Image-Based Monitoring of Cracks: Effectiveness Analysis of an Open-Source Machine Learning-Assisted Procedure
Abstract
:1. Introduction
2. Methodology
2.1. Architecture of the Approach
2.1.1. Photo Acquisition Module (PAM)
2.1.2. Photo Optimization Module (POM)
2.1.3. Crack Detection Module (CDM)
2.1.4. Crack Analysis Module (CAM)
2.2. Test Sites
2.2.1. Laboratory Test
2.2.2. On-Site Test
3. Results
3.1. Laboratory Test
3.2. On-Site Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Radiometric Optimization—ImageJ Macro
Appendix B. Additional Table Including All Results Obtained in the Laboratory Test
Length (cm) | Width (cm) | |||||||
Crack ID | Proposed Method | Ground-Truth | Error | Crack ID | Proposed Method | Ground-Truth | Error | |
Epoch0LAB | A-I | 23.673 | 23.862 | −0.189 | A-a | 1.374 | 1.250 | 0.124 |
A-II | 19.301 | 19.548 | −0.247 | A-b | 0.979 | 1.000 | −0.021 | |
A-III | 10.455 | 10.390 | 0.065 | A-c | 0.187 | 0.125 | 0.062 | |
A-IV | 10.453 | 10.694 | −0.241 | A-d | 0.250 | 0.125 | 0.125 | |
A-V | 12.425 | 12.467 | −0.042 | A-e | 0.268 | 0.063 | 0.206 | |
A-VI | 13.090 | 13.053 | 0.037 | A-f | 1.679 | 1.250 | 0.429 | |
A-g | 1.982 | 1.750 | 0.232 | |||||
B-I | 14.034 | 14.037 | −0.003 | B-a | 0.211 | 0.050 | 0.161 | |
B-II | 10.690 | 10.612 | 0.078 | B-b | 0.181 | 0.050 | 0.131 | |
B-c | 0.152 | 0.050 | 0.102 | |||||
C-I | 19.388 | 19.410 | −0.022 | C-a | 0.201 | 0.063 | 0.139 | |
C-II | 9.766 | 9.802 | −0.036 | C-b | 0.211 | 0.063 | 0.149 | |
C-III | 7.253 | 7.181 | 0.072 | C-c | 0.151 | 0.125 | 0.026 | |
C-IV | 7.354 | 7.353 | 0.001 | C-d | 0.150 | 0.125 | 0.025 | |
C-e | 0.204 | 0.063 | 0.142 | |||||
Epoch1LAB | A-I | 23.591 | 23.862 | −0.271 | A-a | 1.374 | 1.250 | 0.124 |
A-II | 19.299 | 19.548 | −0.249 | A-b | 0.979 | 1.000 | −0.021 | |
A-III | 10.443 | 10.390 | 0.053 | A-c | 0.232 | 0.125 | 0.107 | |
A-IV | 10.465 | 10.694 | −0.229 | A-d | 0.185 | 0.125 | 0.060 | |
A-V | 12.447 | 12.467 | −0.020 | A-e | 0.229 | 0.063 | 0.167 | |
A-VI | 13.022 | 13.053 | −0.031 | A-f | 1.679 | 1.250 | 0.429 | |
A-g | 1.988 | 1.750 | 0.238 | |||||
B-I | 14.034 | 14.037 | −0.003 | B-a | 0.211 | 0.050 | 0.161 | |
B-II | 10.637 | 10.612 | 0.025 | B-b | 0.184 | 0.050 | 0.134 | |
B-c | 0.152 | 0.050 | 0.102 | |||||
C-I | 19.388 | 19.410 | −0.022 | C-a | 0.200 | 0.063 | 0.138 | |
C-II | 9.766 | 9.802 | −0.036 | C-b | 0.185 | 0.063 | 0.123 | |
C-III | 7.253 | 7.181 | 0.072 | C-c | 0.189 | 0.125 | 0.064 | |
C-IV | 7.435 | 7.353 | 0.082 | C-d | 0.116 | 0.125 | −0.009 | |
C-e | 0.201 | 0.063 | 0.139 | |||||
Epoch2LAB | A-I | 23.536 | 23.862 | −0.326 | A-a | 1.304 | 1.250 | 0.054 |
A-II | 19.270 | 19.548 | −0.278 | A-b | 0.979 | 1.000 | −0.021 | |
A-III | 10.430 | 10.390 | 0.040 | A-c | 0.228 | 0.125 | 0.103 | |
A-IV | 10.465 | 10.694 | −0.229 | A-d | 0.147 | 0.125 | 0.022 | |
A-V | 12.447 | 12.467 | −0.020 | A-e | 0.279 | 0.063 | 0.217 | |
A-VI | 13.022 | 13.053 | −0.031 | A-f | 1.679 | 1.250 | 0.429 | |
A-g | 1.978 | 1.750 | 0.228 | |||||
B-I | 14.034 | 14.037 | −0.003 | B-a | 0.211 | 0.050 | 0.161 | |
B-II | 10.690 | 10.612 | 0.078 | B-b | 0.188 | 0.050 | 0.138 | |
B-c | 0.156 | 0.050 | 0.106 | |||||
C-I | 19.388 | 19.410 | −0.022 | C-a | 0.201 | 0.063 | 0.139 | |
C-II | 9.766 | 9.802 | −0.036 | C-b | 0.165 | 0.063 | 0.103 | |
