Retinal Processing: Insights from Mathematical Modelling
Abstract
:1. Introduction
- Problem 1. How does the structure of the retina, in particular, amacrine lateral connectivity, condition the retinal response to dynamic stimuli?
- (i)
- How is the kernel of the RG cells constrained by the structure/dynamics of the upper layers of retinal cells?
- (ii)
- The forms (1) implicitly assumes that does not depend on the stimulus. Can one write mathematical conditions that guarantee such an independence?
- (iii)
- To which extent is the notion of Ganglion cells Receptive Field compatible with nonlinear effects reported in retinal neurons and synapses, such as voltage rectification or gain control?
- Problem 2. How do retina network and dynamics shape spike statistics in the response to stimuli?
- (i)
- Stimuli, thus statistics, are not stationary;
- (ii)
- The cortex (and, before, the LGN) only receive spikes, thus have no information about the biophysical processes which have generated those spikes and no information on the underlying dynamics of the retina (voltages, activation variables, conductances). All the information is contained in the spatio-temporal structure of spikes;
- (iii)
- Spike train distributions may exhibit long time scale dependence (i.e., have a long memory).
2. Materials and Methods
2.1. Modelling the Retinal Network
2.1.1. Specifics of the Retina
- The retina is a high dimensional, non autonomous and noisy dynamical system, layered and structured, with non-stationary and spatially inhomogeneous entries (visual scenes).
- Most retinal neurons are not spiking, except RG cells. Thus, the retina performs analogic computing.
- Local retinal circuits efficiently process the local visual information. These local circuits are connected together, spanning the whole retina in a regular tiling. From this perspective, it is important to consider individual neurons and synapses, in contrast, e.g., to cortical modelling, where it is relevant to consider mean-field approaches averaging over populations.
2.1.2. Structure of the Retina Model
2.1.3. B Cells–A Cells Interactions
2.1.4. RG Cells
2.1.5. Joint Dynamics
2.1.6. Piecewise Linear Evolution
2.1.7. Spectra and Fixed Points
2.1.8. Extensions: Gain Control and Gap Junctions
Gap Junctions
Gain Control
Piecewise Linear System with Gain Control and Gap Junctions
2.1.9. Solutions
2.1.10. Remarks
- The interpretation of (22) is the following. Starting from an initial condition , the dynamics (19) is integrated up to the possible time when gets out of and enters a new domain . This arises if, during the time evolution of the system, some cells get rectified (or gain controlled) at time t. Then, there is a drastic change in time evolution because rectified cells do not participate in dynamics anymore. The value of the state vector at this time is which can be written using . The system is now in the domain and follows its evolution until the (possible) time when some new cells are rectified or some rectified cells become non-rectified. The system enters a new domain and so on. In general, the state at the entrance of domain is given by (22). This is a linear combination of terms where (Equation (24)) integrates the stimulus contribution from the entrance time into domain up to the exit time of this domain and transports the state from the exit point of to the exit point of .
- In the definition of , the operators do not commute in general.
- Eigenvalues of some can have a positive real part leading to an exponential increase along the corresponding eigendirection. This means that some cell voltage increases exponentially in absolute value. However, when voltage becomes too large, voltage rectification (or gain control) takes place, corresponding to the trajectory entering a new continuity domain. Here, unstable cells do not contribute to dynamics anymore, which are projected on the subspace of non-rectified cells. This has the effect of transforming unstable eigenvalues into stable ones preventing the trajectories from diverging. Actually, the spectrum of , controlling stability, resembles the Lyapunov spectrum in ergodic theory [74], with two main differences. First, we are simply considering product of matrices without multiplying by the adjoin so that eigenvalues can be complex. Second, we are not assuming stationarity and the existence of an invariant measure. Instead, the product is constrained by the non-stationary stimulus and dynamical system parameters which fixes the sequence of times s.
- Rectification induces a weak form of nonlinearity where e.g., the contraction/expansion in the phase space depends on the domain (whereas, in a differentiable nonlinear system, it would depend on the point in the phase space). This has deep consequences on cells response, as mentioned in the Results section.
2.2. Spike Statistics
2.2.1. Mathematical Setting for Spike Trains
2.2.2. Mathematical Setting for Spiking Probabilities
- We do not assume stationarity. may depend explicitly on time. This is actually the reason why we have an index n. A time translation invariant probability will simply be written .
