Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection
Abstract
:1. Introduction
2. Data Collected in Practical Inspection
3. Reliable Estimation via Late Fusion Using Multi-View Distress Images
3.1. Attention Module
3.2. Estimation Module
3.3. Total Loss Functions
3.4. Final Estimation Based on Late Fusion
4. Experimental Results
4.1. Experimental Conditions
4.2. Experimental Results
4.3. Discussion
- LF1 : The method adopted in the proposed method. As shown in Equation (3), we average the reliability obtained from the multi-view images and take the level with the highest value as the final estimation result.
- LF2 : In the predicted reliabilities for each deterioration level for images in the record, the deterioration level with the largest value is used as the final estimation result.
- LF3 : The deterioration level with the highest risk among the estimated levels for images in the record is used as the final estimation result.
- LF4 : The most frequently estimated level among the estimated levels for images in the record is used as the final estimation result.
- LF5 : The deterioration level estimated for a distress image randomly selected from the record is used as the final estimation result.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woo, S.; Chu, I.; Youn, B.; Kim, K. Development of the Corrosion Deterioration Inspection Tool for Transmission Tower Members. KEPCO J. Electr. Power Energy 2016, 2, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Yuan, Y.; Zhang, W.; Yuan, Y. Unified vision-based methodology for simultaneous concrete defect detection and geolocalization. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 527–544. [Google Scholar] [CrossRef]
- Yasuno, T.; Michihiro, N.; Kazuhiro, N. Per-pixel Classification Rebar Exposures in Bridge Eye-inspection. arXiv 2020, arXiv:2004.12805. [Google Scholar]
- Maeda, K.; Takahashi, S.; Ogawa, T.; Haseyama, M. Automatic estimation of deterioration level on transmission towers via deep extreme learning machine based on local receptive field. In Proceedings of the IEEE International Conference on Image Processing, Beijing, China, 17–20 September 2017; pp. 2379–2383. [Google Scholar]
- White Paper on Land, Infrastructure, Transport and Tourism in Japan, 2017; Technical Report; Ministry of Land, Infrastructure Tourism, Transport and Tourism. 2018. Available online: http://www.mlit.go.jp/common/001269888.pdf (accessed on 29 August 2021).
- Bergquist, B.; Söderholm, P. Data analysis for condition-based railway infrastructure maintenance. Qual. Reliab. Eng. Int. 2015, 31, 773–781. [Google Scholar] [CrossRef]
- Maeda, K.; Takahashi, S.; Ogawa, T.; Haseyama, M. Distress classification of class-imbalanced inspection data via correlation-maximizing weighted extreme learning machine. Adv. Eng. Inform. 2018, 37, 79–87. [Google Scholar] [CrossRef]
- Kruachottikul, P.; Cooharojananone, N.; Phanomchoeng, G.; Chavarnakul, T.; Kovitanggoon, K.; Trakulwaranont, D.; Atchariyachanvanich, K. Bridge sub structure defect inspection assistance by using deep learning. In Proceedings of the IEEE International Conference on Awareness Science and Technology, Morioka, Japan, 23–25 October 2019; pp. 1–6. [Google Scholar]
- Yang, L.; Li, B.; Li, W.; BrandH, H.; Jiang, B.; Xiao, J. Concrete defects inspection and 3D mapping using CityFlyer quadrotor robot. IEEE/CAA J. Autom. Sin. 2020, 7, 991–1002. [Google Scholar] [CrossRef]
- Maeda, H.; Kashiyama, T.; Sekimoto, Y.; Seto, T.; Omata, H. Generative adversarial network for road damage detection. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 47–60. [Google Scholar] [CrossRef]
- Arya, D.; Maeda, H.; Ghosh, S.K.; Toshniwal, D.; Mraz, A.; Kashiyama, T.; Sekimoto, Y. Transfer learning-based road damage detection for multiple countries. arXiv 2020, arXiv:2008.13101. [Google Scholar]
- Ogawa, N.; Maeda, K.; Ogawa, T.; Haseyama, M. Distress Image Retrieval for Infrastructure Maintenance via Self-Trained Deep Metric Learning Using Experts’ Knowledge. IEEE Access 2021, 9, 65234–65245. [Google Scholar] [CrossRef]
- Maeda, K.; Takahashi, S.; Ogawa, T.; Haseyama, M. Convolutional sparse coding-based deep random vector functional link network for distress classification of road structures. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 654–676. [Google Scholar] [CrossRef]
- Ogawa, N.; Maeda, K.; Ogawa, T.; Haseyama, M. Distress Level Classification of Road Infrastructures via CNN Generating Attention Map. In Proceedings of the IEEE Global Conference on Life Sciences and Technologies, Kyoto, Japan, 10–12 March 2020; pp. 97–98. [Google Scholar]