C-III | 7.253 | 7.181 | 0.072 | C-c | 0.166 | 0.125 | 0.041 | |
C-IV | 7.435 | 7.353 | 0.082 | C-d | 0.154 | 0.125 | 0.029 | |
C-e | 0.202 | 0.063 | 0.140 | |||||
Epoch3LAB | A-I | 23.536 | 23.862 | −0.326 | A-a | 1.302 | 1.250 | 0.052 |
A-II | 19.270 | 19.548 | −0.278 | A-b | 0.979 | 1.000 | −0.021 | |
A-III | 10.415 | 10.390 | 0.025 | A-c | 0.228 | 0.125 | 0.103 | |
A-IV | 10.465 | 10.694 | −0.229 | A-d | 0.219 | 0.125 | 0.094 | |
A-V | 12.447 | 12.467 | −0.020 | A-e | 0.279 | 0.063 | 0.217 | |
A-VI | 13.022 | 13.053 | −0.031 | A-f | 1.679 | 1.250 | 0.429 | |
A-g | 1.978 | 1.750 | 0.228 | |||||
B-I | 13.982 | 14.037 | −0.055 | B-a | 0.211 | 0.050 | 0.161 | |
B-II | 10.691 | 10.612 | 0.079 | B-b | 0.149 | 0.050 | 0.099 | |
B-c | 0.153 | 0.050 | 0.103 | |||||
C-I | 19.388 | 19.410 | −0.022 | C-a | 0.201 | 0.063 | 0.139 | |
C-II | 9.766 | 9.802 | −0.036 | C-b | 0.165 | 0.063 | 0.103 | |
C-III | 7.253 | 7.181 | 0.072 | C-c | 0.166 | 0.125 | 0.041 | |
C-IV | 7.435 | 7.353 | 0.082 | C-d | 0.152 | 0.125 | 0.027 | |
C-e | 0.204 | 0.063 | 0.142 |
References
- MIT. Italian Ministry of Infrastructure and Transport. Aggiornamento delle «Norme tecniche per le costruzioni». Gazzetta Ufficiale, 20 February 2018; pp. 1–198. (In Italian) [Google Scholar]
- Shan, B.; Zheng, S.; Ou, J. A stereovision-based crack width detection approach for concrete surface assessment. KSCE J. Civ. Eng. 2016, 20, 803–812. [Google Scholar] [CrossRef]
- Barrias, A.; Casas, J.R.; Villalba, S. Embedded distributed optical fiber sensors in reinforced concrete structures—A case study. Sensors 2018, 18, 980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, H.; Li, W.; Luo, Z.; Chen, Y.; Fatholahi, S.N.; Cheng, M.; Wang, C.; Junior, J.M.; Li, J. GCN-Based Pavement Crack Detection using mobile LiDAR point clouds. IEEE Trans. Intell. Transp. Syst. 2021, 1–10. [Google Scholar] [CrossRef]
- Bellagamba, I.; Caponero, M.; Mongelli, M. Using fiber-optic sensors and 3D photogrammetric reconstruction for crack pattern monitoring of masonry structures at the Aurelian Walls in Rome, Italy. WIT Trans. Built Environ. 2019, 191, 457–465. [Google Scholar] [CrossRef]
- Barazzetti, L.; Scaioni, M. Crack measurement: Development, testing and applications of an automatic image-based algorithm. ISPRS J. Photogramm. Remote Sens. 2009, 64, 285–296. [Google Scholar] [CrossRef]
- Chang, T.; Lee, L. Automatic monitoring system based on IoT and vision technology. Preprints 2018, 1–16. [Google Scholar] [CrossRef]
- Jahanshahi, M.R.; Masri, S.F.; Padgett, C.W.; Sukhatme, G.S. An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Mach. Vis. Appl. 2013, 24, 227–241. [Google Scholar] [CrossRef]
- Galantucci, R.A.; Fatiguso, F. Advanced damage detection techniques in historical buildings using digital photogrammetry and 3D surface anlysis. J. Cult. Herit. 2019, 36, 51–62. [Google Scholar] [CrossRef]
- Barazzetti, L.; Scaioni, M. Development and implementation of image-based algorithms for measurement of deformations in material testing. Sensors 2010, 10, 7469–7495. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, S.; Minakata, N.; Kikuchi, T.; Yano, T. Improved digital photogrammetry technique for crack monitoring. Adv. Eng. Inform. 2015, 29, 851–858. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Qi, D.; Liu, Y. Automatic crack detection and classification method for subway tunnel safety monitoring. Sensors 2014, 14, 19307–19328. [Google Scholar] [CrossRef] [PubMed]
