GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices
Abstract
:1. Introduction
2. Biological Framework and Materials
2.1. Cell Line—MCF7
2.2. Apoptosis of the MCF7
2.3. Design and Fabrication of Microfluidic Devices
2.4. Cell Culture in Microdevices
3. Algorithms for Image Segmentation
3.1. Datasets and Software Description
3.2. Manual Segmentation for Gold Standard Images
3.3. Algorithm Using FIJI for Semi-Automatic Segmentation
3.4. Gradient Operator for Automatic Segmentation
3.5. GEMA for Automatic Segmentation
3.5.1. Gabor Filter Bank
3.5.2. Coefficient of Variation and Linear Regression
3.5.3. Adaptive Method and Morphological Operations
4. Results
GEMA in Real-Time Applications
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zanella, F.; Lorens, J.B.; Link, W. High content screening: Seeing is believing. Trends Biotechnol. 2010, 28, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Lugagne, J.-B.; Lin, H.; Dunlop, M.J. DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning. PLoS Comput. Biol. 2020, 16, e1007673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Gao, Y.; Hao, Y.; Li, E.; Wang, Y.; Zhang, J.; Wang, W.; Gao, Z.; Wang, Q. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 2013, 34, 4109–4117. [Google Scholar] [CrossRef]
- Georg, M.; Fernández-Cabada, T.; Bourguignon, N.; Karp, P.; Peñaherrera, A.B.; Helguera, G.; Lerner, B.; Pérez, M.S.; Mertelsmann, R. Development of image analysis software for quantification of viable cells in microchips. PLoS ONE 2018, 13, e0193605. [Google Scholar] [CrossRef]
- Uddin, N.; Wang, X. Identification of Breast Cancer Subtypes Based on Gene Expression Profiles in Breast Cancer Stroma. Clin. Breast Cancer 2022, 22, 521–537. [Google Scholar] [CrossRef]
- Bajcsy, P.; Cardone, A.; Chalfoun, J.; Halter, M.; Juba, D.; Kociolek, M.; Majurski, M.; Peskin, A.; Simon, C.; Simon, M.; et al. Survey statistics of automated segmentations applied to optical imaging of mammalian cells. BMC Bioinform. 2015, 16, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahali, R.; Dridi, N.; Ben Salem, Y.; Descombes, X.; Debreuve, E.; De Graeve, F.; Dahman, H. Biological Image Segmentation Using Region-Scalable Fitting Energy with B-Spline Level Set Implementation and Watershed. IRBM 2022, in press. [Google Scholar] [CrossRef]
- Carpenter, A.E.; Jones, T.R.; Lamprecht, M.R.; Clarke, C.; Kang, I.H.; Friman, O.; Guertin, D.A.; Chang, J.H.; Lindquist, R.A.; Moffat, J.; et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006, 7, R100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Kankaanpää, P.; Paavolainen, L.; Tiitta, S.; Karjalainen, M.; Päivärinne, J.; Nieminen, J.; Marjomäki, V.; Heino, J.; White, D.J. BioImageXD: An open, general-purpose and high-throughput image-processing platform. Nat. Methods 2012, 9, 683–689. [Google Scholar] [CrossRef] [PubMed]
- De Chaumont, F.; Dallongeville, S.; Chenouard, N.; Hervé, N.; Pop, S.; Provoost, T.; Meas-Yedid, V.; Pankajakshan, P.; LeComte, T.; Le Montagner, Y.; et al. Icy: An open bioimage informatics platform for extended reproducible research. Nat. Methods 2012, 9, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Kofahi, Y.; Lassoued, W.; Lee, W.; Roysam, B. Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images. IEEE Trans. Biomed. Eng. 2009, 57, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Chalfoun, J.; Majurski, M.; Dima, A.; Stuelten, C.; Peskin, A.; Brady, M. FogBank: A single cell segmentation across multiple cell lines and image modalities. BMC Bioinform. 2014, 15, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Zhan, B.; Zu, C.; Wu, X.; Zhou, J.; Zhou, L.; Wang, Y. Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning. Med. Image Anal. 2022, 79, 102447. [Google Scholar] [CrossRef] [PubMed]
