Dimensional Accuracy Assessment of Medical Anatomical Models Produced by Hospital-Based Fused Deposition Modeling 3D Printer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens’ Preparation
2.2. Image Acquisition
2.3. Image Processing
2.4. Three-Dimensional Printing and Post-Processing
2.5. Assessment of Dimensional Accuracy—Data Collection
2.6. Statistical Analysis
(|3D-printed model value − Cadaveric hand value|/Cadaveric hand value) × 100
3. Results
4. Discussion
4.1. Possible Causes of Errors
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mitsouras, D.; Liacouras, P.; Imanzadeh, A.; Giannopoulos, A.A.; Cai, T.; Kumamaru, K.K.; George, E.; Wake, N.; Caterson, E.J.; Pomahac, B.; et al. Medical 3D printing for the radiologist. Radiographics 2015, 35, 1965–1988. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Franchetti, M.; Kress, C. An economic analysis comparing the cost feasibility of replacing injection molding processes with emerging additive manufacturing techniques. Int. J. Adv. Manuf. Technol. 2017, 88, 2573–2579. [Google Scholar] [CrossRef]
- Beaman, J.J.; Bourell, D.L.; Seepersad, C.C.; Kovar, D. Additive manufacturing review: Early past to current practice. J. Manuf. Sci. Eng. 2020, 142, 110812. [Google Scholar] [CrossRef]
- Buonamici, F.; Carfagni, M.; Furferi, R.; Volpe, Y.; Governi, L. Generative design: An explorative study. Comput.-Aided Des. Appl. 2020, 18, 144–155. [Google Scholar] [CrossRef]
- Keller, M.; Guebeli, A.; Thieringer, F.; Honigmann, P. Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery. BioMed Res. Int. 2021, 2021, 4650245. [Google Scholar] [CrossRef]
- Nguyen, P.; Stanislaus, I.; McGahon, C.; Pattabathula, K.; Bryant, S.; Pinto, N.; Jenkins, J.; Meinert, C. Quality assurance in 3D-printing: A dimensional accuracy study of patient-specific 3D-printed vascular anatomical models. Front. Med. Technol. 2023, 5, 1097850. [Google Scholar] [CrossRef]
- George, E.; Liacouras, P.; Rybicki, F.J.; Mitsouras, D. Measuring and establishing the accuracy and reproducibility of 3D printed medical models. Radiographics 2017, 37, 1424–1450. [Google Scholar] [CrossRef]
- Leng, S.; McGee, K.; Morris, J.; Alexander, A.; Kuhlmann, J.; Vrieze, T.; McCollough, C.H.; Matsumoto, J. Anatomic modeling using 3D printing: Quality assurance and optimization. 3D Print. Med. 2017, 3, 6. [Google Scholar] [CrossRef]
- Nizam, A.; Gopal, R.; Naing, N.L.; Hakim, A.B.; Samsudin, A.R. Dimensional accuracy of the skull models produced by rapid prototyping technology using stereolithography apparatus. Arch. Orofac. Sci. 2006, 1, 60–66. [Google Scholar]
- Msallem, B.; Sharma, N.; Cao, S.; Halbeisen, F.S.; Zeilhofer, H.F.; Thieringer, F.M. Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology. J. Clin. Med. 2020, 9, 817. [Google Scholar] [CrossRef] [PubMed]
- Dorweiler, B.; Baqué, P.E.; Chaban, R.; Ghazy, A.; Salem, O. Quality control in 3D printing: Accuracy analysis of 3D-printed models of patient-specific anatomy. Materials 2021, 14, 1021. [Google Scholar] [CrossRef] [PubMed]
- Asaumi, J.; Kawai, N.; Honda, Y.; Shigehara, H.; Wakasa, T.; Kishi, K. Comparison of three-dimensional computed tomography with rapid prototype models in the management of coronoid hyperplasia. Dentomaxillofac. Radiol. 2001, 30, 330–335. [Google Scholar] [CrossRef]
- Kaschwich, M.; Horn, M.; Matthiensen, S.; Stahlberg, E.; Behrendt, C.A.; Matysiak, F.; Bouchagiar, J.; Dell, A.; Ellebrecht, D.; Bayer, A.; et al. Accuracy evaluation of patient-specific 3D-printed aortic anatomy. Ann. Anat.-Anat. Anz. 2021, 234, 151629. [Google Scholar] [CrossRef] [PubMed]
