Radiomics of Musculoskeletal Sarcomas: A Narrative Review
Abstract
:1. Background
2. Benign vs. Malignant and Histotype Differentiation
2.1. Soft-Tissue Tumors
2.2. Bone Tumors
3. Grading
3.1. Soft-Tissue Tumors
3.2. Bone Tumors
4. Treatment Response
4.1. Soft-Tissue Tumors
4.2. Bone Tumors
5. Local Recurrence and Metastasis
5.1. Soft-Tissue Tumors
5.2. Bone Tumors
6. Overall Survival
6.1. Soft-Tissue Tumors
6.2. Bone Tumors
7. Limitations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Casali, P.G.; Bielack, S.; Abecassis, N.; Aro, H.T.; Bauer, S.; Biagini, R.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; Brennan, B.; et al. Bone Sarcomas: ESMO–PaedCan–EURACAN Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2018, 29 (Suppl. 4), iv79–iv95. [Google Scholar] [CrossRef] [PubMed]
- Casali, P.G.; Abecassis, N.; Bauer, S.; Biagini, R.; Bielack, S.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; Brodowicz, T.; Broto, J.M.; et al. Soft Tissue and Visceral Sarcomas: ESMO–EURACAN Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2018, 29 (Suppl. 4), iv51–iv67. [Google Scholar] [CrossRef]
- Albano, D.; Messina, C.; Gitto, S.; Papakonstantinou, O.; Sconfienza, L. Differential Diagnosis of Spine Tumors: My Favorite Mistake. Semin. Musculoskelet. Radiol. 2019, 23, 026–035. [Google Scholar] [CrossRef] [PubMed]
- Kocak, B.; Durmaz, E.S.; Ates, E.; Kilickesmez, O. Radiomics with Artificial Intelligence: A Practical Guide for Beginners. Diagn. Interv. Radiol. 2019, 25, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics 2017, 37, 1483–1503. [Google Scholar] [CrossRef]
- Knapp, E.L.; Kransdorf, M.J.; Letson, G.D. Diagnostic Imaging Update: Soft Tissue Sarcomas. Cancer Control 2005, 12, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Crim, J.R.; Seeger, L.L.; Yao, L.; Chandnani, V.; Eckardt, J.J. Diagnosis of Soft-Tissue Masses with MR Imaging: Can Benign Masses Be Differentiated from Malignant Ones? Radiology 1992, 185, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.J.; Chung, H.W.; Shin, M.J.; Lee, S.H.; Lee, M.H.; Lee, J.S.; Kim, M.-J.; Lee, W.K. MRI to Differentiate Benign from Malignant Soft-Tissue Tumours of the Extremities: A Simplified Systematic Imaging Approach Using Depth, Size and Heterogeneity of Signal Intensity. Br. J. Radiol. 2012, 85, e831–e836. [Google Scholar] [CrossRef] [Green Version]
- Moulton, J.S.; Blebea, J.S.; Dunco, D.M.; Braley, S.E.; Bisset, G.S.; Emery, K.H. MR Imaging of Soft-Tissue Masses: Diagnostic Efficacy and Value of Distinguishing between Benign and Malignant Lesions. AJR Am. J. Roentgenol. 1995, 164, 1191–1199. [Google Scholar] [CrossRef]
- Gielen, J.L.M.A.; De Schepper, A.M.; Vanhoenacker, F.; Parizel, P.M.; Wang, X.L.; Sciot, R.; Weyler, J. Accuracy of MRI in Characterization of Soft Tissue Tumors and Tumor-like Lesions. A Prospective Study in 548 Patients. Eur. Radiol. 2004, 14, 2320–2330. [Google Scholar] [CrossRef]
- The WHO Classification of Tumours Editorial Board. In WHO Classification of Tumours Soft Tissue and Bone Tumours, 5th ed.; IARC Press: Lyon, France, 2020.
- Kransdorf, M.J.; Murphey, M.D. Radiologic Evaluation of Soft-Tissue Masses. AJR Am. J. Roentgenol. 2000, 175, 575–587. [Google Scholar] [CrossRef] [PubMed]
- De Schepper, A.; Ramon, F.; Degryse, H. Statistische Analyse von Kernspinresonanzparametern Zur Malignitäts-Prognose Bei 141 Weichteiltumoren. Rofo 1992, 156, 587–591. [Google Scholar] [CrossRef] [PubMed]
- De Schepper, A.M.; De Beuckeleer, L.; Vandevenne, J.; Somville, J. Magnetic Resonance Imaging of Soft Tissue Tumors. Eur. Radiol. 2000, 10, 213–223. [Google Scholar] [CrossRef]
- Harish, S.; Lee, J.C.; Ahmad, M.; Saifuddin, A. Soft Tissue Masses with “Cyst-like” Appearance on MR Imaging: Distinction of Benign and Malignant Lesions. Eur. Radiol. 2006, 16, 2652–2660. [Google Scholar] [CrossRef] [PubMed]
- Davnall, F.; Yip, C.S.P.; Ljungqvist, G.; Selmi, M.; Ng, F.; Sanghera, B.; Ganeshan, B.; Miles, K.A.; Cook, G.J.; Goh, V. Assessment of Tumor Heterogeneity: An Emerging Imaging Tool for Clinical Practice? Insights Imaging 2012, 3, 573–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganeshan, B.; Miles, K.A. Quantifying Tumour Heterogeneity with CT. Cancer Imaging 2013, 13, 140–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juntu, J.; Sijbers, J.; De Backer, S.; Rajan, J.; Van Dyck, D. Machine Learning Study of Several Classifiers Trained with Texture Analysis Features to Differentiate Benign from Malignant Soft-Tissue Tumors in T1-MRI Images. J. Magn. Reson. Imaging 2010, 31, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, J.; Bao, S.; Liu, J.; Hou, F.; Huang, Y.; Chen, H.; Duan, S.; Hao, D.; Liu, J. Preoperative MRI-Based Radiomic Machine-Learning Nomogram May Accurately Distinguish Between Benign and Malignant Soft-Tissue Lesions: A Two-Center Study. J. Magn. Reson. Imaging 2020, 52, 873–882. [Google Scholar] [CrossRef]
