense (IV): almost entirely made up of fibro-glandular tissue.
3.2. Software-Based Methods
3.3. Machine-Learning-Based Methods
Dataset | Availability | Origin | Views | Total Images | Density Categories |
---|---|---|---|---|---|
Mini-MIAS [46] | Public | UK | MLO | 322 | 3 |
DDSM [47] | Public | USA | CC, MLO | 10,480 | 4 |
INbreast [48] | Public | Portugal | CC, MLO | 410 | 4 |
Tianjin Tumor Hospital [43] | Private | China | CC, MLO | 88 | 4 |
University Hospital Zagreb [42] | Private | Croatia | MLO | 144 | 2, 3, and 4 |
Gansu Provincial Cancer Hospital [30] | Private | China | MLO | 128 | 3 |
University Hospital “Luigi Vanvitelli” [49] | Private | Italy | CC, MLO | 876 | 4 |
New York University School of Medicine [45,50] | Private | USA | CC, MLO | 886,000 | 4 |
University Hospital Zurich [35] | Private | Switzerland | CC, MLO | 20,578 | 4 |
First Hospital of Shanxi Medical University [44] | Private | China | CC, MLO | 18,157 | 4 |
University Hospital of Pisa [39,51] | Private | Italy | CC, MLO | 6648 | 4 |
Retrospective Study [40] | Private | China | CC, MLO | 1985 | 4 |
3.3.1. Traditional Machine Learning Approaches
3.3.2. Deep Learning Approaches
3.4. Segmentation-Based Methods
4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACAM | Adaptive Channel Attention Module |
ACR | American College of Radiology |
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
ASAM | Adaptive Spatial Attention Module |
AUC | Area Under the Curve |
BI-RADS | Breast Imaging-Reporting and Data System |
CC | Craniocaudal |
cGAN | Conditional Generative Adversarial Network |
CNN | Convolutional Neural Network |
CSAE | Convolutional Sparse Autoencoder |
DAG | Directed Acrylic Graph |
DCNN | Deep Convolutional Neural Network |
DDSM | Digital Database for Screening Mammography |
DT | Decision Tree |
DWT | Discrete Wavelet Transform |
ELM | Extreme Learning Machine |
GLCM | Gray-Level Co-occurrence Matrix |
GLDS | Gray-Level Difference Statistics |
GLRLM | Gray-Level Run Length Matrix |
GPU | Graphical Processing Unit |
GWT | Gabor Wavelet Transform |
IoU | Intersection over Union |
KNN | K-Nearest Neighbor |
LDA | Linear Discrimination Analysis |
macAUC | Macro Area Under the Curve |
MIAS | Mammographic Image Analysis Society |
MLO | Mediolateral Oblique |
NFC | Neuro Fuzzy Classifier |
PCA | Principal Component Analysis |
PNN | Probabilistic Neural Network |
RFE | Recursive Feature Elimination |
ROI | Region of Interest |
SE | Squeeze-and-Excitation |
SVM | Support Vector Machine |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Welch, H.G.; Prorok, P.C.; O’Malley, A.J.; Kramer, B.S. Breast-Cancer Tumor Size, Overdiagnosis, and Mammography Screening Effectiveness. N. Engl. J. Med. 2016, 375, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Lehman, C.D.; Arao, R.F.; Sprague, B.L.; Lee, J.M.; Buist, D.S.M.; Kerlikowske, K.; Henderson, L.M.; Onega, T.; Tosteson, A.N.A.; Rauscher, G.H.; et al. National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium. Radiology 2017, 283, 49–58. [Google Scholar] [CrossRef]
- Kallenberg, M.; Petersen, K.; Nielsen, M.; Ng, A.Y.; Diao, P.; Igel, C.; Vachon, C.M.; Holland, K.; Winkel, R.R.; Karssemeijer, N.; et al. Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring. IEEE Trans. Med. Imaging 2016, 35, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Boyd, N.F.; Martin, L.J.; Bronskill, M.; Yaffe, M.J.; Duric, N.; Minkin, S. Breast Tissue Composition and Susceptibility to Breast Cancer. J. Natl. Cancer Inst. 2010, 102, 1224–1237. [Google Scholar] [CrossRef]