- Sizyakin, R.; Cornelis, B.; Meeus, L.; Martens, M.; Voronin, V.; Pižurica, A. A deep learning approach to crack detection in panel paintings. Comput. Sci. 2018, 40–42. [Google Scholar]
- Vazquez-Nicolas, J.M.; Zamora, E.; Gonzalez-Hernandez, I.; Lozano, R.; Sossa, H. Towards automatic inspection: Crack recognition based on Quadrotor UAV-taken images. In Proceedings of the International Conference on Unmanned Aircraft Systems, Dallas, TX, USA, 12–15 June 2018; pp. 654–659. [Google Scholar] [CrossRef]
- Özgenel, F.; Gönenç Sorguç, A. Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In Proceedings of the ISARC 2018 35th International Symposium on Automation and Robotics in Construction, Berlin, Germany, 20–25 July 2018. [Google Scholar] [CrossRef]
- Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alexandria Eng. J. 2018, 57, 787–798. [Google Scholar] [CrossRef]
- Agnes Shifani, S.; Thulasiram, P.; Narendran, K.; Sanjay, D.R. A study of methods using image processing technique in crack detection. In Proceedings of the 2nd International Conference on Innovative Mechanisms for Industry Applications, Bangalore, India, 5–7 March 2020; pp. 578–582. [Google Scholar]
- Yamaguchi, T.; Nakamura, S.; Saegusa, R.; Hashimoto, S. Image-based crack detection for real concrete surfaces. IEEJ Trans. Electr. Electron. Eng. 2008, 3, 128–135. [Google Scholar] [CrossRef]
- Valença, J.; Dias-Da-Costa, D.; Júlio, E.; Araújo, H.; Costa, H. Automatic crack monitoring using photogrammetry and image processing. Meas. J. Int. Meas. Confed. 2013, 46, 433–441. [Google Scholar] [CrossRef]
- Schmugge, S.J.; Rice, L.; Lindberg, J.; Grizziy, R.; Joffey, C.; Shin, M.C. Crack segmentation by leveraging multiple frames of varying illumination. In Proceedings of the IEEE Winter Conference on Applications of Computer Visions, Santa Rosa, CA, USA, 24–31 March 2017; pp. 1045–1053. [Google Scholar] [CrossRef]
- Öztürk, Ş.; Akdemir, B. Fuzzy logic-based segmentation of manufacturing defects on reflective surfaces. Neural Comput. Appl. 2018, 29, 107–116. [Google Scholar] [CrossRef]
- Fujita, Y.; Hamamoto, Y. A robust automatic crack detection method from noisy concrete surfaces. Mach. Vis. Appl. 2011, 22, 245–254. [Google Scholar] [CrossRef]
- Öztürk, Ş.; Akdemir, B. Real-time product quality control system using optimized Gabor filter bank. Int. J. Adv. Manuf. Technol. 2018, 96, 11–19. [Google Scholar] [CrossRef]
- Shahbazi, Z.; Byun, Y.C. A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic. Electronics 2021, 10, 41. [Google Scholar] [CrossRef]
- Weidner, L.; Walton, G.; Kromer, R. Classification methods for point clouds in rock slope monitoring: A novel machine learning approach and comparative analysis. Eng. Geol. 2019, 263, 105326. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, A.R.; Lee, S.W. Artificial neural network-based automated crack detection and analysis for the inspection of concrete structures. Appl. Sci. 2020, 10, 8105. [Google Scholar] [CrossRef]