- Wang, H.; Nie, P.; Wang, Y.; Xu, W.; Duan, S.; Chen, H.; Hao, D.; Liu, J. Radiomics Nomogram for Differentiating between Benign and Malignant Soft-tissue Masses of the Extremities. J. Magn. Reson. Imaging 2020, 51, 155–163. [Google Scholar] [CrossRef]
- Myhre-Jensen, O. A Consecutive 7-Year Series of 1331 Benign Soft Tissue Tumours: Clinicopathologic Data. Comparison with Sarcomas. Acta Orthop. Scand. 1981, 52, 287–293. [Google Scholar] [CrossRef]
- Dei Tos, A. Liposarcoma: New Entities and Evolving Concepts. Ann. Diagn. Pathol. 2000, 4, 252–266. [Google Scholar] [CrossRef]
- Nagano, S.; Yokouchi, M.; Setoguchi, T.; Ishidou, Y.; Sasaki, H.; Shimada, H.; Komiya, S. Differentiation of Lipoma and Atypical Lipomatous Tumor by a Scoring System: Implication of Increased Vascularity on Pathogenesis of Liposarcoma. BMC Musculoskelet. Disord. 2015, 16, 36. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, P.W.; Griffin, A.M.; Eward, W.C.; Sternheim, A.; White, L.M.; Wunder, J.S.; Ferguson, P.C. Can Experienced Observers Differentiate between Lipoma and Well-Differentiated Liposarcoma Using Only MRI? Sarcoma 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Thornhill, R.E.; Golfam, M.; Sheikh, A.; Cron, G.O.; White, E.A.; Werier, J.; Schweitzer, M.E.; Di Primio, G. Differentiation of Lipoma From Liposarcoma on MRI Using Texture and Shape Analysis. Acad. Radiol. 2014, 21, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Malinauskaite, I.; Hofmeister, J.; Burgermeister, S.; Neroladaki, A.; Hamard, M.; Montet, X.; Boudabbous, S. Radiomics and Machine Learning Differentiate Soft-Tissue Lipoma and Liposarcoma Better than Musculoskeletal Radiologists. Sarcoma 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Coindre, J.-M.; Pédeutour, F.; Aurias, A. Well-Differentiated and Dedifferentiated Liposarcomas. Virchows Arch. 2010, 456, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Kashima, T.; Halai, D.; Ye, H.; Hing, S.N.; Delaney, D.; Pollock, R.; O’Donnell, P.; Tirabosco, R.; Flanagan, A.M. Sensitivity of MDM2 Amplification and Unexpected Multiple Faint Alphoid 12 (Alpha 12 Satellite Sequences) Signals in Atypical Lipomatous Tumor. Mod. Pathol. 2012, 25, 1384–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, J.; Downs-Kelly, E.; Goldblum, J.R.; Turner, S.; Kulkarni, S.; Tubbs, R.R.; Rubin, B.P.; Skacel, M. Fluorescence in Situ Hybridization for MDM2 Gene Amplification as a Diagnostic Tool in Lipomatous Neoplasms. Mod. Pathol. 2008, 21, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Dei Tos, A.P.; Doglioni, C.; Piccinin, S.; Sciot, R.; Furlanetto, A.; Boiocchi, M.; Dal Cin, P.; Maestro, R.; Fletcher, C.D.M.; Tallini, G. Coordinated Expression and Amplification of TheMDM2,CDK4, AndHMGI-C Genes in Atypical Lipomatous Tumours. J. Pathol. 2000, 190, 531–536. [Google Scholar] [CrossRef]
- Ryan, S.; Visgauss, J.; Kerr, D.; Helmkamp, J.; Said, N.; Vinson, E.; O’Donnell, P.; Li, X.; Jung, S.-H.; Cardona, D.; et al. The Value of MRI in Distinguishing Subtypes of Lipomatous Extremity Tumors Needs Reassessment in the Era of MDM2 and CDK4 Testing. Sarcoma 2018, 2018, 1901896. [Google Scholar] [CrossRef] [Green Version]
- Brisson, M.; Kashima, T.; Delaney, D.; Tirabosco, R.; Clarke, A.; Cro, S.; Flanagan, A.M.; O’Donnell, P. MRI Characteristics of Lipoma and Atypical Lipomatous Tumor/Well-Differentiated Liposarcoma: Retrospective Comparison with Histology and MDM2 Gene Amplification. Skeletal Radiol. 2013, 42, 635–647. [Google Scholar] [CrossRef] [PubMed]
- Nardo, L.; Abdelhafez, Y.G.; Acquafredda, F.; Schirò, S.; Wong, A.L.; Sarohia, D.; Maroldi, R.; Darrow, M.A.; Guindani, M.; Lee, S.; et al. Qualitative Evaluation of MRI Features of Lipoma and Atypical Lipomatous Tumor: Results from a Multicenter Study. Skeletal Radiol. 2020, 49, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Pressney, I.; Khoo, M.; Endozo, R.; Ganeshan, B.; O’Donnell, P. Pilot Study to Differentiate Lipoma from Atypical Lipomatous Tumour/Well-Differentiated Liposarcoma Using MR Radiomics-Based Texture Analysis. Skeletal Radiol. 2020, 49, 1719–1729. [Google Scholar] [CrossRef] [PubMed]