- Lamb, L.R.; Fonseca, M.M.; Verma, R.; Seely, J.M. Missed Breast Cancer: Effects of Subconscious Bias and Lesion Characteristics. Radiographics 2020, 40, 941–960. [Google Scholar] [CrossRef] [PubMed]
- Wengert, G.J.; Helbich, T.H.; Leithner, D.; Morris, E.A.; Baltzer, P.A.T.; Pinker, K. Multimodality Imaging of Breast Parenchymal Density and Correlation with Risk Assessment. Curr. Breast Cancer Rep. 2019, 11, 23–33. [Google Scholar] [CrossRef]
- Redondo, A.; Comas, M.; Macià, F.; Ferrer, F.; Murta-Nascimento, C.; Maristany, M.T.; Molins, E.; Sala, M.; Castells, X. Inter- and Intraradiologist Variability in the BI-RADS Assessment and Breast Density Categories for Screening Mammograms. Br. J. Radiol. 2012, 85, 1465–1470. [Google Scholar] [CrossRef]
- Sprague, B.L.; Conant, E.F.; Onega, T.; Garcia, M.P.; Beaber, E.F.; Herschorn, S.D.; Lehman, C.D.; Tosteson, A.N.A.; Lacson, R.; Schnall, M.D.; et al. Variation in Mammographic Breast Density Assessments among Radiologists in Clinical Practice: A Multicenter Observational Study. Ann. Intern. Med. 2016, 165, 457–464. [Google Scholar] [CrossRef]
- Duijm, L.E.M.; Louwman, M.W.J.; Groenewoud, J.H.; van de Poll-Franse, L.V.; Fracheboud, J.; Coebergh, J.W. Inter-Observer Variability in Mammography Screening and Effect of Type and Number of Readers on Screening Outcome. Br. J. Cancer 2009, 100, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.R.; Jang, M.H.; Park, S.Y.; Gong, G.; Jung, W.-H. Interobserver Variability of Ki-67 Measurement in Breast Cancer. J. Pathol. Transl. Med. 2016, 50, 129–137. [Google Scholar] [CrossRef]
- Birdwell, R.L. The Preponderance of Evidence Supports Computer-Aided Detection for Screening Mammography. Radiology 2009, 253, 9–16. [Google Scholar] [CrossRef]
- Sak, M.A.; Littrup, P.J.; Duric, N.; Mullooly, M.; Sherman, M.E.; Gierach, G.L. Current and Future Methods for Measuring Breast Density: A Brief Comparative Review. Breast Cancer Manag. 2015, 4, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, M.J. Mammographic Density. Measurement of Mammographic Density. Breast Cancer Res. 2008, 10, 209. [Google Scholar] [CrossRef]
- Destounis, S.V.; Santacroce, A.; Arieno, A. Update on Breast Density, Risk Estimation, and Supplemental Screening. Am. J. Roentgenol. 2020, 214, 296–305. [Google Scholar] [CrossRef]
- Bodewes, F.T.H.; van Asselt, A.A.; Dorrius, M.D.; Greuter, M.J.W.; de Bock, G.H. Mammographic Breast Density and the Risk of Breast Cancer: A Systematic Review and Meta-Analysis. Breast 2022, 66, 62–68. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Juette, A.; Denton, E.R.E.; Oliver, A.; Martí, R.; Zwiggelaar, R. A Review on Automatic Mammographic Density and Parenchymal Segmentation. Int. J. Breast Cancer 2015, 2015, 2. [Google Scholar] [CrossRef] [PubMed]
- Chalfant, J.S.; Hoyt, A.C. Breast Density: Current Knowledge, Assessment Methods, and Clinical Implications. J. Breast Imaging 2022, 4, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, C.E.; O’Brien, S.R.; Conant, E.F. Mammographic Breast Density: Current Assessment Methods, Clinical Implications, and Future Directions. Semin. Ultrasound CT MRI 2023, 44, 35–45. [Google Scholar] [CrossRef]
- Ekpo, E.U.; McEntee, M.F. Measurement of Breast Density with Digital Breast Tomosynthesis—A Systematic Review. Br. J. Radiol. 2014, 87, 20140460. [Google Scholar] [CrossRef]
- Dhou, S.; Alhusari, K.; Alkhodari, M. Artificial Intelligence in Mammography: Advances and Challenges. In Artificial Intelligence and Image Processing in Medical Imaging; Elsevier: Amsterdam, The Netherlands, 2024; pp. 83–114. [Google Scholar]