- Ogawa, N.; Maeda, K.; Ogawa, T.; Haseyama, M. Correlation-Aware Attention Branch Network Using Multi-Modal Data For Deterioration Level Estimation Of Infrastructures. In Proceedings of the IEEE International Conference on Image Processing, Anchorage, AK, USA, 19–22 September 2021; pp. 1014–1018. [Google Scholar]
- Bhattacharya, G.; Mandal, B.; Puhan, N.B. Interleaved Deep Artifacts-Aware Attention Mechanism for Concrete Structural Defect Classification. IEEE Trans. Image Process. 2021, 30, 6957–6969. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, G.; Mandal, B.; Puhan, N.B. Multi-deformation aware attention learning for concrete structural defect classification. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 3707–3713. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Nie, W.; Zhang, Y.; Patel, A. A theoretical explanation for perplexing behaviors of backpropagation-based visualizations. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 3809–3818. [Google Scholar]
- Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847. [Google Scholar]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal machine learning: A survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 423–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, K.; Takahashi, S.; Ogawa, T.; Haseyama, M. Distress Classification of Road Structures via Adaptive Bayesian Network Model Selection. J. Comput. Civ. Eng. 2017, 31, 04017044. [Google Scholar] [CrossRef]
- Maeda, K.; Takahashi, S.; Ogawa, T.; Haseyama, M. Deterioration level estimation via neural network maximizing category-based ordinally supervised multi-view canonical correlation. Multimed. Tools Appl. 2021, 80, 23091–23112. [Google Scholar] [CrossRef]
- Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention Mechanisms in Computer Vision: A Survey. arXiv 2021, arXiv:2111.07624. [Google Scholar]
- Maeda, K.; Takahashi, S.; Ogawa, T.; Haseyama, M. Estimation of deterioration levels of transmission towers via deep learning maximizing canonical correlation between heterogeneous features. IEEE J. Sel. Top. Signal Process. 2018, 12, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Fukui, H.; Hirakawa, T.; Yamashita, T.; Fujiyoshi, H. Attention branch network: Learning of attention mechanism for visual explanation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10705–10714. [Google Scholar]
- Mitsuhara, M.; Fukui, H.; Sakashita, Y.; Ogata, T.; Hirakawa, T.; Yamashita, T.; Fujiyoshi, H. Embedding Human Knowledge into Deep Neural Network via Attention Map. arXiv 2019, arXiv:1905.03540. [Google Scholar]
- Andrew, G.; Arora, R.; Bilmes, J.; Livescu, K. Deep canonical correlation analysis. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1247–1255. [Google Scholar]
- Yuji, S. Maintenance Management System for Concrete Structures in Expressways—A Case Study of NEXCO East Japan Kanto Branch. Concr. J. 2010, 48, 17–20. (In Japanese) [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
ID | Damaged Parts | ⋯ | Categories of Structure |
---|---|---|---|
1 | Main plate | ⋯ | RC slab |
2 | Left part, exterior part | ⋯ | Felloe guard |
3 | Crossbeam | ⋯ | PC girder |
4 | Main girder flange | ⋯ | Steel girder |
5 | Main girder flange | ⋯ | PC girder |
Training | Validation | Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | A | B | C | D | |
Efflorescence | 454 | 454 | 454 | 454 | 57 | 57 | 57 | 57 | 57 | 57 | 57 | 57 |
Crack | 512 | 768 | 768 | 1024 | 64 | 96 | 96 | 128 | 64 | 96 | 96 | 128 |
Training | Validation | Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | A | B | C | D | |
Efflorescence | 1039 | 1125 | 1096 | 842 | 143 | 150 | 143 | 105 | 141 | 152 | 129 | 119 |
Crack | 1915 | 2085 | 1897 | 2102 | 228 | 237 | 233 | 265 | 227 | 265 | 251 | 277 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maeda, K.; Ogawa, N.; Ogawa, T.; Haseyama, M. Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection. J. Imaging 2021, 7, 273. https://doi.org/10.3390/jimaging7120273
Maeda K, Ogawa N, Ogawa T, Haseyama M. Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection. Journal of Imaging. 2021; 7(12):273. https://doi.org/10.3390/jimaging7120273
Chicago/Turabian StyleMaeda, Keisuke, Naoki Ogawa, Takahiro Ogawa, and Miki Haseyama. 2021. "Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection" Journal of Imaging 7, no. 12: 273. https://doi.org/10.3390/jimaging7120273
APA StyleMaeda, K., Ogawa, N., Ogawa, T., & Haseyama, M. (2021). Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection. Journal of Imaging, 7(12), 273. https://doi.org/10.3390/jimaging7120273