- Lisson, C.S.; Lisson, C.G.; Flosdorf, K.; Mayer-Steinacker, R.; Schultheiss, M.; von Baer, A.; Barth, T.F.E.; Beer, A.J.; Baumhauer, M.; Meier, R.; et al. Diagnostic Value of MRI-Based 3D Texture Analysis for Tissue Characterisation and Discrimination of Low-Grade Chondrosarcoma from Enchondroma: A Pilot Study. Eur. Radiol. 2018, 28, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Stomp, W.; Reijnierse, M.; Kloppenburg, M.; de Mutsert, R.; Bovée, J.V.M.G.; den Heijer, M.; Bloem, J.L. Prevalence of Cartilaginous Tumours as an Incidental Finding on MRI of the Knee. Eur. Radiol. 2015, 25, 3480–3487. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.B.; Buckwalter, J.A.; McCarthy, E.F.; DeYoung, B.R.; El-Khoury, G.Y.; Dolan, L.; Gannon, F.H.; Inwards, C.Y.; Klein, M.J.; Kyriakus, M.; et al. Reliability of Histopathologic and Radiologic Grading of Cartilaginous Neoplasms in Long Bones. J. Bone Joint Surg. Am. 2007, 89, 2113–2123. [Google Scholar] [CrossRef]
- Yin, P.; Mao, N.; Zhao, C.; Wu, J.; Sun, C.; Chen, L.; Hong, N. Comparison of Radiomics Machine-Learning Classifiers and Feature Selection for Differentiation of Sacral Chordoma and Sacral Giant Cell Tumour Based on 3D Computed Tomography Features. Eur. Radiol. 2019, 29, 1841–1847. [Google Scholar] [CrossRef]
- Dai, Y.; Yin, P.; Mao, N.; Sun, C.; Wu, J.; Cheng, G.; Hong, N. Differentiation of Pelvic Osteosarcoma and Ewing Sarcoma Using Radiomic Analysis Based on T2-Weighted Images and Contrast-Enhanced T1-Weighted Images. Biomed Res. Int. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Li, L.; Wang, K.; Ma, X.; Liu, Z.; Wang, S.; Du, J.; Tian, K.; Zhou, X.; Wei, W.; Sun, K.; et al. Radiomic Analysis of Multiparametric Magnetic Resonance Imaging for Differentiating Skull Base Chordoma and Chondrosarcoma. Eur. J. Radiol. 2019, 118, 81–87. [Google Scholar] [CrossRef]
- Chianca, V.; Cuocolo, R.; Gitto, S.; Albano, D.; Merli, I.; Badalyan, J.; Cortese, M.C.; Messina, C.; Luzzati, A.; Parafioriti, A.; et al. Radiomic Machine Learning Classifiers in Spine Bone Tumors: A Multi-Software, Multi-Scanner Study. Eur. J. Radiol. 2021, 137, 109586. [Google Scholar] [CrossRef]
- Coindre, J.-M.; Terrier, P.; Guillou, L.; Le Doussal, V.; Collin, F.; Ranchère, D.; Sastre, X.; Vilain, M.-O.; Bonichon, F.; N’Guyen Bui, B. Predictive Value of Grade for Metastasis Development in the Main Histologic Types of Adult Soft Tissue Sarcomas. Cancer 2001, 91, 1914–1926. [Google Scholar] [CrossRef]
- Italiano, A.; Delva, F.; Mathoulin-Pelissier, S.; Le Cesne, A.; Bonvalot, S.; Terrier, P.; Trassard, M.; Michels, J.-J.; Blay, J.-Y.; Coindre, J.-M.; et al. Effect of Adjuvant Chemotherapy on Survival in FNCLCC Grade 3 Soft Tissue Sarcomas: A Multivariate Analysis of the French Sarcoma Group Database. Ann. Oncol. 2010, 21, 2436–2441. [Google Scholar] [CrossRef]
- Petersen, I.; Wardelmann, E. Grading von Weichgewebe- und Knochensarkomen. Pathologe 2016, 37, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Coindre, J.-M. Grading of Soft Tissue Sarcomas: Review and Update. Arch. Pathol. Lab. Med. 2006, 130, 1448–1453. [Google Scholar] [CrossRef]
- Strauss, D.C.; Qureshi, Y.A.; Hayes, A.J.; Thway, K.; Fisher, C.; Thomas, J.M. The Role of Core Needle Biopsy in the Diagnosis of Suspected Soft Tissue Tumours. J. Surg. Oncol. 2010, 102, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Ahlawat, S.; Farahani, S.J.; Weber, K.L.; Montgomery, E.A.; Carrino, J.A.; Fayad, L.M. Can MR Imaging Be Used to Predict Tumor Grade in Soft-Tissue Sarcoma? Radiology 2014, 272, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Just, N. Improving Tumour Heterogeneity MRI Assessment with Histograms. Br. J. Cancer 2014, 111, 2205–2213. [Google Scholar] [CrossRef] [Green Version]
- Corino, V.D.A.; Montin, E.; Messina, A.; Casali, P.G.; Gronchi, A.; Marchianò, A.; Mainardi, L.T. Radiomic Analysis of Soft Tissues Sarcomas Can Distinguish Intermediate from High-Grade Lesions. J. Magn. Reson. Imaging 2018, 47, 829–840. [Google Scholar] [CrossRef]