- Destounis, S.; Arieno, A.; Morgan, R.; Roberts, C.; Chan, A. Qualitative Versus Quantitative Mammographic Breast Density Assessment: Applications for the US and Abroad. Diagnostics 2017, 7, 30. [Google Scholar] [CrossRef]
- Sickles, E.A.; D’Orsi, C.J.; Bassett, L.W. ACR BI-RADS® Mammography. In ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Wolfe, J.N. Breast Patterns as an Index of Risk for Developing Breast Cancer. Am. J. Roentgenol. 1976, 126, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Gram, I.T.; Funkhouser, E.; Tabár, L. The Tabar Classification of Mammographic Parenchymal Patterns. Eur. J. Radiol. 1997, 24, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Astley, S.M.; Harkness, E.F.; Sergeant, J.C.; Warwick, J.; Stavrinos, P.; Warren, R.; Wilson, M.; Beetles, U.; Gadde, S.; Lim, Y.; et al. A Comparison of Five Methods of Measuring Mammographic Density: A Case-Control Study. Breast Cancer Res. 2018, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Byng, J.W.; Boyd, N.F.; Fishell, E.; Jong, R.A.; Yaffe, M.J. The Quantitative Analysis of Mammographic Densities. Phys. Med. Biol. 1994, 39, 1629–1638. [Google Scholar] [CrossRef]
- Hartman, K.; Highnam, R.; Warren, R.; Jackson, V. Volumetric Assessment of Breast Tissue Composition from FFDM Images. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2008; Volume 5116. [Google Scholar]
- Highnam, R.; Brady, M.; Yaffe, M.J.; Karssemeijer, N.; Harvey, J. Robust Breast Composition Measurement—VolparaTM. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2010; Volume 6136. [Google Scholar]
- Gong, X.; Yang, Z.; Wang, D.; Qi, Y.; Guo, Y.; Ma, Y. Breast Density Analysis Based on Glandular Tissue Segmentation and Mixed Feature Extraction. Multimed. Tools Appl. 2019, 78, 31185–31214. [Google Scholar] [CrossRef]
- Li, H.; Giger, M.L.; Huo, Z.; Olopade, O.I.; Lan, L.; Weber, B.L.; Bonta, I. Computerized Analysis of Mammographic Parenchymal Patterns for Assessing Breast Cancer Risk: Effect of ROI Size and Location. Med. Phys. 2004, 31, 549–555. [Google Scholar] [CrossRef]
- Arefan, D.; Talebpour, A.; Ahmadinejhad, N.; Asl, A.K. Automatic Breast Density Classification Using Neural Network. J. Instrum. 2015, 10, T12002. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; He, K. Breast Density Classification Using Histogram Moments of Multiple Resolution Mammograms. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, BMEI 2010, Yantai, China, 16–18 October 2010; Volume 1. [Google Scholar]
- Saffari, N.; Rashwan, H.A.; Abdel-Nasser, M.; Singh, V.K.; Arenas, M.; Mangina, E.; Herrera, B.; Puig, D. Fully Automated Breast Density Segmentation and Classification Using Deep Learning. Diagnostics 2020, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Ciritsis, A.; Rossi, C.; De Martini, I.V.; Eberhard, M.; Marcon, M.; Becker, A.S.; Berger, N.; Boss, A. Determination of Mammographic Breast Density Using a Deep Convolutional Neural Network. Br. J. Radiol. 2019, 92, 20180691. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Wu, C.; Zhong, J.; Wang, H. Deep Learning from Small Dataset for Bi-Rads Density Classification of Mammography Images. In Proceedings of the 10th International Conference on Information Technology in Medicine and Education, ITME, Qingdao, China, 23–25 August 2019. [Google Scholar]
- Mohammed, B.; Nadjia, B. Automated Assessment of Breast Density on Mammogram Images Based on Convolutional Neural Networks. In Proceedings of the 2021 Proceedings of the International Conference on Artificial Intelligence for Cyber Security Systems and Privacy, AI-CSP 2021, El Oued, Algeria, 20–21 November 2021. [Google Scholar]
