Monochrome Camera Conversion: Effect on Sensitivity for Multispectral Imaging (Ultraviolet, Visible, and Infrared)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Camera Spectral Sensitivity Measurement
- Standard unmodified Nikon d850.
- Nikon d850 UV–Vis–IR monochrome conversion with the CFA/microlenses and internal IR filter stack removed, and sensor cover glass replaced with a fused silica window.
- Standard unmodified Nikon d800.
- Nikon d800 UV–Vis–IR monochrome conversion with the CFA/microlenses and internal IR filter stack removed, and sensor cover glass replaced with a Schott WG280 window.
- Standard unmodified Sony A7III.
- Sony A7III multispectral conversion with the internal IR filter stack removed and the sensor cover glass replaced with a fused silica window.
- Standard unmodified Canon EOS 5DS R.
- Canon EOS 5DS R multispectral conversion with the internal IR filter stack removed and the sensor cover glass replaced with a Schott WG280 window.
- Canon EOS 5DS R UV–Vis–IR monochrome conversion with the CFA/microlenses and internal IR filter stack removed, and sensor cover glass replaced with a Schott WG280 window.
2.2. UVB/UVA Sensitivity Comparison between 313 and 365 nm
2.3. UVA and UVB Images of Common Dandelion
2.4. IR Imaging Using Different Long-Pass Filters
2.5. Sensitivity Testing of Canon EOS 450d with Half the CFA/Microlens Array Removed
2.6. Image Analysis
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, R.L.M. Chapter 21: Colour photography. In Colour Chemistry. Studies in Modern Chemistry; Springer: Boston, MA, USA, 1971. [Google Scholar]
- Jackson, T.A.; Bell, C.S. A 1.3-megapixel-resolution portable CCD electronic still camera. In Proceedings of the Volume 1448, Camera and Input Scanner Systems, San Jose, CA, USA, 1 June 1991. [Google Scholar] [CrossRef]
- New Gear: Leica M-Monochrom Has a Full-Frame Black and White Sensor. Popular Photography. Available online: https://www.popphoto.com/gear/2012/05/new-gear-leica-m9-bw/ (accessed on 12 January 2022).
- Gibson, A.; Piquette, K.E.; Bergmann, U.; Christens-Barry, W.; Davis, G.; Endrizzi, M.; Fan, S.; Farsiu, S.; Fitzgerald, A.; Griffiths, J.; et al. An assessment of multimodal imaging of subsurface text in mummy cartonnage using surrogate papyrus phantoms. Herit. Sci. 2018, 6, 7. [Google Scholar] [CrossRef]
- Stojkovic, A.; Shopovska, I.; Luong, H.; Aelterman, J.; Jovanov, L.; Philips, W. The Effect of the Color Filter Array Layout Choice on State-of-the-Art Demosaicing. Sensors 2019, 19, 3215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fai, C.S. Detecting Near-UV and Near-IR Wavelengths with the Foveon Image Sensor. Master’s Thesis, Naval Post Graduate School, Monterey, CA, USA, 2004. Available online: http://www.dtic.mil/dtic/tr/fulltext/u2/a429699.pdf (accessed on 12 January 2022).
- Kanan, C.; Cottrell, G.W. Color-to-Grayscale: Does the Method Matter in Image Recognition? PLoS ONE 2012, 7, e29740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenk, S.; Chaerle, L.; Pfündel, E.E.; Langsdorf, G.; Hagenbeek, D.; Lichtenthaler, H.K.; van der Straeten, D.; Buschmann, C. Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. J. Exp. Bot. 2007, 58, 807–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, J.M. Understanding colour reproduction in multispectral imaging: Measuring camera sensor response in the ultraviolet, visible and infrared. Imaging Sci. J. 2019, 67, 268–276. [Google Scholar] [CrossRef]
- Normal Lenses For Nikon ‘F’ Mount. Available online: http://www.naturfotograf.com/lens_norm.html (accessed on 12 January 2022).
- Scratching the Color Filter Array Layer off a DSLR Sensor for Sharper B&W Photos. Available online: https://petapixel.com/2013/08/04/scratching-the-color-filter-array-layer-off-a-dslr-sensor-for-sharper-bw-photos/ (accessed on 12 January 2022).
- Mauer, C. Measurement of the Spectral Response of Digital Cameras with a Set of Interference Filters. Diploma Thesis, Cologne, Germany. 2009. Available online: https://www.image-engineering.de/content/library/diploma_thesis/christian_mauer_spectral_response.pdf (accessed on 12 January 2022).