- Matter-Parrat, V.; Liverneaux, P. 3D printing in hand surgery. Hand Surg. Rehabil. 2019, 38, 338–347. [Google Scholar] [CrossRef]
- Brouwers, L.; Teutelink, A.; van Tilborg, F.A.; de Jongh, M.A.; Lansink, K.W.; Bemelman, M. Validation study of 3D-printed anatomical models using 2 PLA printers for preoperative planning in trauma surgery, a human cadaver study. Eur. J. Trauma Emerg. Surg. 2019, 45, 1013–1020. [Google Scholar] [CrossRef]
- Lebowitz, C.; Massaglia, J.; Hoffman, C.; Lucenti, L.; Dheer, S.; Rivlin, M.; Beredjiklian, P.K. The accuracy of 3D printed carpal bones generated from cadaveric specimens. Arch. Bone Jt. Surg. 2021, 9, 432. [Google Scholar]
- Kabelitz, M.; Furrer, P.R.; Hodel, S.; Canonica, S.; Schweizer, A. 3D planning and patient specific instrumentation for intraarticular corrective osteotomy of trapeziometacarpal-, metacarpal and finger joints. BMC Musculoskelet. Disord. 2022, 23, 965. [Google Scholar] [CrossRef]
- Kohlhauser, M.; Vasilyeva, A.; Kamolz, L.P.; Bürger, H.K.; Schintler, M. Metacarpophalangeal Joint Reconstruction of a Complex Hand Injury with a Vascularized Lateral Femoral Condyle Flap Using an Individualized 3D Printed Model—A Case Report. J. Pers. Med. 2023, 13, 1570. [Google Scholar] [CrossRef]
- Penello, D.; Sussman, P.; Braunlich, P.; Rennick, A.; Alexander, J.S. Distal Phalangeal Replacement Using a Patient-Specific 3D-Printed Prosthesis: A Case Report. JBJS Case Connect. 2022, 12, e21. [Google Scholar] [CrossRef]
- Rocher, A.; O’Connor, M.; Marais, L.C. 3D-printed cable tie-assisted static progressive splints for fixed flexion contractures of the proximal phalangeal joint: A proof of concept study. SA Orthop. J. 2023, 22, 128–132. [Google Scholar]
- Gehner, A.; Lunsford, D. Additive Manufacturing and Upper-Limb Orthoses: A Scoping Review. JPO J. Prosthet. Orthot. 2024, 36, e25–e34. [Google Scholar] [CrossRef]
- Wendo, K.; Barbier, O.; Bollen, X.; Schubert, T.; Lejeune, T.; Raucent, B.; Olszewski, R. Open-source 3D printing in the prosthetic field—The case of upper limb prostheses: A review. Machines 2022, 10, 413. [Google Scholar] [CrossRef]
- Lal, H.; Patralekh, M.K. 3D printing and its applications in orthopaedic trauma: A technological marvel. J. Clin. Orthop. Trauma 2018, 9, 260–268. [Google Scholar] [CrossRef]
- Fitzpatrick, E.; Sharma, V.; Rojoa, D.; Raheman, F.; Singh, H. The use of cone-beam computed tomography (CBCT) in radiocarpal fractures: A diagnostic test accuracy meta-analysis. Skelet. Radiol. 2022, 51, 923–934. [Google Scholar] [CrossRef]
- Borel, C.; Larbi, A.; Delclaux, S.; Lapegue, F.; Chiavassa-Gandois, H.; Sans, N.; Faruch-Bilfeld, M. Diagnostic value of cone beam computed tomography (CBCT) in occult scaphoid and wrist fractures. Eur. J. Radiol. 2017, 97, 59–64. [Google Scholar] [CrossRef]
- Huang, A.J.; Chang, C.Y.; Thomas, B.J.; MacMahon, P.J.; Palmer, W.E. Using cone-beam CT as a low-dose 3D imaging technique for the extremities: Initial experience in 50 subjects. Skelet. Radiol. 2015, 44, 797–809. [Google Scholar] [CrossRef]
- Pallaver, A.; Honigmann, P. The role of cone-beam computed tomography (CBCT) scan for detection and follow-up of traumatic wrist pathologies. J. Hand Surg. 2019, 44, 1081–1087. [Google Scholar] [CrossRef]
- Slicer. Available online: https://www.slicer.org/ (accessed on 1 November 2024).