- Hilsenbeck, O.; Schwarzfischer, M.; Loeffler, D.; Dimopoulos, S.; Hastreiter, S.; Marr, C.; Theis, F.J.; Schroeder, T. fastER: A user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy. Bioinformatics 2017, 33, 2020–2028. [Google Scholar] [CrossRef] [Green Version]
- Stylianidou, S.; Brennan, C.; Nissen, S.B.; Kuwada, N.J.; Wiggins, P.A. SuperSegger: Robust image segmentation, analysis and lineage tracking of bacterial cells. Mol. Microbiol. 2016, 102, 690–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bredies, K.; Wolinski, H. An active-contour based algorithm for the automated segmentation of dense yeast populations on transmission microscopy images. Comput. Vis. Sci. 2011, 14, 341–352. [Google Scholar] [CrossRef]
- Versari, C.; Stoma, S.; Batmanov, K.; Llamosi, A.; Mroz, F.; Kaczmarek, A.; Deyell, M.; Lhoussaine, C.; Hersen, P.; Batt, G. Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and the Evaluation Platform. J. R. Soc. Interface 2017, 14, 20160705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicar, T.; Balvan, J.; Jaros, J.; Jug, F.; Kolar, R.; Masarik, M.; Gumulec, J. Cell segmentation methods for label-free contrast microscopy: Review and comprehensive comparison. BMC Bioinform. 2019, 20, 360. [Google Scholar] [CrossRef] [PubMed]
- Eliceiri, K.W.; Berthold, M.R.; Goldberg, I.; Ibáñez, L.; Manjunath, B.S.; Martone, M.; Murphy, R.F.; Peng, H.; Plant, A.L.; Roysam, B.; et al. Biological imaging software tools. Nat. Methods 2012, 9, 697–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantuzzo, J.A.; Mirabella, V.R.; Hamod, A.H.; Hart, R.P.; Zahn, J.D.; Pang, Z.P. Intellicount: High-Throughput Quantification of Fluorescent Synaptic Protein Puncta by Machine Learning. Eneuro 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Yang, P.; Nie, D.; Wu, X.; Zhou, J.; Wang, Y. Unified medical image segmentation by learning from uncertainty in an end-to-end manner. Knowl. Based Syst. 2022, 241, 108215. [Google Scholar] [CrossRef]
- Loewke, N.O.; Pai, S.; Cordeiro, C.; Black, D.; King, B.L.; Contag, C.H.; Chen, B.; Baer, T.M.; Solgaard, O. Automated Cell Segmentation for Quantitative Phase Microscopy. IEEE Trans. Med Imaging 2017, 37, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-H.; Yang, Z.-Y.; Chong, T.-W.; Liu, Y.-Y.; Pan, H.-W.; Lin, C.-H. Quantifying Cell Confluency by Plasmonic Nanodot Arrays to Achieve Cultivating Consistency. ACS Sens. 2019, 4, 1816–1824. [Google Scholar] [CrossRef]
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.-A.; Ribas, R.; Simigdala, N.; Schuster, E.; Pancholi, S.; Tenev, T.; Gellert, P.; Buluwela, L.; Harrod, A.; Thornhill, A.; et al. Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat. Commun. 2017, 8, 1865. [Google Scholar] [CrossRef] [Green Version]
- Comşa, Ş.; Cîmpean, A.M.; Raica, M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar]
- Uchino, M.; Kojima, H.; Wada, K.; Imada, M.; Onoda, F.; Satofuka, H.; Utsugi, T.; Murakami, Y. Nuclear β-catenin and CD44 upregulation characterize invasive cell populations in non-aggressive MCF-7 breast cancer cells. BMC Cancer 2010, 10, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Apress: Berkeley, CA, USA, 2019. [Google Scholar] [CrossRef]
- Isa-Jara, R. GEMA Algorithm. 2022. Available online: https://colab.research.google.com/drive/1A8HItyE1CvgaexnpB5vqhn_O88s0p-R6?usp=sharing (accessed on 30 July 2022).
- Perez-Sosa, C.; Isa-Jara, R. GEMA Datasets. 2022. Available online: https://www.kaggle.com/datasets/ramiroisajara/dataset-gema/ (accessed on 15 June 2022).
