Seismic Waveform Inversion Capability on Resource-Constrained Edge Devices
Abstract
:1. Introduction
2. Overview and Motivation
- We propose a novel edge computing-based inversion technique which is based on the implementation of DCN models on Raspberry Pi for inversion. Our DCN models are implemented based on modified versions of the UNet [30] and InversionNet [31] architectures. Both model architectures consist of convolution and deconvolution layers (encoder-decoder) which will be introduced in detail later in the paper.
- Our DCN models are implemented effectively on the Raspberry Pi to perform the inversion in real-time with superior performance.
- The inference times achieved for both models on the Raspberry Pi are very comparable to the inference times achieved on the GPU.
- We have designed a user-friendly and interactive GUI to automate and control the model execution and inversion process on the Raspberry Pi.
3. Background
3.1. Physics-Driven Full-Waveform Inversion
3.2. Data-Driven Full-Waveform Inversion
4. Data and Model Description
4.1. Salt Velocity Model Design
4.2. Salt Data Design
4.3. Kimberlina Data and Velocity Model Design
4.4. DCN Architecture
5. Noise Addition
Algorithm 1 Algorithm to add noise to the seismic image. |
|
6. User Interactive GUI Design
7. Experimental Setup and Results
7.1. Training Settings
7.2. Inference Performance
7.3. Inference Time
7.4. Reconstruction Results
7.5. Effects of Noise at Different SNRs on Reconstructions
7.6. Scalability of Datasets and Proposed Method to Real-World/Field Applications
7.7. Comparison of Our Results with Existing Works
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Virieux, J.; Asnaashari, A.; Brossier, R.; Métivier, L.; Ribodetti, A.; Zhou, W. Chapter 6. An Introduction to Full Waveform Inversion; Society of Exploration Geophysicists: Tulsa, OK, USA, 2014. [Google Scholar]
- Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC1–WCC26. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, Y. Data-Driven Seismic Waveform Inversion: A Study on the Robustness and Generalization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6900–6913. [Google Scholar] [CrossRef] [Green Version]
- Guitton, A.; Díaz, G.E.A. Constrained full-waveform inversion by model reparameterization geologically constrained FWI. Geophysics 2012, 77, R117–R127. [Google Scholar] [CrossRef]
- Guitton, A. Blocky regularization schemes for Full-Waveform Inversion. Geophys. Prospect. 2012, 60, 870–884. [Google Scholar] [CrossRef]
- Hu, W.; Abubakar, A.; Habashy, T.M. Simultaneous multifrequency inversion of full-waveform seismic data. Geophysics 2009, 74, 1–14. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, L. Quantifying subsurface geophysical properties changes using double-difference seismic-waveform inversion with a modified total-variation regularization scheme. Geophys. Suppl. Mon. Not. R. Astron. Soc. 2015, 203, 2125–2149. [Google Scholar] [CrossRef]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; SIAM: Philadelphia, PA, USA, 2005. [Google Scholar]
- Fichtner, A. Full Seismic Waveform Modelling and Inversion; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Qin, F.; Fei, T.W.; Luo, Y. Velocity model building from waveform tomography of band limited reflection seismic data. In Proceedings of the 2013 SEG Annual Meeting, Houston, TX, USA, 22–27 September 2013. [Google Scholar]