- For such probabilities to be well defined and useful, one needs to make assumptions on their structure. Beyond technical assumptions such as measurability, summability, non-nullness and continuity [78,79], the most important assumption here is that the dependence in the past (memory) decays fast enough, typically, exponentially, so that, even if this chain has infinite memory, it is very close to Markov.
- As one can associate to Markov chains an equilibrium probability (under conditions actually quite more general than detailed-balance), the system of transition probabilities also admits, under the mathematical conditions sketched in the item 2 above, an equivalent notion called “chains with complete connections” or a “chain with unbounded memory” [76].
- These distributions are formally (left-sided) Gibbs distributions where the Gibbs potential is (the non-nullness assumption imposes that ). This establishes a formal link to statistical physics. In particular, when the chain is stationary, expanding the potential in product of spikes events up to the second order, one recovers the maximum entropy models used in the literature of spike trains analysis, including the so-called Ising model [22,48,80,81]. However, the chains we consider are not necessarily stationary.
2.2.3. A Model of Effective Interactions between RG Cells
3. Results
3.1. How Could Lateral A Cells Connectivity Shape the Receptive Field of a Ganglion Cell?
3.1.1. Non-Rectified Case
3.1.2. Interpretation
3.1.3. Space-Time Separability
3.1.4. Resonances
3.1.5. Stimulus Induced Waves
3.1.6. Stimulus Adaptation
3.1.7. Rectification
3.1.8. Conclusions of This Section
3.2. How Could Spatio-Temporal Stimuli Correlations and Retinal Network Dynamics Shape the Spike Train Correlations at the Output of the Retina?
3.2.1. Voltage Correlations
Stimulus Induced Correlations in the Non-Rectified Case
Correlations Structure and Decorrelation
3.2.2. Spike Correlations
3.2.3. Decorrelation Induced by Nonlinearities
3.2.4. Conclusions of This Section
3.3. Computing the Mixed Effect of Network and Stimulus on Spike Correlations
3.3.1. Context
3.3.2. Consequences
Convolution
Kernel
Linear Response and Higher Order Corrections
3.4. Conclusions
3.4.1. Beyond Naive RF Description
3.4.2. Link with the Retina Model
3.4.3. Information Geometry
4. Applications
4.1. Retinal Prostheses
4.2. Convolutional Networks
5. Discussion
5.1. Cortical Response
5.2. Retinal Correlations and Neurogeometry
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gollisch, T.; Meister, M. Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron 2010, 65, 150–164. [Google Scholar] [CrossRef] [Green Version]
- Attneave, F. Some informational aspects of visual perception. Psychol. Rev. 1954, 61, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Selfridge, O.G. Pandaemonium: A paradigm for learning. In Proceedings of the Symposium on the Mechanisation of Thought Processes, Teddington, UK, 24–27 November 1958; pp. 511–529. [Google Scholar]
- Lee, C. Representation of Switching Functions by Binary Decision Programs. Bell Syst. Tech. J. 1959, 38, 985–999. [Google Scholar] [CrossRef]
- Barlow, H. Possible principles underlying the transformation of sensory messages. Sens. Commun. 1961, 1, 217–234. [Google Scholar]
- Atick, J.J.; Redlich, A.N. Towards a Theory of Early Visual Processing. Neural Comput. 1990, 2, 308–320. [Google Scholar] [CrossRef]
- Olshausen, B.A.; Field, D.J. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vis. Res. 1997, 37, 3311–3325. [Google Scholar] [CrossRef] [Green Version]
- Vinje, W.E.; Gallant, J.L. Sparse Coding and Decorrelation in Primary Visual Cortex During Natural Vision. Science 2000, 287, 1273–1276. [Google Scholar] [CrossRef] [Green Version]
- Simoncelli, E.; Olshausen, B. Natural image statistics and neural representation. Annu. Rev. Neurosci. 2001, 24, 1193–1216. [Google Scholar] [CrossRef] [Green Version]