- Kikinis, R.; Pieper, S.D.; Vosburgh, K.G. 3D Slicer: A platform for subject-specific image analysis, visualization, and clinical support. In Intraoperative Imaging and Image-Guided Therapy; Springer: New York, NY, USA, 2013; pp. 277–289. [Google Scholar]
- Maschio, F.; Pandya, M.; Olszewski, R. Experimental validation of plastic mandible models produced by a “low-cost” 3-dimensional fused deposition modeling printer. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 943. [Google Scholar] [CrossRef]
- Choi, J.Y.; Choi, J.H.; Kim, N.K.; Kim, Y.; Lee, J.K.; Kim, M.K.; Lee, J.H.; Kim, M.J. Analysis of errors in medical rapid prototyping models. Int. J. Oral Maxillofac. Surg. 2002, 31, 23–32. [Google Scholar] [CrossRef]
- Rendón-Medina, M.A.; Andrade-Delgado, L.; Telich-Tarriba, J.E.; Fuente-del-Campo, A.; Altamirano-Arcos, C.A. Dimensional error in rapid prototyping with open source software and low-cost 3D-printer. Plast. Reconstr. Surg.–Glob. Open 2018, 6, e1646. [Google Scholar] [CrossRef] [PubMed]
- Petropolis, C.; Kozan, D.; Sigurdson, L. Accuracy of medical models made by consumer-grade fused deposition modelling printers. Plast. Surg. 2015, 23, 91–94. [Google Scholar] [CrossRef]
- Ravi, P.; Chepelev, L.L.; Stichweh, G.V.; Jones, B.S.; Rybicki, F.J. Medical 3D printing dimensional accuracy for multi-pathological anatomical models 3D printed using material extrusion. J. Digit. Imaging 2022, 35, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.; Eachempati, K.; Gurava Reddy, A.V.; Mugalur, A. Error analysis: How precise is fused deposition modeling in fabrication of bone models in comparison to the parent bones? Indian J. Orthop. 2018, 52, 196–201. [Google Scholar] [CrossRef]
- El-Katatny, I.; Masood, S.H.; Morsi, Y.S. Error analysis of FDM fabricated medical replicas. Rapid Prototyp. J. 2010, 16, 36–43. [Google Scholar] [CrossRef]
- Hatz, C.R.; Msallem, B.; Aghlmandi, S.; Brantner, P.; Thieringer, F.M. Can an entry-level 3D printer create high-quality anatomical models? Accuracy assessment of mandibular models printed by a desktop 3D printer and a professional device. Int. J. Oral Maxillofac. Surg. 2020, 49, 143–148. [Google Scholar] [CrossRef]
- Wang, X.; Shujaat, S.; Shaheen, E.; Jacobs, R. Accuracy of desktop versus professional 3D printers for maxillofacial model production. A systematic review and meta-analysis. J. Dent. 2021, 112, 103741. [Google Scholar] [CrossRef]
- Bagaria, V.; Deshpande, S.; Rasalkar, D.D.; Kuthe, A.; Paunipagar, B.K. Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. Eur. J. Radiol. 2011, 80, 814–820. [Google Scholar] [CrossRef]
