Single-Shot Multicontrast X-ray Imaging for In Situ Visualization of Chemical Reaction Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reaction
2.2. X-ray Imaging
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FoV | Field of View |
ROI | Region of Interest |
iHM | inverted Hartmann mask |
2D | two-dimensional |
SNR | Signal-to-Noise Ratio |
DPC | Differential Phase Contrast |
References
- Wen, H.H.; Bennett, E.E.; Kopace, R.; Stein, A.F.; Pai, V. Single-shot X-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings. Opt. Lett. 2010, 35, 1932–1934. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, F.; Bech, M.; Bunk, O.; Kraft, P.; Eikenberry, E.F.; Brönnimann, C.; Grünzweig, C.; David, C. Hard-X-ray dark-field imaging using a grating interferometer. Nat. Mater. 2008, 7, 134–137. [Google Scholar] [CrossRef]
- Zakharova, M.; Reich, S.; Mikhaylov, A.; Vlnieska, V.; dos Santos Rolo, T.; Plech, A.; Kunka, D. Inverted Hartmann mask for single-shot phase-contrast X-ray imaging of dynamic processes. Opt. Lett. 2019, 44, 2306–2309. [Google Scholar] [CrossRef]
- dos Santos Rolo, T.; Reich, S.; Karpov, D.; Gasilov, S.; Kunka, D.; Fohtung, E.; Baumbach, T.; Plech, A. A Shack-Hartmann sensor for single-shot multi-contrast imaging with hard X-rays. Appl. Sci. 2018, 8, 737. [Google Scholar] [CrossRef] [Green Version]
- Reich, S.; dos Santos Rolo, T.; Letzel, A.; Baumbach, T.; Plech, A. Scalable, large area compound array refractive lens for hard X-rays. Appl. Phys. Lett. 2018, 112, 151903. [Google Scholar] [CrossRef] [Green Version]
- Reich, S.; Schönfeld, P.; Wagener, P.; Letzel, A.; Ibrahimkutty, S.; Gökce, B.; Barcikowski, S.; Menzel, A.; dos Santos Rolo, T.; Plech, A. Pulsed laser ablation in liquids: Impact of the bubble dynamics on particle formation. J. Colloid Interface Sci. 2017, 489, 106–113. [Google Scholar] [CrossRef]
- Mikhaylov, A.; Reich, S.; Zakharova, M.; Vlnieska, V.; Laptev, R.; Plech, A.; Kunka, D. Shack–Hartmann wavefront sensors based on 2D refractive lens arrays and super-resolution multi-contrast X-ray imaging. J. Synchrotron Radiat. 2020, 27, 788–795. [Google Scholar] [CrossRef]
- Pavlov, K.M.; Li, H.T.; Paganin, D.M.; Berujon, S.; Rougé-Labriet, H.; Brun, E. Single-shot X-ray speckle-based imaging of a single-material object. Phys. Rev. Appl. 2020, 13, 054023. [Google Scholar] [CrossRef]
- Sato, G.; Itoh, H.; Nagai, K.; Nakamura, T.; Yamaguchi, K.; Kondoh, T.; Handa, S.; Ouchi, C.; Teshima, T.; Setomoto, Y.; et al. Single-shot X-ray phase-contrast imaging using two-dimensional gratings. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2012; Volume 1466, pp. 29–34. [Google Scholar]
- Momose, A.; Yashiro, W.; Harasse, S.; Kuwabara, H. Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: Dynamic observation of a living worm. Opt. Express 2011, 19, 8423–8432. [Google Scholar] [CrossRef]
- Olatinwo, M.B.; Ham, K.; McCarney, J.; Marathe, S.; Ge, J.; Knapp, G.; Butler, L.G. Analysis of flame retardancy in polymer blends by synchrotron X-ray K-edge tomography and interferometric phase contrast movies. J. Phys. Chem. B 2016, 120, 2612–2624. [Google Scholar] [CrossRef] [PubMed]
- Olbinado, M.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.C.; Guzenko, V.; David, C.; Rack, A. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light. J. Instrum. 2018, 13, C04004. [Google Scholar] [CrossRef]
- Reich, S.; Göttlicher, J.; Ziefuss, A.; Streubel, R.; Letzel, A.; Menzel, A.; Mathon, O.; Pascarelli, S.; Baumbach, T.; Zuber, M.; et al. In situ speciation and spatial mapping of Zn products during pulsed laser ablation in liquids (PLAL) by combined synchrotron methods. Nanoscale 2020, 12, 14011–14020. [Google Scholar] [CrossRef] [PubMed]
- Letzel, A.; Reich, S.; dos Santos Rolo, T.; Kanitz, A.; Hoppius, J.; Rack, A.; Olbinado, M.P.; Ostendorf, A.; Gökce, B.; Plech, A.; et al. Time and mechanism of nanoparticle functionalization by macromolecular ligands during pulsed laser ablation in liquids. Langmuir 2019, 35, 3038–3047. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, G.; Long, S.; Liu, K.; Cao, L.; Bao, L.; Li, Y. Sea salt deliquescence and crystallization in atmosphere: An in situ investigation using X-ray phase contrast imaging. Surf. Interface Anal. 2013, 45, 930–936. [Google Scholar] [CrossRef]
- Croton, L.C.; Morgan, K.S.; Paganin, D.M.; Kerr, L.T.; Wallace, M.J.; Crossley, K.J.; Miller, S.L.; Yagi, N.; Uesugi, K.; Hooper, S.B.; et al. In situ phase contrast X-ray brain CT. Sci. Rep. 2018, 8, 11412. [Google Scholar] [CrossRef] [PubMed]