- Zhao, W.; Wang, R.; Qi, Y.; Lou, M.; Wang, Y.; Yang, Y.; Deng, X.; Ma, Y. BASCNet: Bilateral Adaptive Spatial and Channel Attention Network for Breast Density Classification in the Mammogram. Biomed. Signal Process. Control 2021, 70, 103073. [Google Scholar] [CrossRef]
- Lizzi, F.; Scapicchio, C.; Laruina, F.; Retico, A.; Fantacci, M.E. Convolutional Neural Networks for Breast Density Classification: Performance and Explanation Insights. Appl. Sci. 2022, 12, 148. [Google Scholar] [CrossRef]
- Li, C.; Xu, J.; Liu, Q.; Zhou, Y.; Mou, L.; Pu, Z.; Xia, Y.; Zheng, H.; Wang, S. Multi-View Mammographic Density Classification by Dilated and Attention-Guided Residual Learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Kumar, I.; Bhadauria, H.S.; Virmani, J.; Thakur, S. A Hybrid Hierarchical Framework for Classification of Breast Density Using Digitized Film Screen Mammograms. Multimed. Tools Appl. 2017, 76, 18789–18813. [Google Scholar] [CrossRef]
- Muštra, M.; Grgić, M.; Delač, K. Breast Density Classification Using Multiple Feature Selection. Autom.-J. Control Meas. Electron. Comput. Commun. 2012, 53, 362–372. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, L.; Tan, Y.; Wang, J.; Ma, X.; Ni, H. Mammogram Density Estimation Using Sub-Region Classification. In Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics, BMEI 2011, Shanghai, China, 15–17 October 2011; Volume 1. [Google Scholar]
- Deng, J.; Ma, Y.; Li, D.; Zhao, J.; Liu, Y.; Zhang, H. Classification of Breast Density Categories Based on SE-Attention Neural Networks. Comput. Methods Programs Biomed. 2020, 193, 105489. [Google Scholar] [CrossRef]
- Wu, N.; Geras, K.J.; Shen, Y.; Su, J.; Kim, S.G.; Kim, E.; Wolfson, S.; Moy, L.; Cho, K. Breast Density Classification with Deep Convolutional Neural Networks. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018; Volume 2018-April. [Google Scholar]
- Suckling, J.; Parker, J.; Dance, D.; Astley, S.; Hutt, I.; Boggis, C.; Ricketts, I.; Stamatakis, E.; Cerneaz, N.; Kok, S.; et al. The Mammographic Image Analysis Society Digital Mammogram Database. In Experta Medica, International Congress Series; Excerta Medica: Amsterdam, The Netherlands, 1994; Volume 1069, pp. 375–378. Available online: http://peipa.essex.ac.uk/info/mias.html (accessed on 6 December 2024).
- Heath, M.; Bowyer, K.; Kopans, D.; Moore, R.; Kegelmeyer, W.P. The Digital Database for Screening Mammography. In Proceedings of the International Workshop on Digital Mammography, Toronto, ON, Canada, 11–14 June 2000; Yaffe, M.J., Ed.; Medical Physics: Madison, WI, USA, 2001; pp. 212–218. [Google Scholar]
- Moreira, I.C.; Amaral, I.; Domingues, I.; Cardoso, A.; Cardoso, M.J.; Cardoso, J.S. INbreast: Toward a Full-Field Digital Mammographic Database. Acad. Radiol. 2012, 19, 236–248. [Google Scholar] [CrossRef]
- Sansone, M.; Fusco, R.; Grassi, F.; Gatta, G.; Belfiore, M.P.; Angelone, F.; Ricciardi, C.; Ponsiglione, A.M.; Amato, F.; Galdiero, R.; et al. Machine Learning Approaches with Textural Features to Calculate Breast Density on Mammography. Curr. Oncol. 2023, 30, 839–853. [Google Scholar] [CrossRef]
- Geras, K.J.; Wolfson, S.; Shen, Y.; Wu, N.; Kim, S.G.; Kim, E.; Heacock, L.; Parikh, U.; Moy, L.; Cho, K. High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks. arXiv 2017, arXiv:1703.07047. [Google Scholar]
- Sottocornola, C.; Traino, A.; Barca, P.; Aringhieri, G.; Marini, C.; Retico, A.; Caramella, D.; Fantacci, M.E. Evaluation of Dosimetric Properties in Full Field Digital Mammography (FFDM). In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, Funchal, Portugal, 19–21 January 2018; SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2018; pp. 212–217. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme Learning Machine: Theory and Applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Glide-Hurst, C.K.; Duric, N.; Littrup, P. A New Method for Quantitative Analysis of Mammographic Density. Med. Phys. 2007, 34, 4491–4498. [Google Scholar] [CrossRef] [PubMed]