- Hsieh, Y.-A.; Tsai, Y.J. Machine learning for crack detection: Review and model performance comparison. J. Comput. Civ. Eng. 2020, 34, 04020038. [Google Scholar] [CrossRef]
- Ko, P.; Prieto, S.A.; García de Soto, B. ABECIS: An automated building exterior crack inspection system using UAVs, open-source deep learning and photogrammetry. In Proceedings of the 38th International Symposium on Automation and Robotics in Construction, Dubai, United Arab Emirates, 2–4 November 2021; pp. 637–644. [Google Scholar] [CrossRef]
- Lins, R.G.; Givigi, S.N. Automatic crack detection and measurement based on image analysis. IEEE Trans. Instrum. Meas. 2016, 65, 583–590. [Google Scholar] [CrossRef]
- Albareda-Valls, A.; Herrera, A.B.; Mestre, J.L.Z.; Zaribaf, S.S. Image post-processing method for quantification of cracking in RC precast beams under bending. Buildings 2018, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Mahfuzur Rahman, M.; Saifullah, I.; Kumar Ghosh, S. Detection and measurements of cracks in axially loaded tension RC members by image processing technique. Am. J. Civ. Eng. Archit. 2019, 7, 115–120. [Google Scholar] [CrossRef]
- Meyer, C.S.; Bonyi, E.; Drake, K.; Obafemi-Babatunde, T.; Daodu, A.; Ajifa, D.; Bigio, A.; Taylor, J.; Haque, B.Z.; O’Brien, D.J.; et al. Automated detection and quantification of transverse cracks on woven composites. J. Reinf. Plast. Compos. 2021, 40, 898–911. [Google Scholar] [CrossRef]
- Scuro, C.; Sciammarella, P.F.; Lamonaca, F.; Olivito, R.S.; Carni, D.L. IoT for structural health monitoring. IEEE Instrum. Meas. Mag. 2018, 21, 4–14. [Google Scholar] [CrossRef]
- Saponaro, M.; Capolupo, A.; Caporusso, G.; Reina, A.; Fratino, U.; Tarantino, E. Exploring UAV and cloud platform potentialities for detecting geomorphological changes in coastal environment. In Proceedings of the Protection and Restoration of the Environment, Patras, Greece, 7–10 July 2020; pp. 301–310. [Google Scholar]
- Sony, S.; Laventure, S.; Sadhu, A. A literature review of next-generation smart sensing technology in structural health monitoring. Struct. Control Health Monit. 2019, 26, e2321. [Google Scholar] [CrossRef]
- Bixion BixiCon III—User Guide. 2020. Available online: https://www.bixion.com/BixiCon-manual.pdf (accessed on 18 December 2021).
- Roncella, R.; Forlani, G.; Fornari, M.; Diotri, F. Landslide monitoring by fixed-base terrestrial stereo-photogrammetry. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Parente, L.; Chandler, J.H.; Dixon, N. Automated registration of SfM-MVS multitemporal datasets using terrestrial and oblique aerial images. Photogramm. Rec. 2021, 36, 12–35. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Luhmann, T.; Fraser, C.; Maas, H.G. Sensor modelling and camera calibration for close-range photogrammetry. ISPRS J. Photogramm. Remote Sens. 2016, 115, 37–46. [Google Scholar] [CrossRef]
- Parente, L.; Chandler, J.H.; Dixon, N. Optimising the quality of an SfM-MVS slope monitoring system using fixed cameras. Photogramm. Rec. 2019, 34, 408–427. [Google Scholar] [CrossRef]
- Kan, A. Machine learning applications in cell image analysis. Immunol. Cell Biol. 2017, 95, 525–530. [Google Scholar] [CrossRef]
- Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.N.; Kausler, B.X.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M.; et al. Ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 2019, 16, 1226–1232. [Google Scholar] [CrossRef]