- Xiang, P.; Zhang, X.; Liu, D.; Wang, C.; Ding, L.; Wang, F.; Zhang, Z. Distinguishing Soft Tissue Sarcomas of Different Histologic Grades Based on Quantitative MR Assessment of Intratumoral Heterogeneity. Eur. J. Radiol. 2019, 118, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, Y.; Shi, X.; Tao, J.; Cui, J.; Dai, Y.; Zheng, M.; Wang, S. Soft Tissue Sarcomas: Preoperative Predictive Histopathological Grading Based on Radiomics of MRI. Acad. Radiol. 2019, 26, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Peeken, J.C.; Spraker, M.B.; Knebel, C.; Dapper, H.; Pfeiffer, D.; Devecka, M.; Thamer, A.; Shouman, M.A.; Ott, A.; von Eisenhart-Rothe, R.; et al. Tumor Grading of Soft Tissue Sarcomas Using MRI-Based Radiomics. EBioMedicine 2019, 48, 332–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Praag (Veroniek), V.M.; Rueten-Budde, A.J.; Ho, V.; Dijkstra, P.D.S.; Fiocco, M.; van de Sande, M.A.J.; van der Geest, I.C.; Bramer, J.A.; Schaap, G.R.; Jutte, P.C.; et al. Incidence, Outcomes and Prognostic Factors during 25 Years of Treatment of Chondrosarcomas. Surg. Oncol. 2018, 27, 402–408. [Google Scholar] [CrossRef]
- Hodel, S.; Laux, C.; Farei-Campagna, J.; Götschi, T.; Bode-Lesniewska, B.; Müller, D.A. The Impact of Biopsy Sampling Errors and the Quality of Surgical Margins on Local Recurrence and Survival in Chondrosarcoma. Cancer Manag. Res. 2018, 10, 3765–3771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Sande, M.A.J.; van der Wal, R.J.P.; Navas Cañete, A.; van Rijswijk, C.S.P.; Kroon, H.M.; Dijkstra, P.D.S.; Bloem, J.L. (Hans). Radiologic Differentiation of Enchondromas, Atypical Cartilaginous Tumors, and High-grade Chondrosarcomas—Improving Tumor-specific Treatment: A Paradigm in Transit? Cancer 2019, 125, 3288–3291. [Google Scholar] [CrossRef] [PubMed]
- Douis, H.; Singh, L.; Saifuddin, A. MRI Differentiation of Low-Grade from High-Grade Appendicular Chondrosarcoma. Eur. Radiol. 2014, 24, 232–240. [Google Scholar] [CrossRef]
- Douis, H.; Jeys, L.; Grimer, R.; Vaiyapuri, S.; Davies, A.M. Is There a Role for Diffusion-Weighted MRI (DWI) in the Diagnosis of Central Cartilage Tumors? Skeletal Radiol. 2015, 44, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Fritz, B.; Müller, D.A.; Sutter, R.; Wurnig, M.C.; Wagner, M.W.; Pfirrmann, C.W.A.; Fischer, M.A. Magnetic Resonance Imaging–Based Grading of Cartilaginous Bone Tumors. Invest. Radiol. 2018, 53, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Ugga, L.; Cuocolo, R.; Solari, D.; Guadagno, E.; D’Amico, A.; Somma, T.; Cappabianca, P.; del Basso de Caro, M.L.; Cavallo, L.M.; Brunetti, A. Prediction of High Proliferative Index in Pituitary Macroadenomas Using MRI-Based Radiomics and Machine Learning. Neuroradiology 2019, 61, 1365–1373. [Google Scholar] [CrossRef]
- Gitto, S.; Cuocolo, R.; Albano, D.; Chianca, V.; Messina, C.; Gambino, A.; Ugga, L.; Cortese, M.C.; Lazzara, A.; Ricci, D.; et al. MRI Radiomics-Based Machine-Learning Classification of Bone Chondrosarcoma. Eur. J. Radiol. 2020, 128, 109043. [Google Scholar] [CrossRef]
- Gitto, S.; Cuocolo, R.; Annovazzi, A.; Anelli, V.; Acquasanta, M.; Cincotta, A.; Albano, D.; Chianca, V.; Ferraresi, V.; Messina, C.; et al. CT Radiomics-Based Machine Learning Classification of Atypical Cartilaginous Tumours and Appendicular Chondrosarcomas. EBioMedicine 2021, 68, 103407. [Google Scholar] [CrossRef]
- Gitto, S.; Cuocolo, R.; van Langevelde, K.; van de Sande, M.A.J.; Parafioriti, A.; Luzzati, A.; Imbriaco, M.; Sconfienza, L.M.; Bloem, J.L. MRI Radiomics-Based Machine Learning Classification of Atypical Cartilaginous Tumour and Grade II Chondrosarcoma of Long Bones. EBioMedicine 2022, 75, 103757. [Google Scholar] [CrossRef]
- Gronchi, A.; Ferrari, S.; Quagliuolo, V.; Broto, J.M.; Pousa, A.L.; Grignani, G.; Basso, U.; Blay, J.-Y.; Tendero, O.; Beveridge, R.D.; et al. Histotype-Tailored Neoadjuvant Chemotherapy versus Standard Chemotherapy in Patients with High-Risk Soft-Tissue Sarcomas (ISG-STS 1001): An International, Open-Label, Randomised, Controlled, Phase 3, Multicentre Trial. Lancet Oncol. 2017, 18, 812–822. [Google Scholar] [CrossRef]
- Issels, R.D.; Lindner, L.H.; Verweij, J.; Wust, P.; Reichardt, P.; Schem, B.-C.; Abdel-Rahman, S.; Daugaard, S.; Salat, C.; Wendtner, C.-M.; et al. Neo-Adjuvant Chemotherapy Alone or with Regional Hyperthermia for Localised High-Risk Soft-Tissue Sarcoma: A Randomised Phase 3 Multicentre Study. Lancet Oncol. 2010, 11, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Saponara, M.; Stacchiotti, S.; Casali, P.G.; Gronchi, A. (Neo)Adjuvant Treatment in Localised Soft Tissue Sarcoma: The Unsolved Affair. Eur. J. Cancer 2017, 70, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stacchiotti, S.; Collini, P.; Messina, A.; Morosi, C.; Barisella, M.; Bertulli, R.; Piovesan, C.; Dileo, P.; Torri, V.; Gronchi, A.; et al. High-Grade Soft-Tissue Sarcomas: Tumor Response Assessment--Pilot Study to Assess the Correlation between Radiologic and Pathologic Response by Using RECIST and Choi Criteria. Radiology 2009, 251, 447–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stacchiotti, S.; Verderio, P.; Messina, A.; Morosi, C.; Collini, P.; Llombart-Bosch, A.; Martin, J.; Comandone, A.; Cruz, J.; Ferraro, A.; et al. Tumor Response Assessment by Modified Choi Criteria in Localized High-Risk Soft Tissue Sarcoma Treated with Chemotherapy. Cancer 2012, 118, 5857–5866. [Google Scholar] [CrossRef]