- Wang, X.; Shujaat, S.; Shaheen, E.; Ferraris, E.; Jacobs, R. Trueness of cone-beam computed tomography-derived skull models fabricated by different technology-based three-dimensional printers. BMC Oral Health 2023, 23, 397. [Google Scholar] [CrossRef]
- Faccioli, N.; Foti, G.; Barillari, M.; Atzei, A.; Mucelli, R.P. Finger fractures imaging: Accuracy of cone-beam computed tomography and multislice computed tomography. Skelet. Radiol. 2010, 39, 1087–1095. [Google Scholar] [CrossRef]
- Olszewski, R.; Szymor, P.; Kozakiewicz, M. Accuracy of three-dimensional, paper-based models generated using a low-cost, three-dimensional printer. J. Cranio-Maxillofac. Surg. 2014, 42, 1847–1852. [Google Scholar] [CrossRef]
Landmark | Name | Measurement Definition |
---|---|---|
MC1 | 1st Metacarpal | Distance between base and head of metacarpal |
MC2 | 2nd Metacarpal | |
MC3 | 3rd Metacarpal | |
MC4 | 4th Metacarpal | |
MC5 | 5th Metacarpal | |
PP1 | 1st Proximal phalange | Distance between base and head of proximal phalange |
PP2 | 2nd Proximal phalange | |
PP3 | 3rd Proximal phalange | |
PP4 | 4th Proximal phalange | |
PP5 | 5th Proximal phalange | |
MP2 | 2nd Middle phalange of index | Distance between base and head of middle phalange |
MP4 | 4th Middle phalange of ring finger | |
MP5 | 5th Middle phalange of little finger |
Printing Time | Weight (Grams) | Estimated Filament Cost (USD) | |
---|---|---|---|
Hand A | 9 h 27 m | 98.5 | 2.5 |
Hand B | 11 h 08 m | 108.8 | 2.7 |
Hand A | Hand B | |||
---|---|---|---|---|
Cadaveric | 0.998 | CI 95%: [0.987; 1.000] | 1.000 | CI 95%: [1.000; 1.000] |
3DP Model | 1.000 | CI 95%: [0.999; 1.000] | 1.000 | CI 95%: [1.000; 1.000] |
Observer 1 | Observer 2 | ||
---|---|---|---|
Hand A | Hand A | ||
1.000 | CI 95%: [0.999; 1.000] | 0.998 | CI 95%: [0.981; 1.000] |
Hand B | Hand B | ||
1.000 | CI 95%: [0.999; 1.000] | 1.000 | CI 95%: [0.999; 1.000] |
Hand A—Cadaveric vs. 3DP Model | ||||
---|---|---|---|---|
Observer 1 | ||||
Landmark | Cadaveric (mm) | 3DP Model (mm) | Absolute difference (mm) | Dimensional error (%) |
MC1 | 35.20 | 34.89 | −0.31 | 0.89 |
MC2 | 43.70 | 43.94 | 0.24 | 0.55 |
MC3 | 43.30 | 43.39 | 0.08 | 0.20 |
MC4 | 44.04 | 43.93 | −0.10 | 0.23 |
MC5 | 43.66 | 43.23 | −0.43 | 0.98 |
PP1 | 26.85 | 26.99 | 0.15 | 0.55 |
PP2 | 26.72 | 26.73 | 0.01 | 0.04 |
PP3 | 35.31 | 35.94 | 0.63 | 1.78 |
PP4 | 35.75 | 35.82 | 0.07 | 0.19 |
PP5 | 27.09 | 27.04 | −0.05 | 0.18 |
Average | 0.21 mm (±0.20) | 0.56% (±0.53) | ||
Observer 2 | ||||
Landmark | Cadaveric (mm) | 3DP Model (mm) | Absolute difference (mm) | Dimensional error (%) |
MC1 | 35.18 | 34.83 | −0.35 | 0.98 |
MC2 | 43.59 | 44.13 | 0.53 | 1.23 |
MC3 | 42.24 | 42.96 | 0.72 | 1.710 |
MC4 | 43.75 | 43.72 | −0.02 | 0.06 |
MC5 | 42.40 | 43.10 | 0.70 | 1.65 |