- Høydalsvik, K.; Bø Fløystad, J.; Zhao, T.; Esmaeili, M.; Diaz, A.; Andreasen, J.W.; Mathiesen, R.H.; Rønning, M.; Breiby, D.W. In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates. Appl. Phys. Lett. 2014, 104, 241909. [Google Scholar] [CrossRef] [Green Version]
- Koch, F.; Schröter, T.; Kunka, D.; Meyer, P.; Meiser, J.; Faisal, A.; Khalil, M.; Birnbacher, L.; Viermetz, M.; Walter, M.; et al. Note: Gratings on low absorbing substrates for X-ray phase contrast imaging. Rev. Sci. Instrum. 2015, 86, 126114. [Google Scholar] [CrossRef]
- Zakharova, M.; Reich, S.; Mikhaylov, A.; Vlnieska, V.; Zuber, M.; Engelhardt, S.; Baumbach, T.; Kunka, D. A comparison of customized Hartmann and newly introduced inverted Hartmann masks for single-shot phase-contrast X-ray imaging. In EUV and X-ray Optics: Synergy between Laboratory and Space VI; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2019; Volume 11032, p. 110320U. [Google Scholar]
- Reich, S.; Plech, A. SHWaveRecon, Shack-Hartman Sensor Wavefront Reconstruction Software; Version 1; [Computer Software]; 56.03.20; LK 01; Institut für Photonenforschung und Synchrotronstrahlung (IPS): Eggenstein-Leopoldshafen, Germany, 2018. [Google Scholar] [CrossRef]
- Vittoria, F.A.; Kallon, G.K.; Basta, D.; Diemoz, P.C.; Robinson, I.K.; Olivo, A.; Endrizzi, M. Beam tracking approach for single–shot retrieval of absorption, refraction, and dark–field signals with laboratory X-ray sources. Appl. Phys. Lett. 2015, 106, 224102. [Google Scholar] [CrossRef]
- Pathak, B.; Boruah, B.R. Improved wavefront reconstruction algorithm for Shack–Hartmann type wavefront sensors. J. Opt. 2014, 16, 055403. [Google Scholar] [CrossRef]
- Wen, H.; Bennett, E.E.; Hegedus, M.M.; Rapacchi, S. Fourier X-ray scattering radiography yields bone structural information. Radiology 2009, 251, 910–918. [Google Scholar] [CrossRef] [Green Version]
- Kaeppler, S.; Bayer, F.; Weber, T.; Maier, A.; Anton, G.; Hornegger, J.; Beckmann, M.; Fasching, P.A.; Hartmann, A.; Heindl, F.; et al. Signal Decomposition for X-ray Dark-Field Imaging. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2014, Boston, MA, USA, 14–18 September 2014; pp. 170–177. [Google Scholar]
- Reich, S. Hierarchical Imaging of the Dynamics during Pulsed Laser Ablation in Liquids. PhD Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2019. [Google Scholar]
- Lynch, S.K.; Pai, V.; Auxier, J.; Stein, A.F.; Bennett, E.E.; Kemble, C.K.; Xiao, X.; Lee, W.K.; Morgan, N.Y.; Wen, H.H. Interpretation of dark-field contrast and particle-size selectivity in grating interferometers. Appl. Opt. 2011, 50, 4310–4319. [Google Scholar] [CrossRef] [PubMed]
- Strobl, M. General solution for quantitative dark-field contrast imaging with grating interferometers. Sci. Rep. 2014, 4, 7243. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Sirota, E.; Garoff, S.; Stanley, H. X-ray and neutron scattering from rough surfaces. Phys. Rev. B 1988, 38, 2297. [Google Scholar] [CrossRef] [PubMed]
- Andersson, R.; Van Heijkamp, L.F.; De Schepper, I.M.; Bouwman, W.G. Analysis of spin-echo small-angle neutron scattering measurements. J. Appl. Crystallogr. 2008, 41, 868–885. [Google Scholar] [CrossRef]
- Yashiro, W.; Terui, Y.; Kawabata, K.; Momose, A. On the origin of visibility contrast in X-ray Talbot interferometry. Opt. Express 2010, 18, 16890–16901. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharova, M.; Mikhaylov, A.; Vlnieska, V.; Kunka, D. Single-Shot Multicontrast X-ray Imaging for In Situ Visualization of Chemical Reaction Products. J. Imaging 2021, 7, 221. https://doi.org/10.3390/jimaging7110221
Zakharova M, Mikhaylov A, Vlnieska V, Kunka D. Single-Shot Multicontrast X-ray Imaging for In Situ Visualization of Chemical Reaction Products. Journal of Imaging. 2021; 7(11):221. https://doi.org/10.3390/jimaging7110221
Chicago/Turabian StyleZakharova, Margarita, Andrey Mikhaylov, Vitor Vlnieska, and Danays Kunka. 2021. "Single-Shot Multicontrast X-ray Imaging for In Situ Visualization of Chemical Reaction Products" Journal of Imaging 7, no. 11: 221. https://doi.org/10.3390/jimaging7110221
APA StyleZakharova, M., Mikhaylov, A., Vlnieska, V., & Kunka, D. (2021). Single-Shot Multicontrast X-ray Imaging for In Situ Visualization of Chemical Reaction Products. Journal of Imaging, 7(11), 221. https://doi.org/10.3390/jimaging7110221