- Gudhe, N.R.; Behravan, H.; Sudah, M.; Okuma, H.; Vanninen, R.; Kosma, V.M.; Mannermaa, A. Area-Based Breast Percentage Density Estimation in Mammograms Using Weight-Adaptive Multitask Learning. Sci. Rep. 2022, 12, 12060. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, K.; Gubern-Merida, A.; Patrie, J.T.; Harvey, J.A. Automated Volumetric Mammographic Breast Density Measurements May Underestimate Percent Breast Density for High-Density Breasts. Acad. Radiol. 2017, 24, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Malathi, M.; Sinthia, P.; Farzana, F.; Aloy Anuja Mary, G. Breast Cancer Detection Using Active Contour and Classification by Deep Belief Network. Mater. Today Proc. 2021, 45, 2721–2724. [Google Scholar] [CrossRef]
- Shamshad, F.; Khan, S.; Zamir, S.W.; Khan, M.H.; Hayat, M.; Khan, F.S.; Fu, H. Transformers in Medical Imaging: A Survey. Med. Image Anal. 2023, 88, 102802. [Google Scholar] [CrossRef] [PubMed]
- Alhussen, A.; Anul Haq, M.; Ahmad Khan, A.; Mahendran, R.K.; Kadry, S. XAI-RACapsNet: Relevance Aware Capsule Network-Based Breast Cancer Detection Using Mammography Images via Explainability O-Net ROI Segmentation. Expert. Syst. Appl. 2025, 261, 125461. [Google Scholar] [CrossRef]
- Umehara, K.; Ota, J.; Ishida, T. Super-Resolution Imaging of Mammograms Based on the Super-Resolution Convolutional Neural Network. Open J. Med. Imaging 2017, 07, 180–195. [Google Scholar] [CrossRef]
- Ravikumar, M.; Rachana, P.G.; Shivaprasad, B.J.; Guru, D.S. Enhancement of Mammogram Images Using CLAHE and Bilateral Filter Approaches. In Cybernetics, Cognition and Machine Learning Applications: Proceedings of ICCCMLA 2020; Springer: Singapore, 2021; pp. 261–271. [Google Scholar]
Metric | Formula |
---|---|
Accuracy | |
F1-Score | |
Precision | |
Recall | |
Specificity | |
Sensitivity |
Study | Dataset | Preprocessing | Feature Extraction | Model(s) | Results (Accuracy) |
---|---|---|---|---|---|
L. Liu et al., 2010, [33] | MIAS | Removal of labels and pectoral muscle | Statistical feature extraction | DAG-SVM | 77.33% |
Q. Liu et al., 2011, [43] | Private database | Removal of artifacts, pectoral muscle, and contour line, as well as enhancement of images through dyadic wavelet transform | Statistical feature extraction | SVM | 86.40% |
M. Muštra et al., 2012, [42] | Mini-MIAS and a private database | Removal of artifacts, reorientation and resizing of the breast, and extraction of the ROI | Statistical feature extraction and GLCM | KNN (k = 1 and k = 5) and Naïve Bayes | MIAS: 1-NN: 90.37% 5-NN: 89.44% Naïve Bayes: 91.61% Private database: 1-NN: 97.22% 5-NN: 90.28% Naïve Bayes: 89.58% |
D. Arefan et al., 2015, [32] | Mini-MIAS | Denoising and removal of artifacts and pectoral muscle | Statistical feature extraction | Neural network with sigmoid function | 97.6% |
I. Kumar et al., 2017, [41] | DDSM | Extraction of ROI from central breast region | Statistical feature extraction, GLDS, GLCM, GLRLM, Law’s texture energy, and 2D GWT | PCA-KNN, PCA-PNN, PCA-ANN, PCA-NFC, PCA-SVM, and a Hybrid Hierarchical Framework | PCA-KNN: 72.50% PCA-PNN: 68.33% PCA-ANN: 50.41% PCA-NFC: 80.41% PCA-SVM: 78.33% Hybrid: 84.17% |