- Simoncelli, E.P. Vision and the Statistics of the Visual Environment. Curr. Opin. Neurobiol. 2003, 13, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Zhaoping, L. Theoretical understanding of the early visual processes by data compression and data selection. Netw. Comput. Neural Syst. 2006, 17, 301–334. [Google Scholar] [CrossRef] [Green Version]
- Pitkow, X.; Meister, M. Decorrelation and efficient coding by retinal ganglion cells. Nat. Neurosci. 2012, 15, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhaoping, L. The efficient coding principle. In Understanding Vision: Theory, Models, and Data; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Denève, S.; Machens, C.K. Efficient codes and balanced networks. Nat. Neurosci. 2016, 19, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Franke, K.; Berens, P.; Schubert, T.; Bethge, M.; Euler, T.; Baden, T. Inhibition decorrelates visual feature representations in the inner retina. Nature 2017, 542, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Besharse, J.; Bok, D. The Retina and Its Disorders; Elsevier Science: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Nelson, R.; Kolb, H. ON and OFF pathways in the vertebrate retina and visual system. Vis. Neurosci. 2004, 1, 260–278. [Google Scholar]
- Azeredo da Silveira, R.; Roska, B. Cell Types, Circuits, Computation. Curr. Opin. Neurobiol. 2011, 21, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Oesch, N.; Diamond, J. Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells. Nat Neurosci. 2011, 23, 1555–1561. [Google Scholar] [CrossRef] [Green Version]
- Meister, M.; Berry, M. The Neural Code of the Retina. Neuron 1999, 22, 435–450. [Google Scholar] [CrossRef] [Green Version]
- Rieke, F.; Warland, D.; de Ruyter van Steveninck, R.; Bialek, W. Spikes: Exploring the Neural Code; The MIT Press: Cambridge, MA, US, 1997. [Google Scholar]
- Schneidman, E.; Berry, M.; Segev, R.; Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 2006, 440, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Tkacik, G.; Marre, O.; Mora, T.; Amodei, D.; Berry, M.; Bialek, W. The simplest maximum entropy model for collective behavior in a neural network. J. Stat. Mech. 2013, 2013, P03011. [Google Scholar] [CrossRef]
- Palmer, S.E.; Marre, O.; Berry, M.J.; Bialek, W. Predictive information in a sensory population. Proc. Natl. Acad. Sci. USA 2015, 112, 6908–6913. [Google Scholar] [CrossRef] [Green Version]
- Ecker, A.; Berens, P.; Keliris, G.; Bethge, M.; Logothetis, N.; Tolias, A. Decorrelated neuronal firing in cortical microcircuits. Science 2010, 327, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baden, T.; Berens, P.; Bethge, M.; Euler, T. Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina. Curr. Biol. 2013, 23, 48–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karvouniari, D.; Gil, L.; Marre, O.; Picaud, S.; Cessac, B. A biophysical model explains the oscillatory behaviour of immature starburst amacrine cells. Sci. Rep. 2019, 9, 1859. [Google Scholar] [CrossRef] [Green Version]
- Pillow, J.; Paninski, L.; Uzzell, V.; Simoncelli, E.; Chichilnisky, E. Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J. Neurosci. 2005, 25, 11003–11013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruda, K.; Zylberberg, J.; Field, G. Ignoring correlated activity causes a failure of retinal population codes. Nat. Commun. 2020, 11, 4605. [Google Scholar] [CrossRef]
- Sekhar, S.; Ramesh, P.; Bassetto, G.; Zrenner, E.; Macke, J.H.; Rathbun, D.L. Characterizing Retinal Ganglion Cell Responses to Electrical Stimulation Using Generalized Linear Models. Front. Neurosci. 2020, 14, 378. [Google Scholar] [CrossRef]
- Martínez-Cañada, P.; Morillas, C.; Pino, B.; Ros, E.; Pelayo, F. A Computational Framework for Realistic Retina Modeling. Int. J. Neural Syst. 2016, 26, 1650030. [Google Scholar] [CrossRef]