- Crombé, A.; Le Loarer, F.; Cornelis, F.; Stoeckle, E.; Buy, X.; Cousin, S.; Italiano, A.; Kind, M. High-Grade Soft-Tissue Sarcoma: Optimizing Injection Improves MRI Evaluation of Tumor Response. Eur. Radiol. 2019, 29, 545–555. [Google Scholar] [CrossRef]
- Benz, M.R.; Czernin, J.; Allen-Auerbach, M.S.; Tap, W.D.; Dry, S.M.; Elashoff, D.; Chow, K.; Evilevitch, V.; Eckardt, J.J.; Phelps, M.E.; et al. FDG-PET/CT Imaging Predicts Histopathologic Treatment Responses after the Initial Cycle of Neoadjuvant Chemotherapy in High-Grade Soft-Tissue Sarcomas. Clin. Cancer Res. 2009, 15, 2856–2863. [Google Scholar] [CrossRef] [Green Version]
- Benz, M.R.; Allen-Auerbach, M.S.; Eilber, F.C.; Chen, H.J.J.; Dry, S.; Phelps, M.E.; Czernin, J.; Weber, W.A. Combined Assessment of Metabolic and Volumetric Changes for Assessment of Tumor Response in Patients with Soft-Tissue Sarcomas. J. Nucl. Med. 2008, 49, 1579–1584. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, S.; Leijenaar, R.T.H.; Troost, E.G.C.; van Elmpt, W.; Muratet, J.-P.; Denis, F.; De Ruysscher, D.; Aerts, H.J.W.L.; Lambin, P. Early Variation of FDG-PET Radiomics Features in NSCLC Is Related to Overall Survival—The “Delta Radiomics” Concept. Radiother. Oncol. 2016, 118, S20–S21. [Google Scholar] [CrossRef] [Green Version]
- Fave, X.; Zhang, L.; Yang, J.; Mackin, D.; Balter, P.; Gomez, D.; Followill, D.; Jones, A.K.; Stingo, F.; Liao, Z.; et al. Delta-Radiomics Features for the Prediction of Patient Outcomes in Non–Small Cell Lung Cancer. Sci. Rep. 2017, 7, 588. [Google Scholar] [CrossRef] [PubMed]
- Crombé, A.; Périer, C.; Kind, M.; De Senneville, B.D.; Le Loarer, F.; Italiano, A.; Buy, X.; Saut, O. T 2-Based MRI Delta-Radiomics Improve Response Prediction in Soft-Tissue Sarcomas Treated by Neoadjuvant Chemotherapy. J. Magn. Reson. Imaging 2019, 50, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Kalbasi, A.; Hsu, W.; Ruan, D.; Fu, J.; Shao, J.; Cao, M.; Wang, C.; Eilber, F.C.; Bernthal, N.; et al. Treatment Effect Prediction for Sarcoma Patients Treated with Preoperative Radiotherapy Using Radiomics Features from Longitudinal Diffusion-Weighted MRIs. Phys. Med. Biol. 2020, 65, 175006. [Google Scholar] [CrossRef] [PubMed]
- Bacci, G.; Briccoli, A.; Ferrari, S.; Longhi, A.; Mercuri, M.; Capanna, R.; Donati, D.; Lari, S.; Forni, C.; DePaolis, M. Neoadjuvant Chemotherapy for Osteosarcoma of the Extremity. Eur. J. Cancer 2001, 37, 2030–2039. [Google Scholar] [CrossRef]
- Bielack, S.S.; Kempf-Bielack, B.; Delling, G.; Exner, G.U.; Flege, S.; Helmke, K.; Kotz, R.; Salzer-Kuntschik, M.; Werner, M.; Winkelmann, W.; et al. Prognostic Factors in High-Grade Osteosarcoma of the Extremities or Trunk: An Analysis of 1,702 Patients Treated on Neoadjuvant Cooperative Osteosarcoma Study Group Protocols. J. Clin. Oncol. 2002, 20, 776–790. [Google Scholar] [CrossRef]
- Davis, A.M.; Bell, R.S.; Goodwin, P.J. Prognostic Factors in Osteosarcoma: A Critical Review. J. Clin. Oncol. 1994, 12, 423–431. [Google Scholar] [CrossRef]
- Coffin, C.M.; Lowichik, A.; Zhou, H. Treatment Effects in Pediatric Soft Tissue and Bone Tumors. Am. J. Clin. Pathol. 2005, 123, 75–90. [Google Scholar] [CrossRef]
- Im, H.J.; Kim, T.S.; Park, S.-Y.; Min, H.S.; Kim, J.H.; Kang, H.G.; Park, S.E.; Kwon, M.M.; Yoon, J.H.; Park, H.J.; et al. Prediction of Tumour Necrosis Fractions Using Metabolic and Volumetric 18F-FDG PET/CT Indices, after One Course and at the Completion of Neoadjuvant Chemotherapy, in Children and Young Adults with Osteosarcoma. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 39–49. [Google Scholar] [CrossRef]
- Byun, B.H.; Kong, C.-B.; Lim, I.; Choi, C.W.; Song, W.S.; Cho, W.H.; Jeon, D.-G.; Koh, J.-S.; Lee, S.-Y.; Lim, S.M. Combination of 18 F-FDG PET/CT and Diffusion-Weighted MR Imaging as a Predictor of Histologic Response to Neoadjuvant Chemotherapy: Preliminary Results in Osteosarcoma. J. Nucl. Med. 2013, 54, 1053–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, B.H.; Kong, C.-B.; Lim, I.; Kim, B., II; Choi, C.W.; Song, W.S.; Cho, W.H.; Jeon, D.-G.; Koh, J.-S.; Lee, S.-Y.; et al. Early Response Monitoring to Neoadjuvant Chemotherapy in Osteosarcoma Using Sequential 18 F-FDG PET/CT and MRI. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1553–1562. [Google Scholar] [CrossRef]