- Dutta, A.; Zisserman, A. The VIA Annotation Software for Images, Audio and Video. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2276–2279. [Google Scholar] [CrossRef] [Green Version]
- Olmos, C.M.; Rosero, G.; Fernandez-Cabada, T.; Booth, R.; Der, M.; Cabaleiro, J.M.; Debut, A.; Cumbal, L.; Perez, M.S.; Lerner, B. Hybrid microchannel-solid state micropore device for fast and optical cell detection. RSC Adv. 2020, 10, 5361–5370. Available online: https://pubs.rsc.org/en/content/articlelanding/2020/RA/C9RA09939E (accessed on 21 March 2021). [CrossRef] [PubMed]
- Haralick, R.M.; Sternberg, S.R.; Zhuang, X. Image Analysis Using Mathematical Morphology. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9, 532–550. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.; Maheshwari, S.; Agarwal, A. Contrast limited adaptive histogram equalization based enhancement for real time video system. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Delhi, India, 24–27 September 2014; pp. 2392–2397. [Google Scholar] [CrossRef]
- Ilonen, J.; Kämäräinen, J.-K.; Kälviäinen, H.; Kamarainen, J.-K. Efficient Computation of Gabor Features. 2005. Available online: https://pdfs.semanticscholar.org/01cc/80c412d50129bec6ca545b52e3b1a1eac6de.pdf?_ga=2.48446436.351996994.1519063929-1052252548.1496673189 (accessed on 19 February 2018).
- Daugman, J.G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 1985, 2, 1160–1169. Available online: http://www.ncbi.nlm.nih.gov/pubmed/4020513 (accessed on 19 February 2018). [CrossRef] [PubMed]
- Brown, C.E. Coefficient of Variation. In Applied Multivariate Statistics in Geohydrology and Related Sciences; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Motulsky, H.; Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting; Oxford University Press: Oxford, UK, 2004; Available online: https://global.oup.com/academic/product/fitting-models-to-biological-data-using-linear-and-nonlinear-regression-9780195171792?cc=ec&lang=en& (accessed on 12 September 2021).
- Roy, P.; Dutta, S.; Dey, N.; Dey, G.; Chakraborty, S.; Ray, R. Adaptive thresholding: A comparative study. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; pp. 1182–1186. [Google Scholar]
- Braden, B. The Surveyor’s Area Formula. Coll. Math. J. 1986, 17, 326–337. [Google Scholar] [CrossRef]
- Hasnain, M.; Pasha, M.F.; Ghani, I.; Imran, M.; Alzahrani, M.Y.; Budiarto, R. Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking. IEEE Access 2020, 8, 90847–90861. [Google Scholar] [CrossRef]
- Bertels, J.; Eelbode, T.; Berman, M.; Vandermeulen, D.; Maes, F.; Bisschops, R.; Blaschko, M.B. Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory and Practice. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2019; Springer: Cham, Switzerland, 2019; Volume 11765, pp. 92–100. [Google Scholar] [CrossRef] [Green Version]
- Isa-Jara, R.F. ANSIS Real-Time Control Interface; GitHub: Riobamba, Ecuador, 2021; Available online: https://github.com/RamiroIsaJ/ANSIS_GUI (accessed on 23 July 2021).
- La Greca, A.D.; Pérez, N.; Castañeda, S.; Milone, P.M.; Scarafía, M.A.; Möbbs, A.; Miriuka, S.G. celldeath: A tool for detection of cell death in transmitted light microscopy images by deep learning-based visual recognition. PLoS ONE 2021, 16, e0253666. [Google Scholar] [CrossRef] [PubMed]
Dataset and Approach | Accuracy | Accuracy Mean | ||||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 300 | 400 | 500 | |||
1-CPT | FIJI | 0.652 | 0.749 | 0.785 | - | - | - | 0.73 |
Gradient | 0.884 | 0.853 | 0.699 | - | - | - | 0.81 | |