- Huth, J.; Masquelier, T.; Arleo, A. Convis: A Toolbox to Fit and Simulate Filter-Based Models of Early Visual Processing. Front. Neuroinform. 2018, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Wohrer, A.; Kornprobst, P. Virtual Retina: A biological retina model and simulator, with contrast gain control. J. Comput. Neurosci. 2009, 26, 219. [Google Scholar] [CrossRef] [Green Version]
- Cessac, B.; Kornprobst, P.; Kraria, S.; Nasser, H.; Pamplona, D.; Portelli, G.; Viéville, T. PRANAS: A New Platform for Retinal Analysis and Simulation. Front. Neuroinform. 2017, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- Taylor, W.; Smith, R. The role of starburst amacrine cells in visual signal processing. Vis. Neurosci. 2012, 29, 73–81. [Google Scholar] [CrossRef]
- Demb, J.B.; Singer, J.H. Intrinsic properties and functional circuitry of the AII amacrine cell. Vis. Neurosci. 2012, 29, 51–60. [Google Scholar] [CrossRef]
- Pottackal, J.; Singer, J.H.; Demb, J.B. Computational and Molecular Properties of Starburst Amacrine Cell Synapses Differ With Postsynaptic Cell Type. Front. Cell. Neurosci. 2021, 15, 244. [Google Scholar] [CrossRef]
- Chichilnisky, E.J. A simple white noise analysis of neuronal light responses. Netw. Comput. Neural Syst. 2001, 12, 199–213. [Google Scholar] [CrossRef]
- Simoncelli, E.P.; Paninski, L.; Pillow, J.; Schwartz, O. Characterization of neural responses with stochastic stimuli. In The Cognitive Neurosciences, III; Gazzaniga, M., Ed.; MIT Press: Cambridge, MA, USA, 2004; Chapter 23; pp. 327–338. [Google Scholar]
- Schwartz, O.; Pillow, J.W.; Rust, N.C.; Simoncelli, E.P. Spike-triggered neural characterization. J. Vis. 2006, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Motulsky, H.; Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Berry, M.; Brivanlou, I.; Jordan, T.; Meister, M. Anticipation of moving stimuli by the retina. Nature 1999, 398, 334–338. [Google Scholar] [CrossRef]
- Hosoya, T.; Baccus, S.A.; Meister, M. Dynamic predictive coding by the retina. Nature 2005, 436, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Marre, O.; Fisher, C.; Schwartz, G.; Levy, J.; da Silviera, R.A.; Berry, M. Alert response to motion onset in the retina. J. Neurosci. 2013, 33, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Souihel, S.; Cessac, B. On the potential role of lateral connectivity in retinal anticipation. J. Math. Neurosci. 2020, 11, 3. [Google Scholar] [CrossRef]
- Cessac, B. Statistics of spike trains in conductance-based neural networks: Rigorous results. J. Math. Neurosci. 2011, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Cofré, R.; Cessac, B. Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses. Chaos Solitons Fractals 2013, 50, 3. [Google Scholar] [CrossRef]
- Cessac, B.; Cofré, R. Spike train statistics and Gibbs distributions. J. Physiol.-Paris 2013, 107, 360–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cofré, R.; Cessac, B. Exact computation of the maximum-entropy potential of spiking neural-network models. Phys. Rev. E 2014, 89, 052117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cofré, R.; Maldonado, C.; Cessac, B. Thermodynamic Formalism in Neuronal Dynamics and Spike Train Statistics. Entropy 2020, 22, 1330. [Google Scholar] [CrossRef] [PubMed]
- Cessac, B.; Ampuero, I.; Cofré, R. Linear Response of General Observables in Spiking Neuronal Network Models. Entropy 2021, 23, 155. [Google Scholar] [CrossRef]
- Sarti, A.; Citti, G. The constitution of visual perceptual units in the functional architecture of V1. J. Comput. Neurosci. 2014, 38, 285–300. [Google Scholar] [CrossRef] [Green Version]
- Citti, G.; Sarti, A. (Eds.) Neuromathematics of Vision; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Petitot, J. Elements of Neurogeometry; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Citti, G.; Sarti, A. Neurogeometry of Perception: Isotropic and Anisotropic Aspects. Axiomathes 2019. [Google Scholar] [CrossRef] [Green Version]