- Cheon, G.J.; Kim, M.S.; Lee, J.A.; Lee, S.-Y.; Cho, W.H.; Song, W.S.; Koh, J.-S.; Yoo, J.Y.; Oh, D.H.; Shin, D.S.; et al. Prediction Model of Chemotherapy Response in Osteosarcoma by 18 F-FDG PET and MRI. J. Nucl. Med. 2009, 50, 1435–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.; Yang, P.-F.; Chen, S.; Shao, Y.-Y.; Xu, L.-M.; Wu, Y.; Teng, W.; Zhou, X.-Z.; Li, B.-H.; Luo, C.; et al. A Delta-Radiomics Model for Preoperative Evaluation of Neoadjuvant Chemotherapy Response in High-Grade Osteosarcoma. Cancer Imaging 2020, 20, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abatzoglou, S.; Turcotte, R.E.; Adoubali, A.; Isler, M.H.; Roberge, D. Local Recurrence After Initial Multidisciplinary Management of Soft Tissue Sarcoma: Is There a Way Out? Clin. Orthop. Relat. Res. 2010, 468, 3012–3018. [Google Scholar] [CrossRef] [Green Version]
- Cheney, M.D.; Giraud, C.; Goldberg, S.I.; Rosenthal, D.I.; Hornicek, F.J.; Choy, E.; Mullen, J.T.; Chen, Y.-L.; Delaney, T.F. MRI Surveillance Following Treatment of Extremity Soft Tissue Sarcoma. J. Surg. Oncol. 2014, 109, 593–596. [Google Scholar] [CrossRef]
- Roberts, C.C.; Kransdorf, M.J.; Beaman, F.D.; Adler, R.S.; Amini, B.; Appel, M.; Bernard, S.A.; Fries, I.B.; Germano, I.M.; Greenspan, B.S.; et al. ACR Appropriateness Criteria Follow-Up of Malignant or Aggressive Musculoskeletal Tumors. J. Am. Coll. Radiol. 2016, 13, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Noebauer-Huhmann, I.; Weber, M.-A.; Lalam, R.; Trattnig, S.; Bohndorf, K.; Vanhoenacker, F.; Tagliafico, A.; van Rijswijk, C.; Vilanova, J.; Afonso, P.; et al. Soft Tissue Tumors in Adults: ESSR-Approved Guidelines for Diagnostic Imaging. Semin. Musculoskelet. Radiol. 2015, 19, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Del Grande, F.; Subhawong, T.; Weber, K.; Aro, M.; Mugera, C.; Fayad, L.M. Detection of Soft-Tissue Sarcoma Recurrence: Added Value of Functional MR Imaging Techniques at 3.0 T. Radiology 2014, 271, 499–511. [Google Scholar] [CrossRef] [Green Version]
- Fayad, L.M.; Jacobs, M.A.; Wang, X.; Carrino, J.A.; Bluemke, D.A. Musculoskeletal Tumors: How to Use Anatomic, Functional, and Metabolic MR Techniques. Radiology 2012, 265, 340–356. [Google Scholar] [CrossRef] [Green Version]
- Tagliafico, A.S.; Bignotti, B.; Rossi, F.; Valdora, F.; Martinoli, C. Local Recurrence of Soft Tissue Sarcoma: A Radiomic Analysis. Radiol. Oncol. 2019, 53, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Billingsley, K.G.; Burt, M.E.; Jara, E.; Ginsberg, R.J.; Woodruff, J.M.; Leung, D.H.Y.; Brennan, M.F. Pulmonary Metastases From Soft Tissue Sarcoma. Ann. Surg. 1999, 229, 602. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.F. Soft Tissue Sarcoma: Advances in Understanding and Management. Surgeon 2005, 3, 216–223. [Google Scholar] [CrossRef]
- Lewis, J.J.; Brennan, M.F. Soft Tissue Sarcomas. Curr. Probl. Surg. 1996, 33, 817–872. [Google Scholar] [CrossRef]
- Vallières, M.; Freeman, C.R.; Skamene, S.R.; El Naqa, I. A Radiomics Model from Joint FDG-PET and MRI Texture Features for the Prediction of Lung Metastases in Soft-Tissue Sarcomas of the Extremities. Phys. Med. Biol. 2015, 60, 5471–5496. [Google Scholar] [CrossRef]
- Skamene, S.R.; Rakheja, R.; Dalhstrom, K.R.; Roberge, D.; Nahal, A.; Charest, M.; Turcotte, R.; Hickeson, M.; Freeman, C. Metabolic Activity Measured on PET/CT Correlates with Clinical Outcomes in Patients with Limb and Girdle Sarcomas. J. Surg. Oncol. 2014, 109, 410–414. [Google Scholar] [CrossRef]
- Eary, J.F.; O’Sullivan, F.; Powitan, Y.; Chandhury, K.; Vernon, C.; Bruckner, J.D.; Conrad, E.U. Sarcoma Tumor FDG Uptake Measured by PET and Patient Outcome: A Retrospective Analysis. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 1149–1154. [Google Scholar] [CrossRef]
- Kempf-Bielack, B.; Bielack, S.S.; Jürgens, H.; Branscheid, D.; Berdel, W.E.; Exner, G.U.; Göbel, U.; Helmke, K.; Jundt, G.; Kabisch, H.; et al. Osteosarcoma Relapse After Combined Modality Therapy: An Analysis of Unselected Patients in the Cooperative Osteosarcoma Study Group (COSS). J. Clin. Oncol. 2005, 23, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wu, S.; Wang, X.; Xu, M.; Xu, S.; Yuan, Y. Late Post-Operative Recurrent Osteosarcoma: Three Case Reports with a Review of the Literature. Oncol. Lett. 2013, 6, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Liu, J.; Cheng, Z.; Lu, X.; Wang, X.; Lu, M.; Li, S.; Xiang, Z.; Zhou, Q.; Liu, Z.; et al. Development and External Validation of an MRI-Based Radiomics Nomogram for Pretreatment Prediction for Early Relapse in Osteosarcoma: A Retrospective Multicenter Study. Eur. J. Radiol. 2020, 129, 109066. [Google Scholar] [CrossRef]
