Hair Follicle Classification and Hair Loss Severity Estimation Using Mask R-CNN
Abstract
:1. Introduction
- Mask R-CNN-based hair pore segmentation and classification;
- local hair loss severity estimation using PLS, which is bounded on 0 to 1;
- overall hair loss severity estimation and visual representation of hair loss using a heatmap.
2. Methods
2.1. Key Concepts
2.2. System Architecture
2.3. Mask R-CNN
2.4. Dataset
3. Training and Evaluation
3.1. Training Schemes
3.2. Evaluation Schemes
4. Results and Discussion
4.1. Hair Follicle Classification
4.2. Local Hair Loss Severity Index (P)
4.3. Hair Loss Severity Estimation and Mapping
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Train | Test | |||||||
---|---|---|---|---|---|---|---|---|
Precision (%) | Recall (%) | F1-Score (%) | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (%) | |
ResNet-50 | 72.0 | 71.4 | 71.7 | 72.7 | 65.9 | 68.0 | 66.9 | 68.4 |
ResNet-101 | 84.2 | 83.1 | 83.7 | 83.5 | 80.6 | 78.9 | 79.7 | 79.3 |
References
- Ho, C.H.; Sood, T.; Zito, P.M. Androgenetic Alopecia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Price, V.H. Treatment of Hair Loss. N. Engl. J. Med. 1999, 341, 964–973. [Google Scholar] [CrossRef]
- Thiedke, C.C. Alopecia in women. Am. Fam. Physician 2003, 67, 1007–1014. [Google Scholar]
- Malkud, S. Telogen Effluvium: A Review. Journal of clinical and diagnostic research. JCDR 2015, 9, WE01–WE03. [Google Scholar]
- Phillips, T.G.; Slomiany, W.P.; Allison, R. Hair Loss: Common Causes and Treatment. Am. Fam. Physician 2017, 96, 371–378. [Google Scholar]
- Saleh, D.; Nassereddin, A.; Cook, C. Anagen Effluvium. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Bender, A.M.; Cohen, B.A. Chapter 8—Disorders of the Hair and Nails. In Pediatric Dermatology, 4th ed.; Cohen, B.A., Ed.; W.B. Saunders: London, UK, 2013; pp. 211–239. [Google Scholar]
- Springer, K.; Brown, M.; Stulberg, D.L. Common hair loss disorders. Am. Fam. Physician 2003, 68, 93–102. [Google Scholar]
- Mounsey, A.L.; Reed, S.W. Diagnosing and treating hair loss. Am. Fam. Physician 2009, 80, 356–362. [Google Scholar]
- Khopkar, U.; Doshi, B.; Jain, N. Trichoscopy in alopecias: Diagnosis simplified. Int. J. Trichology 2013, 5, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Rudnicka, L.; Olszewska, M.; Rakowska, A.; Kowalska-Oledzka, E.; Slowinska, M. Trichoscopy: A new method for diagnosing hair loss. J. Drugs Dermatol. 2008, 7, 651–654. [Google Scholar]
- Mariya, M.; Antonella, T. Hair and scalp dermatoscopy. J. Am. Acad. Dermatol. 2012, 67, 1040–1048. [Google Scholar]
- Inui, S. Trichoscopy for common hair loss diseases: Algorithmic method for diagnosis. J. Dermatol. 2011, 38, 71–75. [Google Scholar] [CrossRef]
- Chang, W.-J.; Chen, L.-B.; Chen, M.-C.; Chiu, Y.-C.; Lin, J.-Y. ScalpEye: A Deep Learning-Based Scalp Hair Inspection and Diagnosis System for Scalp Health. IEEE Access 2020, 8, 134826–134837. [Google Scholar] [CrossRef]
- Cho, T.S.; Freeman, W.T.; Tsao, H. A reliable skin mole localization scheme. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007. [Google Scholar]
- Shih, H.-C. An Unsupervised Hair Segmentation and Counting System in Microscopy Images. IEEE Sens. J. 2014, 15, 3565–3572. [Google Scholar] [CrossRef]
- Kim, H.; Kim, W.; Rew, J.; Rho, S.; Park, J.; Hwang, E. Evaluation of Hair and Scalp Condition Based on Microscopy Image Analysis. In Proceedings of the 2017 International Conference on Platform Technology and Service (PlatCon), Busan, Korea, 13–15 February 2017. [Google Scholar]