- Sigernes, F.; Dyrland, M.; Peters, N.; Lorentzen, D.A.; Svenøe, T.; Heia, K.; Chernouss, S.; Deehr, C.S.; Kosch, M. The absolute sensitivity of digital colour cameras. Opt. Express 2009, 17, 20211–20220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darrodi, M.M.; Finlayson, G.; Goodman, T.; Mackiewicz, M. Reference data set for camera spectral sensitivity estimation. J. Opt. Soc. Am. A 2015, 32, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Hoot, J.E. Photometry with DSLR cameras. In Proceedings of the Society for Astronomical Sciences 26th Annual Symposium on Telescope Science, Big Bear, CA, USA, 22 May 2007; The Society for Astronomical Sciences: Big Bear, CA, USA, 2007; pp. 67–72. Available online: http://adsabs.harvard.edu/full/2007SASS...26...67H (accessed on 12 January 2022).
- Cosentino, A. Multispectral Imaging of Pigments with a digital camera and 12 interferential filters. E-Preserv. Sci. 2015, 12, 1–7. Available online: https://chsopensource.org/multispectral-imaging-of-pigments-with-a-digital-camera/ (accessed on 12 January 2022).
- Confirmed: The Sensor Inside the Nikon D800 Is Made by Sony. Available online: https://nikonrumors.com/2012/08/29/confirmed-the-sensor-inside-the-nikon-d800-is-made-by-sony.aspx (accessed on 12 January 2022).
- The Nikon D850’s Sensor Is Made by Sony: Report. Available online: https://petapixel.com/2018/06/15/the-nikon-d850s-sensor-is-made-by-sony-report/ (accessed on 12 January 2022).
- BSI Sensors Demystified. Available online: https://www.dtcommercialphoto.com/bsi-sensors-demystified/ (accessed on 12 January 2022).
- Djazovski, O. Chapter 37: Focal Plane Arrays for Optical Payloads. In Optical Payloads for Space Missions; Qian, S.-E., Ed.; Wiley: Chichester, UK, 2015. [Google Scholar] [CrossRef]
- Garcia, J.E.; Wilksch, P.A.; Spring, G.; Philp, P.; Dyer, A. Characterization of digital cameras for reflected ultraviolet photography; implications for qualitative and quantitative image analysis during forensic investigation. J. Forensic Sci. 2014, 59, 117–122. [Google Scholar] [CrossRef]
- Marin, N.; Buszka, J. Alternative Light Source Imaging Forensic Photography Techniques; Elsevier Inc.: Abingdon, UK, 2013. [Google Scholar]
- Leintz, R.; Bond, J.W. Can the RUVIS imaging system visualize fingerprint corrosion on brass cartridge casings postfiring? J. Forensic Sci. 2013, 58, 772–775. [Google Scholar] [CrossRef]
- Boyers, L.; Karimkhani, C.; Gamble, R.; Dellavalle, R.P. Novel and promising sun safety interventions: UV photography and shade structures. OA Dermatol. 2014, 2, 6. [Google Scholar]
- Dykstra, J.L. Avoiding Reactance: The Utility of Ultraviolet Photography, Persuasion, and Parental Protectiveness in Improving the Effectiveness of a UV Exposure Intervention. Ph.D. Dissertation, Iowa State University, Ames, IA, USA, 2007. Available online: http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=16923&context=rtd (accessed on 12 January 2022).
- Daniel, L.C.; Heckman, C.J.; Kloss, J.D.; Manne, S.L. Comparing alternative methods of measuring skin color and damage. Cancer Causes Control 2009, 20, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niamtu, J., III. Digitally processed ultraviolet images: A convenient, affordable, reproducible means of illustrating ultraviolet clinical examination. Dermatol. Surg. 2001, 27, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.; Baceviciene, R.; Vukmer, T.; Karimkhani, C.; Boyers, L.; Dellavalle, R.; Gamble, R. Impact of ultraviolet photography on sun safety practices of snow sport industry conference attendees. Open Dermatol. J. 2014, 8, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Crowther, J.M. Understanding sunscreen SPF performance using cross polarized UVA reflectance photography. Int. J. Cosmet. Sci. 2018, 40, 127–133. [Google Scholar] [CrossRef]
- Crowther, J.M. UV reflectance photography of skin: What are you imaging? Int. J. Cosmet. Sci. 2020, 42, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Reflected Ultraviolet Photography. Available online: http://medicalphotography.com.au/Article_01/11.html (accessed on 12 January 2022).