GEMA | 0.864 | 0.898 | 0.979 | - | - | - | 0.91 | |
2-CPT | FIJI | 0.889 | 0.842 | 0.787 | 0.781 | 0.794 | - | 0.82 |
Gradient | 0.959 | 0.617 | 0.624 | 0.594 | 0.557 | - | 0.67 | |
GEMA | 0.736 | 0.793 | 0.832 | 0.841 | 0.814 | - | 0.80 | |
1-CONF | FIJI | 0.796 | 0.816 | 0.806 | 0.732 | 0.616 | - | 0.75 |
Gradient | 0.733 | 0.711 | 0.704 | 0.841 | 0.918 | - | 0.78 | |
GEMA | 0.816 | 0.871 | 0.898 | 0.901 | 0.821 | - | 0.86 | |
2-CONF | FIJI | 0.866 | 0.858 | 0.819 | 0.844 | 0.850 | 0.865 | 0.85 |
Gradient | 0.680 | 0.757 | 0.653 | 0.774 | 0.860 | 0.906 | 0.77 | |
GEMA | 0.871 | 0.881 | 0.798 | 0.830 | 0.910 | 0.918 | 0.87 |
Dataset and Approach | Dice Score | Dice Score Mean | ||||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 300 | 400 | 500 | |||
1-CPT | FIJI | 0.745 | 0.805 | 0.810 | - | - | - | 0.79 |
Gradient | 0.933 | 0.906 | 0.785 | - | - | - | 0.87 | |
GEMA | 0.920 | 0.915 | 0.859 | - | - | - | 0.90 | |
2-CPT | FIJI | 0.940 | 0.830 | 0.742 | 0.725 | 0.747 | - | 0.80 |
Gradient | 0.979 | 0.694 | 0.659 | 0.631 | 0.620 | - | 0.72 | |
GEMA | 0.842 | 0.797 | 0.802 | 0.803 | 0.781 | - | 0.80 | |
1-CONF | FIJI | 0.790 | 0.813 | 0.800 | 0.789 | 0.737 | - | 0.79 |
Gradient | 0.784 | 0.763 | 0.751 | 0.900 | 0.956 | - | 0.83 | |
GEMA | 0.833 | 0.846 | 0.825 | 0.858 | 0.863 | - | 0.85 | |
2-CONF | FIJI | 0.844 | 0.872 | 0.838 | 0.882 | 0.902 | 0.918 | 0.88 |
Gradient | 0.712 | 0.822 | 0.745 | 0.852 | 0.919 | 0.948 | 0.83 | |
GEMA | 0.842 | 0.893 | 0.829 | 0.882 | 0.945 | 0.955 | 0.89 |
Method | Mean | Median | Standard Deviation |
---|---|---|---|
GEMA | 1.05 | 1.11 | 0.14 |
Gradient | 4.31 | 5.01 | 0.88 |
FIJI | 0.95 | 1.20 | 0.41 |
Inputs/Outputs | Description | Type/Value |
---|---|---|
Operative system | To run the program | Windows, Linux (64 bits) |
Image type | Read and process images | JPG, PNG, TIFF |
Settings | Max fluid value to pump | μL/min |
Min fluid value to pump | μL/min | |
Time to process a new image | min | |
Methods | Algorithms for segmentation | GEMA, Gradient |
Type of analysis | Online (real-time), Offline | |
Directories | Read images and save results | Source, Destiny |
Serial port | Connect to syringe pump | Serial COM |
Baud rate value | bpm | |
Graphics | Visualization | Image segmentation, Real-time of cell growth |
Results | Percentage of cell area | Mean, Current, Previous |
Name of images | Image | |
State of pump | ON/OFF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isa-Jara, R.; Pérez-Sosa, C.; Macote-Yparraguirre, E.; Revollo, N.; Lerner, B.; Miriuka, S.; Delrieux, C.; Pérez, M.; Mertelsmann, R. GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices. J. Imaging 2022, 8, 281. https://doi.org/10.3390/jimaging8100281
Isa-Jara R, Pérez-Sosa C, Macote-Yparraguirre E, Revollo N, Lerner B, Miriuka S, Delrieux C, Pérez M, Mertelsmann R. GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices. Journal of Imaging. 2022; 8(10):281. https://doi.org/10.3390/jimaging8100281
Chicago/Turabian StyleIsa-Jara, Ramiro, Camilo Pérez-Sosa, Erick Macote-Yparraguirre, Natalia Revollo, Betiana Lerner, Santiago Miriuka, Claudio Delrieux, Maximiliano Pérez, and Roland Mertelsmann. 2022. "GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices" Journal of Imaging 8, no. 10: 281. https://doi.org/10.3390/jimaging8100281
APA StyleIsa-Jara, R., Pérez-Sosa, C., Macote-Yparraguirre, E., Revollo, N., Lerner, B., Miriuka, S., Delrieux, C., Pérez, M., & Mertelsmann, R. (2022). GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices. Journal of Imaging, 8(10), 281. https://doi.org/10.3390/jimaging8100281