- Baccus, S.; Meister, M. Fast and Slow Contrast Adaptation in Retinal Circuitry. Neuron 2002, 36, 909–919. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.; Lagnado, L. General features of the retinal connectome determine the computation of motion anticipation. eLife 2015, 4, e06250. [Google Scholar] [CrossRef]
- Trenholm, S.; Awatramani, G. Chapter 9—Dynamic Properties of Electrically Coupled Retinal Networks. In Network Functions and Plasticity; Jing, J., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 183–208. [Google Scholar] [CrossRef]
- Blanchard, P.; Cessac, B.; Krueger, T. A dynamical system approach to SOC models of Zhang’s type. J. Stat. Phys. 1997, 88, 307–318. [Google Scholar] [CrossRef]
- Blanchard, P.; Cessac, B.; Krueger, T. What can one learn about Self-Organized Criticality from Dynamical System theory? J. Stat. Phys. 2000, 98, 375–404. [Google Scholar] [CrossRef]
- Cessac, B. A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics. J. Math. Biol. 2008, 56, 311–345. [Google Scholar] [CrossRef] [PubMed]
- Cessac, B.; Viéville, T. On Dynamics of Integrate-and-Fire Neural Networks with Adaptive Conductances. Front. Neurosci. 2008, 2, 2. [Google Scholar]
- Cessac, B. A discrete time neural network model with spiking neurons II. Dynamics with noise. J. Math. Biol. 2011, 62, 863–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coombes, S.; Lai, Y.M.; Şayli, M.; Thul, R. Networks of piecewise linear neural mass models. Eur. J. Appl. Math. 2018, 29, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Rajakumar, A.; Rinzel, J.; Chen, Z.S. Stimulus-Driven and Spontaneous Dynamics in Excitatory-Inhibitory Recurrent Neural Networks for Sequence Representation. Neural Comput. 2021, 33, 2603–2645. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.S. Memory without Feedback in a Neural Network. Neuron 2009, 61, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.; Miller, K. Balanced amplification: A new mechanism of selective amplification of neural activity patterns. Neuron 2009, 61, 635–648. [Google Scholar] [CrossRef] [Green Version]
- Falconer, K.J. The Geometry of Fractal Sets; Cambridge University Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Barnsley, M.; Rising, H. Fractals Everywhere; Elsevier Science: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Falconer, K. Techniques in Fractal Geometry; John Wiley & Sons, Ltd.: Chichester, UK, 1997. [Google Scholar]
- Mease, R.A.; Famulare, M.; Gjorgjieva, J.; Moody, W.J.; Fairhall, A.L. Emergence of Adaptive Computation by Single Neurons in the Developing Cortex. J. Neurosci. 2013, 33, 12154–12170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Sing Lee, T. Adaptive contrast gain control and information maximization. Neurocomputing 2005, 65–66, 111–116. [Google Scholar] [CrossRef]
- Snellman, J.; Kaur, T.; Shen, Y.; Nawy, S. Regulation of ON bipolar cell activity. Prog. Retin. Eye Res. 2008, 27, 450–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, L.S. Mathematical theory of Lyapunov exponents. J. Phys. A Math. Theor. 2013, 46, 254001. [Google Scholar] [CrossRef]
- Georgii, H.O. Gibbs Measures and Phase Transitions; De Gruyter: Berlin, NY, USA, 1988. [Google Scholar]
- Onicescu, O.; Mihoc, G. Sur les chaînes statistiques. C. R. Acad. Sci. Paris 1935, 200, 511–512. [Google Scholar]
- Galves, A.; Löcherbach, E. Infinite Systems of Interacting Chains with Memory of Variable Length—A Stochastic Model for Biological Neural Nets. J. Stat. Phys. 2013, 151, 896–921. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, R.; Maillard, G. Chains with complete connections: General theory, uniqueness, loss of memory and mixing properties. J. Stat. Phys. 2005, 118, 555–588. [Google Scholar] [CrossRef] [Green Version]
- LeNy, A. Introduction to (Generalized) Gibbs Measures. Ensaios Mat. 2008, 15, 7. [Google Scholar]