- Welch, M.; Chang, P.; Taylor, M.F. Photoaging photography: Mothers’ attitudes toward adopting skin-protective measures pre- and post-viewing photoaged images of their and their child’s facial sun damage. SAGE Open 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ayre, E.; Bevan, G. Calibrated UV reflectance photography of Hebomoia Glaucippe Sulphurea. Collect. Forum 2016, 30, 34–50. [Google Scholar] [CrossRef]
- Cronin, T.W.; Bok, M.J. Photoreception and vision in the ultraviolet. J. Exp. Biol. 2016, 219, 2790–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verri, G.; Saunders, D. Xenon flash for reflectance and luminescence (multispectral) imaging in cultural heritage applications. Br. Mus. Tech. Res. Bull. 2014, 8, 83–92. [Google Scholar]
- Dyer, J.; Verri, G.; Cupitt, J. Multispectral Imaging in Reflectance and Photo-Induced Luminescence Modes: A User Manual. Available online: http://www.britishmuseum.org/research/research_projects/all_current_projects/charisma/technical_imaging.aspx (accessed on 12 January 2022).
- Prutchi, D. Exploring Ultraviolet Photography; Amherst Media Inc.: Buffalo, NY, USA, 2017; p. 26. [Google Scholar]
- Yang, Y.; Li, S. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence. Oxid. Med. Cell. Longev. 2015, 2015, 619560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollmer, M.; Möllmann, K.P.; Shaw, J.A. The optics and physics of near infrared imaging. In Proceedings of the Education and Training in Optics and Photonics 2015, Bordeaux, France, 29 June–2 July 2015. [Google Scholar] [CrossRef] [Green Version]
- Davies, A. Digital Ultraviolet and Infrared Photography; Routeledge: Abingdon, UK, 2018; p. 127. [Google Scholar]
- Cain, M.D.; Roper, D.; Atherton, D.S. Use of Infrared Photography to Visualize a Tattoo for Identification in Advanced Decomposition. Acad. Forensic Pathol. 2016, 6, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, K.; Mori, K.; Otaka, T.; Isozaki, T.; Yasuda, N.; Tsai, A.; Sawai, Y.; Owada, H.; Takayanagi, I.; Nakamura, J. A Stacked Back Side-Illuminated Voltage Domain Global Shutter CMOS Image Sensor with a 4.0 µm Multiple Gain Readout Pixel. Sensors 2020, 20, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nussbaumdag, P.; Völkeldag, R.; Herzigdag, H.P.; Eisnerddag, M.; Haselbeck, S. Design, fabrication and testing of microlens arrays for sensors and microsystems. Pure Appl. Opt. 1997, 6, 617–636. [Google Scholar] [CrossRef] [Green Version]
Test Camera | 313 nm (UVB) | 365 nm (UVA) |
---|---|---|
Canon EOS 5DS R multispectral | 5.3 stops slower | 1.7 to 2 stops slower |
Nikon d850 monochrome | Same | 0.7 to 1 stop faster |
Nikon d800 monochrome | 0.3 stops slower | 0 to 0.3 stops slower |
Sony A7III multispectral | 4.7 to 5 stops slower | 2.3 stops slower |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crowther, J. Monochrome Camera Conversion: Effect on Sensitivity for Multispectral Imaging (Ultraviolet, Visible, and Infrared). J. Imaging 2022, 8, 54. https://doi.org/10.3390/jimaging8030054
Crowther J. Monochrome Camera Conversion: Effect on Sensitivity for Multispectral Imaging (Ultraviolet, Visible, and Infrared). Journal of Imaging. 2022; 8(3):54. https://doi.org/10.3390/jimaging8030054
Chicago/Turabian StyleCrowther, Jonathan. 2022. "Monochrome Camera Conversion: Effect on Sensitivity for Multispectral Imaging (Ultraviolet, Visible, and Infrared)" Journal of Imaging 8, no. 3: 54. https://doi.org/10.3390/jimaging8030054
APA StyleCrowther, J. (2022). Monochrome Camera Conversion: Effect on Sensitivity for Multispectral Imaging (Ultraviolet, Visible, and Infrared). Journal of Imaging, 8(3), 54. https://doi.org/10.3390/jimaging8030054