- Lewis, W.; Vigh, D. Deep learning prior models from seismic images for full-waveform inversion. In SEG Technical Program Expanded Abstracts 2017; Society of Exploration Geophysicists: Houston, TX, USA, 2017; pp. 1512–1517. [Google Scholar]
- Lin, Y.; Huang, L. Ultrasound waveform tomography with a modified total-variation regularization scheme. In Proceedings of the SPIE Medical Imaging 2013: Ultrasonic Imaging, Tomography, and Therapy, Lake Buena Vista, FL, USA, 9–14 February 2013; Volume 8675, pp. 379–387. [Google Scholar]
- Lin, Y.; Huang, L. Ultrasound waveform tomography with the second-order total-generalized-variation regularization. In Proceedings of the SPIE Medical Imaging 2016: Physics of Medical Imaging, San Diego, CA, USA, 27 February–3 March 2016; Volume 9783, pp. 1377–1383. [Google Scholar]
- Zhang, Z.; Huang, L. Double-difference elastic-waveform inversion with prior information for time-lapse monitoring. Geophysics 2013, 78, 259–273. [Google Scholar] [CrossRef]
- Ma, Y.; Hale, D.; Gong, B.; Meng, Z. Image-guided sparse-model full waveform inversion. Geophysics 2012, 77, 189–198. [Google Scholar] [CrossRef]
- Tran, K.T.; McVay, M.; Faraone, M.; Horhota, D. Sinkhole detection using 2D full seismic waveform tomography. Geophysics 2013, 78, 175–183. [Google Scholar] [CrossRef]
- Manu, D.; Huang, S.; Ding, C.; Yang, L. Co-Exploration of Graph Neural Network and Network-on-Chip Design Using AutoML. In Proceedings of the 2021 on Great Lakes Symposium on VLSI, Virtual, 22–25 June 2021; pp. 175–180. [Google Scholar]
- LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional neural networks and applications in vision. In Proceedings of the IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, Paris, France, 30 May 2010–2 June 2010; pp. 253–256. [Google Scholar]
- Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.; Rueckert, D. A deep cascade of convolutional neural networks for MR image reconstruction. In Information Processing in Medical Imaging, Proceedings of the 25th International Conference, IPMI 2017, Boone, NC, USA, 25–30 June 2017; Springer: Cham, Switzerland, 2017; pp. 647–658. [Google Scholar]
- Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 2017, 26, 4509–4522. [Google Scholar] [CrossRef]
- Richardson, A. Seismic full-waveform inversion using deep learning tools and techniques. arXiv 2018, arXiv:1801.07232. [Google Scholar]
- Araya-Polo, M.; Jennings, J.; Adler, A.; Dahlke, T. Deep learning tomography. Lead. Edge 2018, 37, 58–66. [Google Scholar] [CrossRef]
- Farris, S.; Araya-Polo, M.; Jennings, J.; Clapp, B.; Biondi, B. Tomography: A deep learning vs. full-waveform inversion comparison. In Proceedings of the First EAGE Workshop on High Performance Computing for Upstream in Latin America, European Association of Geoscientists and Engineers, Bucaramanga, Colombia, 21–22 September 2018. [Google Scholar]
- Ovcharenko, O.; Kazei, V.; Peter, D.; Zhang, X.; Alkhalifah, T. Low frequency data extrapolation using a feed-forward ANN. In Proceedings of the 80th EAGE Conference and Exhibition 2018, Copenhagen, Denmark, 11–14 June 2018; pp. 1–15. [Google Scholar]