- Shlens, J.; Field, G.; Gauthier, J.; Grivich, M.; Petrusca, D.; Sher, A.; Litke, A.; Chichilnisky, E. The Structure of Multi-Neuron Firing Patterns in Primate Retina. J. Neurosci. 2006, 26, 8254. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, T.A.; Telenczuk, B.; Marre, O.; Destexhe, A.; Ferrari, U. Maximum-entropy models reveal the excitatory and inhibitory correlation structures in cortical neuronal activity. Phys. Rev. E 2018, 98, 012402. [Google Scholar] [CrossRef] [Green Version]
- Cocco, S.; Leibler, S.; Monasson, R. Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proc. Natl. Acad. Sci. USA 2009, 106, 14058–14062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudolph, M.; Destexhe, A. Analytical Integrate and Fire Neuron models with conductance-based dynamics for event driven simulation strategies. Neural Comput. 2006, 18, 2146–2210. [Google Scholar] [CrossRef] [Green Version]
- Gerstner, W.; Kistler, W.M. Mathematical formulations of Hebbian learning. Biol. Cybern. 2002, 87, 404–415. [Google Scholar] [CrossRef] [Green Version]
- Dayan, P.; Abbott, L. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Destexhe, A.; Mainen, Z.F.; Sejnowski, T.J. Kinetic models of synaptic transmission. In Methods in Neuronal Modeling; The MIT Press: Cambridge, MA, USA, 1998; pp. 1–25. [Google Scholar]
- Baden, T.; Berens, P.; Franke, K.; Rosón, M.R.; Bethge, M.; Euler, T. The functional diversity of retinal ganglion cells in the mouse. Nature 2016, 529, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sernagor, E.; Hennig, M. Chapter 49—Retinal Waves: Underlying Cellular Mechanisms and Theoretical Considerations. In Cellular Migration and Formation of Neuronal Connections; Rubenstein, J.L., Rakic, P., Eds.; Academic Press: Oxford, UK, 2013; pp. 909–920. [Google Scholar] [CrossRef]
- Benvenuti, G.; Chemla, S.; Arjan Boonman, G.M.; Chavane, F. Anticipation of an approaching bar by neuronal populations in awake monkey V1. J. Vis. 2015, 15, 479. [Google Scholar] [CrossRef]
- Kastner, D.; Ozuysal, Y.; Panagiotakos, G.; Baccus, S. Adaptation of Inhibition Mediates Retinal Sensitization. Curr. Biol. 2019, 29, 2640–2651. [Google Scholar] [CrossRef] [PubMed]
- Hennig, M. Theoretical models of synaptic short term plasticity. Front. Comput. Neurosci. 2013, 7, 154. [Google Scholar] [CrossRef]
- Lancaster, H.O. Some properties of the bivariate normal distribution considered in the form of a contingency table. Biometrika 1957, 44, 289–292. [Google Scholar] [CrossRef]
- Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957, 12, 570–586. [Google Scholar] [CrossRef]
- Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 1966, 29, 255–284. [Google Scholar] [CrossRef] [Green Version]
- Cessac, B.; Sepulchre, J. Stable resonances and signal propagation in a chaotic network of coupled units. Phys. Rev. E 2004, 70, 056111. [Google Scholar] [CrossRef] [Green Version]
- Cessac, B.; Sepulchre, J. Transmitting a signal by amplitude modulation in a chaotic network. Chaos 2006, 16, 013104. [Google Scholar] [CrossRef] [Green Version]
- Ruelle, D. Nonequilibrium statistical mechanics near equilibrium: Computing higher-order terms. Nonlinearity 1998, 11, 5–18. [Google Scholar] [CrossRef]
- Marre, O.; Boustani, S.E.; Frégnac, Y.; Destexhe, A. Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations. Phys. Rev. Let. 2009, 102, 138101. [Google Scholar] [CrossRef] [PubMed]
- Nasser, H.; Marre, O.; Berry, M.; Cessac, B. Spatio temporal Gibbs distribution analysis of spike trains using Monte Carlo method. In Proceedings of the AREADNE 2012 Research in Encoding In addition, Decoding of Neural Ensembles, Santorini, Greece, 21–24 June 2012. [Google Scholar]
- Nasser, H.; Cessac, B. Parameters estimation for spatio-temporal maximum entropy distributions: Application to neural spike trains. Entropy 2014, 16, 2244–2277. [Google Scholar] [CrossRef] [Green Version]
- Amari, S.I.; Nagaoka, H. Methods of Information Geometry; American Mathematical Society: Oxford, MI, USA, 2000; Volume 191. [Google Scholar]