PP1 | 26.75 | 27.14 | 0.39 | 1.44 |
PP2 | 26.62 | 26.81 | 0.18 | 0.69 |
PP3 | 35.31 | 36.38 | 1.06 | 3.01 |
PP4 | 35.61 | 35.76 | 0.16 | 0.44 |
PP5 | 26.30 | 27.16 | 0.86 | 3.28 |
Average | 0.50 mm (±0.34) | 1.45% (±1.03) | ||
Hand B—Cadaveric vs. 3DP Model | ||||
Observer 1 | ||||
Landmark | Cadaveric (mm) | 3DP Model (mm) | Absolute difference (mm) | Dimensional error (%) |
MC1 | 35.19 | 34.96 | −0.23 | 0.65 |
MC2 | 51.97 | 52.35 | 0.38 | 0.73 |
MC3 | 52.31 | 52.79 | 0.48 | 0.93 |
MC4 | 43.79 | 44.23 | 0.44 | 1.01 |
MC5 | 43.59 | 43.89 | 0.30 | 0.69 |
PP1 | 18.36 | 17.87 | −0.50 | 2.71 |
PP2 | 35.44 | 35.52 | 0.08 | 0.23 |
PP3 | 35.23 | 35.60 | 0.37 | 1.06 |
PP4 | 35.66 | 35.90 | 0.24 | 0.68 |
PP5 | 26.44 | 26.89 | 0.45 | 1.70 |
MP2 | 10.42 | 10.31 | −0.11 | 1.06 |
MP4 | 19.03 | 19.23 | 0.194 | 1.02 |
MP5 | 10.37 | 10.45 | 0.08 | 0.81 |
Average | 0.30 mm (±0.15) | 1.02% (±0.61) | ||
Observer 2 | ||||
Landmark | Cadaveric (mm) | 3DP Model (mm) | Absolute difference (mm) | Dimensional error (%) |
MC1 | 35.17 | 34.79 | −0.38 | 1.09 |
MC2 | 52.17 | 52.83 | 0.66 | 1.27 |
MC3 | 52.58 | 52.74 | 0.16 | 0.31 |
MC4 | 43.75 | 44.01 | 0.27 | 0.61 |
MC5 | 43.71 | 43.93 | 0.22 | 0.50 |
PP1 | 17.74 | 17.73 | −0.01 | 0.04 |
PP2 | 35.50 | 35.96 | 0.46 | 1.29 |
PP3 | 35.31 | 35.56 | 0.25 | 0.71 |
PP4 | 35.62 | 35.92 | 0.29 | 0.83 |
PP5 | 26.76 | 26.55 | −0.21 | 0.77 |
MP2 | 10.11 | 10.28 | 0.16 | 1.62 |
MP4 | 18.83 | 19.15 | 0.32 | 1.70 |
MP5 | 10.08 | 10.45 | 0.37 | 3.70 |
Average | 0.29 mm (±0.16) | 1.11% (±0.92) | ||
Global MAD | 0.32 mm (SD: 0.34) | |||
Global MDE | 1.03% (SD: 0.83) |
Cadaver—3DP Model | p-Value | Significance * |
---|---|---|
Hand A | 0.05 | No |
Hand B | 0.02 | Yes |
Observer | Hand | p-Value | Significance * |
---|---|---|---|
1 | 1 | 0.77 | No |
1 | 2 | 0.06 | No |
2 | 1 | 0.01 | Yes |
2 | 2 | 0.02 | Yes |
Study | Anatomical Specimen | Imaging Technology | CT Slice Thickness | Segmentation Software | 3D Printing Technology | Difference (Absolute) | Difference (Relative) |
---|---|---|---|---|---|---|---|
Our study results | Hand | CBCT | 0.25 mm | 3D-Slicer version 5.61. (Brigham and Women’s Hospital Inc., Boston, MA, USA) | FDM | 0.32 mm (±0.34) | 1.03% (±0.83) |
Choi et al., (2002) [32] | Skull | CT-Scanner | 1.0 mm | V-Works (Cybermed Inc., Seoul, Korea) | SLA | 0.62 mm (±0.53 mm) | 0.56% (±0.39%) |
Nizam et al., (2006) [10] | Skull | CT-Scanner | 1.25 mm | MIMICS (Materialise, Leuven Belgium) | SLA | 0.23 mm (±1.37 mm) | 0.08% (±1.25%) |
El-Katany et al., (2010) [37] | Skull, Mandible | CT-Scanner | N/A | Stratasys | FDM | Mandible: 0.079 mm (±0.031) Skull: 0.108 mm (±0.048) | Mandible: 0.22% (±0.11) Skull: 0.24% (±0.16) |