- Yang, F.; Ma, J. Deep-learning inversion: A next-generation seismic velocity model building method. Geophysics 2019, 84, R583–R599. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Gómez, R.; Yang, J.; Lin, Y.; Theiler, J.; Wohlberg, B. Physics-consistent data-driven waveform inversion with adaptive data augmentation. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Mao, B.; Han, L.G.; Feng, Q.; Yin, Y.C. Subsurface velocity inversion from deep learning-based data assimilation. J. Appl. Geophys. 2019, 167, 172–179. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, D.; Du, Y.; You, C.; Zhang, J.; Huang, K. Toward an intelligent edge: Wireless communication meets machine learning. IEEE Commun. Mag. 2020, 58, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Merck, M.L.; Wang, B.; Liu, L.; Jia, C.; Siqueira, A.; Huang, Q.; Saraha, A.; Lim, D.; Cao, J.; Hadidi, R.; et al. Characterizing the Execution of Deep Neural Networks on Collaborative Robots and Edge Devices. In Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines learning, Chicago, IL, USA, 28 July–1 August 2019. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Wu, Y.; Lin, Y. InversionNet: An Efficient and Accurate Data-Driven Full Waveform Inversion. IEEE Trans. Comput. Imaging 2020, 6, 419–433. [Google Scholar] [CrossRef]
- Jordan, P.; Wagoner, J. Characterizing Construction of Existing Wells to a CO2 Storage Target; Technical Report; U.S. Department of Energy—Office of Fossil Energy: The Kimberlina Site, CA, USA, 2017. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML’15), Lille, France, 6–11 July 2015; Volume 37, pp. 448–456. [Google Scholar]
- Agarap, A.F. Deep Learning using Rectified Linear Units (ReLU). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
No-Noise UNet | Noise-Aware UNet | |||
---|---|---|---|---|
Sample | PSNR | SSIM | PSNR | SSIM |
1 | 16.3088 | 0.4873 | 16.0833 | 0.5169 |
2 | 17.9765 | 0.5340 | 17.8331 | 0.5338 |
3 | 12.9452 | 0.5110 | 14.4647 | 0.4907 |
4 | 13.4861 | 0.2539 | 16.4363 | 0.2779 |
5 | 26.2139 | 0.5325 | 24.2624 | 0.4877 |
6 | 22.5901 | 0.5032 | 16.1032 | 0.4251 |
7 | 22.7110 | 0.4629 | 19.2977 | 0.4159 |
8 | 15.8107 | 0.5168 | 14.9872 | 0.4984 |
9 | 12.4938 | 0.4285 | 19.2041 | 0.3643 |
10 | 13.9382 | 0.5091 | 18.0979 | 0.5965 |
No-Noise InversionNet | Noise-Aware InversionNet | |
---|---|---|
Sample | SSIM | SSIM |
1 | 0.984 | 0.991 |
2 | 0.999 | 0.999 |
3 | 0.978 | 0.981 |
4 | 0.983 | 0.983 |
5 | 0.999 | 0.999 |
6 | 0.993 | 0.992 |
7 | 0.995 | 0.999 |
8 | 0.942 | 0.961 |
9 | 0.999 | 0.969 |
10 | 0.997 | 0.998 |
Specifications | Hardware | ||
---|---|---|---|
Raspberry Pi 4 Model B | GPU NVIDIA GeForce GTX 1600 Super | Yang and Ma [25] HP Z840 workstation | |
Processor | Quad core—A72 1.5 GHz | Intel core i7 1.9 GHz | 32 Core Xeon CPU |
RAM | 8 GB DDR4 SDRAM | 16 GB DDR4 | 128 GB |
Storage | Micro-SD (128 GB) | SSD (512 GB) | - |
Training time | |||
UNet | - | 1 h 30 min (no-noise) 8 h (noise-aware) | 43 min |
Inference time per prediction (s) | |||
UNet | 22 s | 2 s | 2 s |
InversionNet | 4 s | 18 s | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manu, D.; Tshakwanda, P.M.; Lin, Y.; Jiang, W.; Yang, L. Seismic Waveform Inversion Capability on Resource-Constrained Edge Devices. J. Imaging 2022, 8, 312. https://doi.org/10.3390/jimaging8120312
Manu D, Tshakwanda PM, Lin Y, Jiang W, Yang L. Seismic Waveform Inversion Capability on Resource-Constrained Edge Devices. Journal of Imaging. 2022; 8(12):312. https://doi.org/10.3390/jimaging8120312
Chicago/Turabian StyleManu, Daniel, Petro Mushidi Tshakwanda, Youzuo Lin, Weiwen Jiang, and Lei Yang. 2022. "Seismic Waveform Inversion Capability on Resource-Constrained Edge Devices" Journal of Imaging 8, no. 12: 312. https://doi.org/10.3390/jimaging8120312
APA StyleManu, D., Tshakwanda, P. M., Lin, Y., Jiang, W., & Yang, L. (2022). Seismic Waveform Inversion Capability on Resource-Constrained Edge Devices. Journal of Imaging, 8(12), 312. https://doi.org/10.3390/jimaging8120312