High-Resolution Scanning Coded-Mask-Based X-ray Multi-Contrast Imaging and Tomography
Abstract
:1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Scanning CMMI
3. Results
3.1. Scanning vs. Single-Shot CMMI
3.2. Scanning CMMI vs. XSVT with Limited Scanning Positions
3.3. High-Resolution Multi-Contrast Tomography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzgerald, R. Phase-Sensitive X-Ray Imaging. Phys. Today 2000, 53, 23–26. [Google Scholar] [CrossRef]
- Wilkins, S.W.; Gureyev, T.E.; Gao, D.; Pogany, A.; Stevenson, A.W. Phase-contrast imaging using polychromatic hard X-rays. Nature 1996, 384, 335–338. [Google Scholar] [CrossRef]
- Weitkamp, T.; Diaz, A.; David, C.; Pfeiffer, F.; Stampanoni, M.; Cloetens, P.; Ziegler, E. X-ray phase imaging with a grating interferometer. Opt. Express 2005, 13, 6296. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Bennett, E.E.; Hegedus, M.M.; Rapacchi, S. Fourier X-ray Scattering Radiography Yields Bone Structural Information. Radiology 2009, 251, 910–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, C.; Nöhammer, B.; Solak, H.; Ziegler, E. Differential X-ray phase contrast imaging using a shearing interferometer. Appl. Phys. Lett. 2002, 81, 3287–3289. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Weitkamp, T.; Bunk, O.; David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys. 2006, 2, 258–261. [Google Scholar] [CrossRef]
- Morgan, K.S.; Paganin, D.M.; Siu, K.K.W. X-ray phase imaging with a paper analyzer. Appl. Phys. Lett. 2012, 100, 124102. [Google Scholar] [CrossRef]
- Berujon, S.; Wang, H.; Sawhney, K. X-ray multimodal imaging using a random-phase object. Phys. Rev. A 2012, 86, 063813. [Google Scholar] [CrossRef]
- Paganin, D.M.; Labriet, H.; Brun, E.; Berujon, S. Single-image geometric-flow X-ray speckle tracking. Phys. Rev. A 2018, 98, 053813. [Google Scholar] [CrossRef] [Green Version]
- Zdora, M.C.; Thibault, P.; Zhou, T.; Koch, F.J.; Romell, J.; Sala, S.; Last, A.; Rau, C.; Zanette, I. X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis. Phys. Rev. Lett. 2017, 118, 203903. [Google Scholar] [CrossRef]
- Günther, B.; Hehn, L.; Jud, C.; Hipp, A.; Dierolf, M.; Pfeiffer, F. Full-field structured-illumination super-resolution X-ray transmission microscopy. Nat. Commun. 2019, 10, 2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Seaberg, M.; Zhu, D.; Krzywinski, J.; Seiboth, F.; Hardin, C.; Cocco, D.; Aquila, A.; Nagler, B.; Lee, H.; et al. High-accuracy wavefront sensing for X-ray free electron lasers. Optica 2018, 5, 967. [Google Scholar] [CrossRef]
- Berujon, S.; Cojocaru, R.; Piault, P.; Celestre, R.; Roth, T.; Barrett, R.; Ziegler, E. X-ray optics and beam characterization using random modulation: Experiments. J. Synchrotron Radiat. 2020, 27, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Berujon, S.; Ziegler, E.; Cloetens, P. X-ray pulse wavefront metrology using speckle tracking. J. Synchrotron Radiat. 2015, 22, 886–894. [Google Scholar] [CrossRef]