X. Gong et al., 2019, [30] | Mini-MIAS, DDSM, and a private database | Denoising and removal of labels and pectoral muscle | Statistical feature extraction, GLCM, and area-based density estimation | SVM | MIAS: 96.19% DDSM: 96.35% MIAS and private database (mixed): 95.01% |
M. Sansone et al., 2023, [49] | Private database | Histogram equalization and pectoral muscle removal | Statistical feature extraction, GLCM, Law’s texture energy, GLRLM, and DWT | SVM | 93.55% |
Study | Datasets | Preprocessing | Model(s) | Results |
---|---|---|---|---|
N. Wu et al., 2018, [45] | Private database | - | DCNN | Accuracy: 76.70% macAUC: 0.916 |
A. Ciritsis et al., 2019, [35] | Private database | Rescaling | DCNN | MLO Accuracy: 92.20% MLO AUC: 0.980 CC Accuracy: 87.40% CC MLO: 0.970 |
P. Shi et al., 2019, [36] | Mini-MIAS | Rescaling and pectoral muscle removal | CNN | Accuracy: 83.6% Loss: 0.52 |
N. Saffari et al., 2020, [34] | INbreast | Removal of pectoral muscle and rescaling | cGAN-CNN | Accuracy: 98.75% Precision: 97.50% Sensitivity: 97.50% Specificity: 99.16% |
J. Deng et al., 2020, [44] | Private database | Removal of pectoral muscle, grayscale transformation, cropping of images, and image whitening | CNN with SE-Attention | Accuracy: 92.17% F1-score: 90.33% |
B. Mohammed and B. Nadjia, 2021, [37] | INbreast | Reorientation to left side, breast area extraction, and rescaling | Inception_ResNet_V2 | Accuracy: 98% Precision: 97% Recall: 96% Specificity: 98% F1-score: 96% |
W. Zhao et al., 2021, [38] | DDSM and INbreast | Denoising, breast area extraction, and rescaling | BASCNet: ResNet and ASAM and ACAM | DDSM (CC): Accuracy: 85.10% ± 2.50% F1-score: 73.92% ± 3.82% AUC: 91.54% ± 0.88% INbreast (CC and MLO): Accuracy: 90.51% ± 5.08% F1-score: 78.11% ± 10.30% AUC: 99.09% ± 1.20% |
F. Lizzi et al., 2021, [39] | Private database | Conversion from 12 bits to 8 bits, rescaling, and pectoral muscle removal | Very deep residual CNN | Accuracy: 82.0% Precision: 83.3% Recall: 80.3% |
C. Li et al., 2021, [40] | INbreast and a private database | Rescaling | ResNet with dilated convolutions and channel-wise attention layers | INbreast: Accuracy: 70.0% F1-score: 63.5% AUC: 84.7% Private database: Accuracy: 88.7% F1-score: 87.1% AUC: 97.4% |
Study | Dataset(s) | Segmentation Techniques Utilized | Results |
---|---|---|---|
C. Glide-Hurst et al., 2007, [54] | Private dataset | Gaussian mixture modeling and K-means. | Spearman rho: CC: 0.67 MLO: 0.71 |
M. Kallenberg et al., 2016, [4] | Private dataset | Convolutional sparse autoencoder for feature learning and softmax regression for pixel labeling. | Correlation (r): 0.85 Dice coefficients: Dense: 0.63 Fatty: 0.95 |
N. Gudhe et al., 2022, [55] | MIAS, INbreast, mini-DDSM, and a private dataset | Multitask model with encoder–decoder architecture. | Correlation (r): 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhusari, K.; Dhou, S. Machine Learning-Based Approaches for Breast Density Estimation from Mammograms: A Comprehensive Review. J. Imaging 2025, 11, 38. https://doi.org/10.3390/jimaging11020038
Alhusari K, Dhou S. Machine Learning-Based Approaches for Breast Density Estimation from Mammograms: A Comprehensive Review. Journal of Imaging. 2025; 11(2):38. https://doi.org/10.3390/jimaging11020038
Chicago/Turabian StyleAlhusari, Khaldoon, and Salam Dhou. 2025. "Machine Learning-Based Approaches for Breast Density Estimation from Mammograms: A Comprehensive Review" Journal of Imaging 11, no. 2: 38. https://doi.org/10.3390/jimaging11020038
APA StyleAlhusari, K., & Dhou, S. (2025). Machine Learning-Based Approaches for Breast Density Estimation from Mammograms: A Comprehensive Review. Journal of Imaging, 11(2), 38. https://doi.org/10.3390/jimaging11020038