Petropolis et al., (2015) [34] | Dry skull Mandible | CT-Scanner | 1 mm | OsiriX (OsiriX, Switzerland) | FDM SLS | FDM: 100 µm: 0.21 mm 250 µm: 0.24 mm 500 µm: 0.56 mm SLS: 0.16 mm | 100 µm: 0.44% 250 µm: 0.53% 500 µm: 1.1% SLS: 0.30% |
Maschio et al., (2016) [31] | Mandible | CBCT | 0.5 mm | Maxilim (Medicim, Mechelen, Belgium) | FDM | 0.37 mm | 3.76% |
Rendón-Medina et al., (2018) [33] | Mandible | CT-Scanner | 1 mm | 3D-Slicer (Brigham and Women’s Hospital Inc., Boston, MA, USA) | FDM | 0.65 mm | 1.96% |
Reddy et al., (2018) [36] | Lower limb bones (femur, tibia, talus, …) | CT-Scanner | 0.625 mm | InVesalius (Centro de Tecnologia da Informação Renato Archer, Campinas, SP, Brazil) | FDM | 0.40 mm | N/A |
Msallem et al., (2020) [11] | Mandible | 3D-Scanner | N/A | N/A | SLS SLA MJ BJ FDM | SLS: 0.11 mm (±0.016) SLA: 0.45 mm (±0.044) MJ: 0.21 mm (±0.02) BJ: 0.14 mm (±0.02) FDM: 0.16 mm (±0.009) | N/A |
Hatz et al., (2020) [38] | Mandible | CT-Scanner 3D-Scanner | N/A | Materialise 3-matic (Materialise NV, Leuven, Belgium) | FDM SLS | FDM: −0.055 mm (±0.227) SLS: −0.019 mm (±0219) | N/A |
Kaschwich et al., (2021) [14] | Abdominal aorta | CT-Scanner | 1.000 | MIMICS (Materialise, Leuven, Belgium | Poly-Jet | −0.73 mm to 0.14 mm | −2.78% to 1.71% |
Ravi et al., (2022) [35] | Multiple organs/pathologies (Kidney, Mandible, Glioma, aneurysm, etc.) | CT-Scanner | 0.625 mm | N/A | FDM | 0.26 mm (±0.14 mm) | 0.71% (±0.33%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wendo, K.; Behets, C.; Barbier, O.; Herman, B.; Schubert, T.; Raucent, B.; Olszewski, R. Dimensional Accuracy Assessment of Medical Anatomical Models Produced by Hospital-Based Fused Deposition Modeling 3D Printer. J. Imaging 2025, 11, 39. https://doi.org/10.3390/jimaging11020039
Wendo K, Behets C, Barbier O, Herman B, Schubert T, Raucent B, Olszewski R. Dimensional Accuracy Assessment of Medical Anatomical Models Produced by Hospital-Based Fused Deposition Modeling 3D Printer. Journal of Imaging. 2025; 11(2):39. https://doi.org/10.3390/jimaging11020039
Chicago/Turabian StyleWendo, Kevin, Catherine Behets, Olivier Barbier, Benoit Herman, Thomas Schubert, Benoit Raucent, and Raphael Olszewski. 2025. "Dimensional Accuracy Assessment of Medical Anatomical Models Produced by Hospital-Based Fused Deposition Modeling 3D Printer" Journal of Imaging 11, no. 2: 39. https://doi.org/10.3390/jimaging11020039
APA StyleWendo, K., Behets, C., Barbier, O., Herman, B., Schubert, T., Raucent, B., & Olszewski, R. (2025). Dimensional Accuracy Assessment of Medical Anatomical Models Produced by Hospital-Based Fused Deposition Modeling 3D Printer. Journal of Imaging, 11(2), 39. https://doi.org/10.3390/jimaging11020039