- Wang, H.; Kashyap, Y.; Sawhney, K. Quantitative X-ray dark-field and phase tomography using single directional speckle scanning technique. Appl. Phys. Lett. 2016, 108, 124102. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Berujon, S.; Herzen, J.; Atwood, R.; Laundy, D.; Hipp, A.; Sawhney, K. X-ray phase contrast tomography by tracking near field speckle. Sci. Rep. 2015, 5, 8762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdora, M.C.; Thibault, P.; Kuo, W.; Fernandez, V.; Deyhle, H.; Vila-Comamala, J.; Olbinado, M.P.; Rack, A.; Lackie, P.M.; Katsamenis, O.L.; et al. X-ray phase tomography with near-field speckles for three-dimensional virtual histology. Optica 2020, 7, 1221. [Google Scholar] [CrossRef]
- Zanette, I.; Zhou, T.; Burvall, A.; Lundström, U.; Larsson, D.; Zdora, M.; Thibault, P.; Pfeiffer, F.; Hertz, H. Speckle-Based X-ray Phase-Contrast and Dark-Field Imaging with a Laboratory Source. Phys. Rev. Lett. 2014, 112, 253903. [Google Scholar] [CrossRef]
- Rix, K.R.; Dreier, T.; Shen, T.; Bech, M. Super-resolution X-ray phase-contrast and dark-field imaging with a single 2D grating and electromagnetic source stepping. Phys. Med. Biol. 2019, 64, 165009. [Google Scholar] [CrossRef]
- Wang, H.; Kashyap, Y.; Sawhney, K. Hard-X-ray Directional Dark-Field Imaging Using the Speckle Scanning Technique. Phys. Rev. Lett. 2015, 114, 103901. [Google Scholar] [CrossRef] [Green Version]
- Berujon, S.; Cojocaru, R.; Piault, P.; Celestre, R.; Roth, T.; Barrett, R.; Ziegler, E. X-ray optics and beam characterization using random modulation: Theory. J. Synchrotron Radiat. 2020, 27, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Z.; Shi, X.; Celestre, R.; Assoufid, L. Wavelet-transform-based speckle vector tracking method for X-ray phase imaging. Opt. Express 2020, 28, 33053–33067. [Google Scholar] [CrossRef]
- Berujon, S.; Ziegler, E. Near-field speckle-scanning-based X-ray imaging. Phys. Rev. A 2015, 92, 013837. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Z.; Shi, X.; Wojcik, M.J.; Rebuffi, L.; Assoufid, L. Single-shot X-ray phase-contrast and dark-field imaging based on coded binary phase mask. Appl. Phys. Lett. 2021, 119, 011105. [Google Scholar] [CrossRef]
- Van Aarle, W.; Palenstijn, W.J.; De Beenhouwer, J.; Altantzis, T.; Bals, S.; Batenburg, K.J.; Sijbers, J. The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy 2015, 157, 35–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Aarle, W.; Palenstijn, W.J.; Cant, J.; Janssens, E.; Bleichrodt, F.; Dabravolski, A.; De Beenhouwer, J.; Batenburg, K.J.; Sijbers, J. Fast and flexible X-ray tomography using the ASTRA toolbox. Opt. Express 2016, 24, 25129–25147. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Z.; Shi, X.; Wojcik, M.; Assoufid, L. High-Resolution Scanning Coded-Mask-Based X-ray Multi-Contrast Imaging and Tomography. J. Imaging 2021, 7, 249. https://doi.org/10.3390/jimaging7120249
Qiao Z, Shi X, Wojcik M, Assoufid L. High-Resolution Scanning Coded-Mask-Based X-ray Multi-Contrast Imaging and Tomography. Journal of Imaging. 2021; 7(12):249. https://doi.org/10.3390/jimaging7120249
Chicago/Turabian StyleQiao, Zhi, Xianbo Shi, Michael Wojcik, and Lahsen Assoufid. 2021. "High-Resolution Scanning Coded-Mask-Based X-ray Multi-Contrast Imaging and Tomography" Journal of Imaging 7, no. 12: 249. https://doi.org/10.3390/jimaging7120249
APA StyleQiao, Z., Shi, X., Wojcik, M., & Assoufid, L. (2021). High-Resolution Scanning Coded-Mask-Based X-ray Multi-Contrast Imaging and Tomography. Journal of Imaging, 7(12), 249. https://doi.org/10.3390/jimaging7120249