- Benhabiles, H.; Hammoudi, K.; Yang, Z.; Windal, F.; Melkemi, M.; Dornaika, F.; Arganda-Carreras, I. Deep Learning based Detection of Hair Loss Levels from Facial Images. In Proceedings of the 2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA), Istanbul, Turkey, 6–9 November 2019. [Google Scholar]
- Seo, S.; Park, J. Trichoscopy of Alopecia Areata: Hair Loss Feature Extraction and Computation Using Grid Line Selection and Eigenvalue. Comput. Math. Methods Med. 2020, 2020, 6908018. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, C.S.; Khan, S.J.; Chaudhry, B.; Aijaz, S.F.; Hassan, U. Classification Framework for Healthy Hairs and Alopecia Areata: A Machine Learning (ML) Approach. Comput. Math. Methods Med. 2021, 2021, 1102083. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kang, S.; Lee, B.-D. Evaluation of Automated Measurement of Hair Density Using Deep Neural Networks. Sensors 2022, 22, 650. [Google Scholar] [CrossRef]
- Podlodowski, L.; Roziewski, S.; Nurzyński, M. An ensemble of Deep Convolutional Neural Networks for Marking Hair Follicles on Microscopic Images. In Proceedings of the Position Papers of the 2018 Federated Conference on Computer Science and Information Systems, Poznań, Poland, 9–12 September 2018. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Qiao, S.; Chen, L.-C.; Yuille, A. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. ArXiv 2018, arXiv:1804.02767. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Targ, S.; Almeida, D.; Lyman, K. Resnet in resnet: Generalizing residual architectures. arXiv 2016, arXiv:1603.08029. [Google Scholar]
- Shu, J.-H.; Nian, F.-D.; Yu, M.-H.; Li, X. An Improved Mask R-CNN Model for Multiorgan Segmentation. Math. Probl. Eng. 2020, 2020, 8351725. [Google Scholar] [CrossRef]
- Yang, Z.; Dong, R.; Xu, H.; Gu, J. Instance Segmentation Method Based on Improved Mask R-CNN for the Stacked Electronic Components. Electronics 2020, 9, 886. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; MIT Press: Montreal, QC, Canada, 2015; Volume 1, pp. 91–99. [Google Scholar]
- Gupta, M.; Mysore, V. Classifications of patterned hair loss: A review. J. Cutan. Aesthetic Surg. 2016, 9, 3–12. [Google Scholar] [CrossRef] [PubMed]
Dataset | Total | Train | Test | |
---|---|---|---|---|
Images | 600 | 450 (75%) | 150 (25%) | |
Labels | Total | 24,012 | 17,261 | 6751 |
Severe | 3836 | 2794 | 1042 | |
Normal | 11,262 | 8059 | 3203 | |
Healthy | 8914 | 6408 | 2506 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Kwon, S.; Fu, J.; Park, J.-H. Hair Follicle Classification and Hair Loss Severity Estimation Using Mask R-CNN. J. Imaging 2022, 8, 283. https://doi.org/10.3390/jimaging8100283
Kim J-H, Kwon S, Fu J, Park J-H. Hair Follicle Classification and Hair Loss Severity Estimation Using Mask R-CNN. Journal of Imaging. 2022; 8(10):283. https://doi.org/10.3390/jimaging8100283
Chicago/Turabian StyleKim, Jong-Hwan, Segi Kwon, Jirui Fu, and Joon-Hyuk Park. 2022. "Hair Follicle Classification and Hair Loss Severity Estimation Using Mask R-CNN" Journal of Imaging 8, no. 10: 283. https://doi.org/10.3390/jimaging8100283
APA StyleKim, J. -H., Kwon, S., Fu, J., & Park, J. -H. (2022). Hair Follicle Classification and Hair Loss Severity Estimation Using Mask R-CNN. Journal of Imaging, 8(10), 283. https://doi.org/10.3390/jimaging8100283