- Rao, C. Information and Accuracy Attainable in the Estimation of Statistical Parameters. Bull. Calcutta Math. Soc. 1945, 37, 81–91. [Google Scholar]
- Amari, S.I. Information geometry in optimization, machine learning and statistical inference. Front. Electr. Electron. Eng. China 2010, 5, 241–260. [Google Scholar] [CrossRef]
- Ruelle, D. Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Statist. Phys. 1999, 95, 393–468. [Google Scholar] [CrossRef] [Green Version]
- Cessac, B. The retina as a dynamical system. In Recent Trends in Chaotic, Nonlinear and Complex Dynamics; In Honour of Prof. Miguel A.F. Sanjuán on his 60th Birthday; World Scientific: Singapore, 2020. [Google Scholar]
- Lok, C. Curing blindness: Vision quest. Nature 2014, 513, 160. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.; Kondo, M.; Terasaki, H.; Lin, Y.; McCall, M.; Marc, R. Retinal remodeling. Jpn. J. Ophthalmol. 2012, 56, 289–306. [Google Scholar] [CrossRef]
- Marc, R.E.; Jones, B.W.; Watt, C.B.; Strettoi, E. Neural remodeling in retinal degeneration. Prog. Retin. Eye Res. 2003, 22, 607–655. [Google Scholar] [CrossRef]
- Barrett, J.; Degenaar, P.; Sernagor, E. Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice. Front. Cell. Neurosci. 2015, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.; Hilgen, G.; Sernagor, E. Dampening Spontaneous Activity Improves the Light Sensitivity and Spatial Acuity of Optogenetic Retinal Prosthetic Responses. Sci. Rep. 2016, 6, 33565. [Google Scholar] [CrossRef] [Green Version]
- Roux, S.; Matonti, F.; Dupont, F.; Hoffart, L.; Takerkart, S.; Picaud, S.; Pham, P.; Chavane, F. Probing the functional impact of sub-retinal prosthesis. eLife 2016, 5, e12687. [Google Scholar] [CrossRef]
- Pham, P.; Roux, S.; Matonti, F.; Dupont, F.; Agache, V.; Chavane, F. Post-implantation impedance spectroscopy of subretinal micro-electrode arrays, OCT imaging and numerical simulation: Towards a more precise neuroprosthesis monitoring tool. J. Neural Eng. 2013, 10, 046002. [Google Scholar] [CrossRef]
- Al-Atabany, W.; McGovern, B.; Mehran, K.; Berlinguer-Palmini, R.; Degenaar, P. A Processing Platform for Optoelectronic/Optogenetic Retinal Prosthesis. IEEE Trans. Biomed. Eng. 2013, 60, 781–791. [Google Scholar] [CrossRef]
- Maheswaranathan, N.; McIntosh, L.; Kastner, D.B.; Melander, J.B.; Brezovec, L.; Nayebi, A.; Wang, J.; Ganguli, S.; Baccus, S.A. Deep learning models reveal internal structure and diverse computations in the retina under natural scenes. bioRxiv 2018, 340943. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Nayebi, A.; Maheswaranathan, N.; McIntosh, L.; Baccus, S.; Ganguli, S. From deep learning to mechanistic understanding in neuroscience: The structure of retinal prediction. In Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019; pp. 8535–8545. [Google Scholar]
- Zheng, Y.; Jia, S.; Yu, Z.; Liu, J.K.; Huang, T. Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks. Patterns 2021, 2, 100350. [Google Scholar] [CrossRef]
- Gias, C.; Hewson-Stoate, N.; Jones, M.; Johnston, D.; Mayhew, J.; Coffey, P. Retinotopy within rat primary visual cortex using optical imaging. NeuroImage 2005, 24, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Schira, M.M.; Tyler, C.W.; Spehar, B.; Breakspear, M. Modeling Magnification and Anisotropy in the Primate Foveal Confluence. PLoS Comput. Biol. 2010, 6, e1000651. [Google Scholar] [CrossRef] [PubMed]
- Ayzenshtat, I.; Gilad, A.; Zurawel, G.; Slovin, H. Population Response to Natural Images in the Primary Visual Cortex Encodes Local Stimulus Attributes and Perceptual Processing. J. Neurosci. 2012, 32, 13971–13986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amari, S. Characteristics of randomly connected threshold element networks and neural systems. Proc. IEEE 1971, 59, 35–47. [Google Scholar] [CrossRef]
- Wilson, H.; Cowan, J. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 1972, 12, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Wilson, H.; Cowan, J. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybern. 1973, 13, 55–80. [Google Scholar] [CrossRef] [PubMed]