- Trojani, M.; Contesso, G.; Coindre, J.M.; Rouesse, J.; Bui, N.B.; De Mascarel, A.; Goussot, J.F.; David, M.; Bonichon, F.; Lagarde, C. Soft-Tissue Sarcomas of Adults; Study of Pathological Prognostic Variables and Definition of a Histopathological Grading System. Int. J. Cancer 1984, 33, 37–42. [Google Scholar] [CrossRef]
- Guillou, L.; Coindre, J.M.; Bonichon, F.; Nguyen, B.B.; Terrier, P.; Collin, F.; Vilain, M.O.; Mandard, A.M.; Le Doussal, V.; Leroux, A.; et al. Comparative Study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group Grading Systems in a Population of 410 Adult Patients with Soft Tissue Sarcoma. J. Clin. Oncol. 1997, 15, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Coindre, J.M.; Terrier, P.; Bui, N.B.; Bonichon, F.; Collin, F.; Le Doussal, V.; Mandard, A.M.; Vilain, M.O.; Jacquemier, J.; Duplay, H.; et al. Prognostic Factors in Adult Patients with Locally Controlled Soft Tissue Sarcoma. A Study of 546 Patients from the French Federation of Cancer Centers Sarcoma Group. J. Clin. Oncol. 1996, 14, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Crombé, A.; Marcellin, P.-J.; Buy, X.; Stoeckle, E.; Brouste, V.; Italiano, A.; Le Loarer, F.; Kind, M. Soft-Tissue Sarcomas: Assessment of MRI Features Correlating with Histologic Grade and Patient Outcome. Radiology 2019, 291, 710–721. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, F.; Roy, S.; O’Sullivan, J.; Vernon, C.; Eary, J. Incorporation of Tumor Shape into an Assessment of Spatial Heterogeneity for Human Sarcomas Imaged with FDG-PET. Biostatistics 2005, 6, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Spraker, M.B.; Wootton, L.S.; Hippe, D.S.; Ball, K.C.; Peeken, J.C.; Macomber, M.W.; Chapman, T.R.; Hoff, M.N.; Kim, E.Y.; Pollack, S.M.; et al. MRI Radiomic Features Are Independently Associated With Overall Survival in Soft Tissue Sarcoma. Adv. Radiat. Oncol. 2019, 4, 413–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeken, J.C.; Bernhofer, M.; Spraker, M.B.; Pfeiffer, D.; Devecka, M.; Thamer, A.; Shouman, M.A.; Ott, A.; Nüsslin, F.; Mayr, N.A.; et al. CT-Based Radiomic Features Predict Tumor Grading and Have Prognostic Value in Patients with Soft Tissue Sarcomas Treated with Neoadjuvant Radiation Therapy. Radiother. Oncol. 2019, 135, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Su, Y.; Duan, J.; Qiu, Q.; Ge, X.; Wang, A.; Yin, Y. Radiomics Signature Extracted from Diffusion-Weighted Magnetic Resonance Imaging Predicts Outcomes in Osteosarcoma. J. Bone Oncol. 2019, 19, 100263. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, L.; Yang, P.; Lin, N.; Huang, X.; Pan, W.; Li, H.; Lin, P.; Li, B.; Bunpetch, V.; et al. Survival Prediction in High-Grade Osteosarcoma Using Radiomics of Diagnostic Computed Tomography. EBioMedicine 2018, 34, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Gitto, S.; Cuocolo, R.; Albano, D.; Morelli, F.; Pescatori, L.C.; Messina, C.; Imbriaco, M.; Sconfienza, L.M. CT and MRI Radiomics of Bone and Soft-Tissue Sarcomas: A Systematic Review of Reproducibility and Validation Strategies. Insights Imaging 2021, 12, 68. [Google Scholar] [CrossRef]
- Crombé, A.; Fadli, D.; Italiano, A.; Saut, O.; Buy, X.; Kind, M. Systematic Review of Sarcomas Radiomics Studies: Bridging the Gap between Concepts and Clinical Applications? Eur. J. Radiol. 2020, 132, 109283. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Hu, Y.; Si, L.; Jia, G.; Xing, Y.; Zhang, H.; Yao, W. A Systematic Review of Radiomics in Osteosarcoma: Utilizing Radiomics Quality Score as a Tool Promoting Clinical Translation. Eur. Radiol. 2021, 31, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Gitto, S.; Cuocolo, R.; Emili, I.; Tofanelli, L.; Chianca, V.; Albano, D.; Messina, C.; Imbriaco, M.; Sconfienza, L.M. Effects of Interobserver Variability on 2D and 3D CT- and MRI-Based Texture Feature Reproducibility of Cartilaginous Bone Tumors. J. Digit. Imaging 2021, 34, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.; Kijowski, R.; Recht, M.P. Artificial intelligence in musculoskeletal imaging: A perspective on value propositions, clinical use, and obstacles. Skeletal Radiol. 2022, 51, 239–243. [Google Scholar] [CrossRef]