- Geurts, P.; Irrthum, A.; Wehenkel, L. Supervised learning with decision tree-based methods in computational and systems biology. Mol. Biosyst. 2009, 5, 1593–1605. [Google Scholar] [CrossRef] [PubMed]
- Steger, C. An Unbiased Detector of Curvilinear Structures. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhao, X. Image-based concrete crack detection using convolutional neural network and exhaustive search technique. Adv. Civ. Eng. 2019, 2019, 6520620. [Google Scholar] [CrossRef] [Green Version]
- Dorafshan, S.; Thomas, R.J.; Maguire, M. SDNET2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data Brief 2018, 21, 1664–1668. [Google Scholar] [CrossRef]
- Germanese, D.; Leone, G.R.; Moroni, D.; Pascali, M.A.; Tampucci, M. Long-term monitoring of crack patterns in historic structures using UAVs and planar markers: A preliminary study. J. Imaging 2018, 4, 99. [Google Scholar] [CrossRef] [Green Version]
Mean Error | Epoch0LAB | Epoch1LAB | Epoch2LAB | Epoch3LAB |
---|---|---|---|---|
Width (cm) | 0.135 | 0.130 | 0.126 | 0.128 |
Length (cm) | −0.044 | −0.052 | −0.056 | −0.062 |
St. Deviation | Crack-a | Crack-b | Crack-c |
---|---|---|---|
Width (cm) | 0.019 | 0.007 | 0011 |
Length (cm) | 0.025 | 0.026 | 0.012 |
Epoch | Total Crack-Pixel | % |
---|---|---|
Ground-truth | 6972 | 100 |
1 | 6693 | 96 |
2 | 6321 | 90.7 |
3 | 6673 | 95.7 |
4 | 6786 | 97.3 |
5 | 5906 | 84.7 |
6 | 6365 | 91.3 |
7 | 4796 | 68.8 |
8 | 4528 | 64.9 |
9 | 4503 | 64.6 |
10 | 5896 | 84.6 |
Epoch | RoI1 | RoI2 | RoI3 | RoI4 | RoI5 | RoI6 |
---|---|---|---|---|---|---|
0 | 5.2 | 5.3 | 5.5 | 5.8 | 5.0 | 5.7 |
1 | 5.4 | 5.1 | 5.3 | 5.9 | 5.0 | 5.7 |
2 | 4.8 | 5.0 | 5.0 | 5.4 | 5.2 | 5.3 |
3 | 5.4 | 5.4 | 5.5 | 6.0 | 5.2 | 5.6 |
4 | 5.3 | 5.4 | 5.5 | 6.1 | 5.1 | 5.8 |
5 | 5.2 | 4.6 | 4.8 | 5.7 | 5.6 | 5.4 |
6 | 5.2 | 4.8 | 4.8 | 5.4 | 5.7 | 5.8 |
7 | 4.4 | 3.0 | 4.1 | 5.3 | 5.7 | 5.7 |
8 | 4.4 | 3.8 | 4.2 | 4.8 | 5.6 | 5.4 |
9 | 4.4 | 2.8 | 4.4 | 5.2 | 5.5 | 5.5 |
10 | 5.0 | 4.6 | 4.7 | 5.8 | 5.5 | 5.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parente, L.; Falvo, E.; Castagnetti, C.; Grassi, F.; Mancini, F.; Rossi, P.; Capra, A. Image-Based Monitoring of Cracks: Effectiveness Analysis of an Open-Source Machine Learning-Assisted Procedure. J. Imaging 2022, 8, 22. https://doi.org/10.3390/jimaging8020022
Parente L, Falvo E, Castagnetti C, Grassi F, Mancini F, Rossi P, Capra A. Image-Based Monitoring of Cracks: Effectiveness Analysis of an Open-Source Machine Learning-Assisted Procedure. Journal of Imaging. 2022; 8(2):22. https://doi.org/10.3390/jimaging8020022
Chicago/Turabian StyleParente, Luigi, Eugenia Falvo, Cristina Castagnetti, Francesca Grassi, Francesco Mancini, Paolo Rossi, and Alessandro Capra. 2022. "Image-Based Monitoring of Cracks: Effectiveness Analysis of an Open-Source Machine Learning-Assisted Procedure" Journal of Imaging 8, no. 2: 22. https://doi.org/10.3390/jimaging8020022
APA StyleParente, L., Falvo, E., Castagnetti, C., Grassi, F., Mancini, F., Rossi, P., & Capra, A. (2022). Image-Based Monitoring of Cracks: Effectiveness Analysis of an Open-Source Machine Learning-Assisted Procedure. Journal of Imaging, 8(2), 22. https://doi.org/10.3390/jimaging8020022