- Bressloff, P. Traveling fronts and wave propagation failure in an inhomogeneous neural network. Phys. D Nonlinear Phenom. 2001, 155, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Bressloff, P.; Cowan, J.; Golubitsky, M.; Thomas, P.; Wiener, M. Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philos. Trans. R. Soc. Lond. Ser. Biol. Sci. 2001, 306, 299–330. [Google Scholar] [CrossRef] [Green Version]
- Bressloff, P. Stochastic neural field theory and the system-size expansion. SIAM J. Appl. Math 2009, 70, 1488–1521. [Google Scholar] [CrossRef]
- El Boustani, S.; Destexhe, A. A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Comput. 2009, 21, 46–100. [Google Scholar] [CrossRef]
- Cessac, B.; Souihel, S.; Di Volo, M.; Chavane, F.; Destexhe, A.; Chemla, S.; Marre, O. Anticipation in the retina and the primary visual cortex: Towards an integrated retino-cortical model for motion processing. In Proceedings of the Workshop on Visuo Motor Integration, Paris, France, 6–7 June 2019. [Google Scholar]
- Ott, E.; Antonsen, T.M. Low dimensional behavior of large systems of globally coupled oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2008, 18, 037113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montbrió, E.; Pazó, D.; Roxin, A. Macroscopic Description for Networks of Spiking Neurons. Phys. Rev. X 2015, 5, 021028. [Google Scholar] [CrossRef] [Green Version]
- Bick, C.; Goodfellow, M.; Laing, C.; Martens, E.A. Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review. J. Math. Neurosc. 2020, 10, 9. [Google Scholar] [CrossRef]
- Bi, H.; Segneri, M.; di Volo, M.; Torcini, A. Coexistence of fast and slow gamma oscillations in one population of inhibitory spiking neurons. Phys. Rev. Res. 2020, 2, 013042. [Google Scholar] [CrossRef] [Green Version]
- Buendía, V.; Villegas, P.; Burioni, R.; Muñoz, M.A. Hybrid-type synchronization transitions: Where incipient oscillations, scale-free avalanches, and bistability live together. Phys. Rev. Res. 2021, 3, 023224. [Google Scholar] [CrossRef]
- Volo, M.D.; Segneri, M.; Goldobin, D.; Politi, A.; Torcini, A. Coherent oscillations in balanced neural networks driven by endogenous fluctuations. arXiv 2021, arXiv:2110.09439. [Google Scholar]
- Mazzetti, C. A Mathematical Model of the Motor Cortex. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2017. [Google Scholar]
- Barbieri, D.; Citti, G.; Cocci, G.; Sarti, A. A Cortical-Inspired Geometry for Contour Perception and Motion Integration. J. Math. Imaging Vis. 2014, 49, 511–529. [Google Scholar] [CrossRef] [Green Version]
- Romagnoni, A.; Ribot, J.; Bennequin, D.; Touboul, J. Parsimony, Exhaustivity and Balanced Detection in Neocortex. PLoS Comput. Biol. 2015, 11, e1004623. [Google Scholar] [CrossRef] [Green Version]
- Rankin, J.; Chavane, F. Neural field model to reconcile structure with function in primary visual cortex. PLoS Comput. Biol. 2017, 13, e1005821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicks, R.; Cocks, A.; Avitabile, D.; Johnston, A.; Coombes, S. Understanding Sensory Induced Hallucinations: From Neural Fields to Amplitude Equations. SIAM J. Appl. Dyn. Syst. 2021, 20, 1683–1714. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cessac, B. Retinal Processing: Insights from Mathematical Modelling. J. Imaging 2022, 8, 14. https://doi.org/10.3390/jimaging8010014
Cessac B. Retinal Processing: Insights from Mathematical Modelling. Journal of Imaging. 2022; 8(1):14. https://doi.org/10.3390/jimaging8010014
Chicago/Turabian StyleCessac, Bruno. 2022. "Retinal Processing: Insights from Mathematical Modelling" Journal of Imaging 8, no. 1: 14. https://doi.org/10.3390/jimaging8010014
APA StyleCessac, B. (2022). Retinal Processing: Insights from Mathematical Modelling. Journal of Imaging, 8(1), 14. https://doi.org/10.3390/jimaging8010014