- Rundo, L.; Militello, C.; Vitabile, S.; Russo, G.; Sala, E.; Gilardi, M.C. A Survey on Nature-Inspired Medical Image Analysis: A Step Further in Biomedical Data Integration. Fundam. Inform. 2020, 171, 345–365. [Google Scholar] [CrossRef]
Authors | Year | Type of Tumor | Technique | Sequences | Predictive Performances | Radiomics Nomogram (Radiomics Combined with Clinical Features) |
---|---|---|---|---|---|---|
Juntu et al. [19] | 2010 | Soft-tissue tumors | MRI | T1WI | AUC = 0.91 | N/A |
Wang et al. [20] | 2020 | Soft-tissue tumors | MRI | T1WI, FS-T2WI | AUC = 0.86, 0.82 | AUC = 0.96, 0.88 |
Malinauskaite et al. [27] | 2020 | Lipoma vs. liposarcoma | MRI | T1WI | AUC = 0.926 | N/A |
Pressney et al. [35] | 2020 | Lipoma vs. ALT/WDL | MRI | PDWI | AUC = 0.8 | N/A |
Lisson et al. [36] | 2018 | Enchondroma vs. chondrosarcoma G1 | MRI | T1WI (ce)-T1WI | AUC = 0.851, 0.822 AUC = 0.876, 0.826 | N/A |
Authors | Year | Type of Tumor | Technique | Sequences | Predictive Performances |
---|---|---|---|---|---|
Corino et al. [50] | 2018 | STS (G2 vs. G3) | MRI | ADC | AUC = 0.85, 0.87 |
Xiang et al. [51] | 2019 | STS (G1 vs. G2 vs. G3) | MRI | ER (Enhancement Ratio) maps | AUC = 0.747, 0.684 |
Zhang et al. [52] | 2019 | STS (G1 vs. G2 vs. G3) | MRI | FS-T2WI | AUC = 0.92 (SVM) |
Peeken et al. [53] | 2019 | STS (G1 vs. G2 vs. G3) | MRI | T2WI ce-T1WI combined | AUC = 0.78 AUC = 0.69 AUC = 0.76 |
Fritz et al. [59] | 2018 | Chondrosarcomas (G1 vs. G2 vs. G3) | MRI | T1WI, ce-T1WI | Not significant |
Gitto et al. [61] | 2020 | Atypical cartilaginous tumor vs. G2-G4 chondrosarcoma | MRI | T1WI T2WI | AUC = 0.78 |
Gitto et al. [62] | 2021 | Atypical cartilaginous tumor vs. G2-G4 chondrosarcoma | CT | CT | AUC = 0.78 |
Gitto et al. [63] | 2022 | Atypical cartilaginous tumor vs. G2 chondrosarcoma | MRI | T1WI | AUC = 0.94 |
Authors | Year | Type of Tumor | Treatment | Technique | Sequences | Δ_Radiomics Predictive Performances | Δ_Radiomics Nomogram Predictive Performances |
---|---|---|---|---|---|---|---|
Crombé et al. [75] | 2019 | G3 STS | NAC | MRI | T2WI | AUC = 0.86 | N/A |
Gao et al. [76] | 2020 | G3 STS | RT | MRI | ADC | AUC = 0.85 | N/A |
Lin et al. [85] | 2020 | HOS | NAC | CT | N/A | AUC = 0.868, 0.823 | AUC = 0.871, 0.843 |
Authors | Year | Type of Tumor | Prediction/ Discrimination | Technique | Sequences | Radiomics Model Performances | Radiomics + Clinical Features Performances |
---|---|---|---|---|---|---|---|
Tagliafico et al. [92] | 2019 | STS | Fibrosis vs. LR | MRI | ce-T1WI | AUC = 0.96 | N/A |
Vallières et al. [96] | 2015 | STS | Lung metastasis risk | FDG-PET MRI | FDG-PET/T1WI, FDG-PET/FS-T2WI | AUC = 0.984 | N/A |
Chen et al. [101] | 2020 | HOS | LR | MRI | ce-T1WI | AUC = 0.887, 0.763 | AUC = 0.907, 0.811 |
Authors | Year | Type of Tumor | Prediction/ Discrimination | Technique | Sequences | Radiomics Model Performances | Radiomics + Clinical Features Performances |
---|---|---|---|---|---|---|---|
Spraker et al. [107] | 2019 | STS | OS | MRI | ce-T1WI | C-index = 0.68 | C-index = 0.78 |
Peeken et al. [53] | 2019 | STS | OS | MRI | FS-T2WI ce-T1WI combined tumor volume | C-index = 0.55 C-index = 0.60 C-index = 0.60 C-index = 0.54 | C-index = 0.67 C-index = 0.70 C-index = 0.66 C-index = 0.71 |
Peeken et al. [108] | 2019 | STS | OS DPFS LPFS | CT | N/A | C-index = 0.73 C-index = 0.68 C-index = 0.77 | C-index = 0.76 |
Zhao et al. [109] | 2019 | HOS | OS | MRI | DWI | C-index = 0.712 | C-index = 0.813 |
Wu et al. [110] | 2018 | HOS | OS | CT | N/A | AUC = 0.79, 0.73 | AUC = 0.86, 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanciullo, C.; Gitto, S.; Carlicchi, E.; Albano, D.; Messina, C.; Sconfienza, L.M. Radiomics of Musculoskeletal Sarcomas: A Narrative Review. J. Imaging 2022, 8, 45. https://doi.org/10.3390/jimaging8020045
Fanciullo C, Gitto S, Carlicchi E, Albano D, Messina C, Sconfienza LM. Radiomics of Musculoskeletal Sarcomas: A Narrative Review. Journal of Imaging. 2022; 8(2):45. https://doi.org/10.3390/jimaging8020045
Chicago/Turabian StyleFanciullo, Cristiana, Salvatore Gitto, Eleonora Carlicchi, Domenico Albano, Carmelo Messina, and Luca Maria Sconfienza. 2022. "Radiomics of Musculoskeletal Sarcomas: A Narrative Review" Journal of Imaging 8, no. 2: 45. https://doi.org/10.3390/jimaging8020045
APA StyleFanciullo, C., Gitto, S., Carlicchi, E., Albano, D., Messina, C., & Sconfienza, L. M. (2022). Radiomics of Musculoskeletal Sarcomas: A Narrative Review. Journal of Imaging, 8(2), 45. https://doi.org/10.3390/jimaging8020045